
DOE/NASA Stratus Review, March 30 & 31, 2004

GLAST Large Area Telescope:

Calorimeter (CAL) Subsystem WBS: 4.1.5

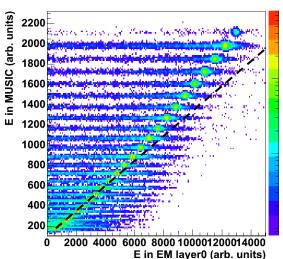
W. Neil Johnson Naval Research Lab, Washington DC Calorimeter Subsystem Manager

neil.johnson@nrl.navy.mil (202)–767–6817

Calorimeter Subsystem

DOE/NASA Stratus Review, March 30 & 31, 2004

Contents

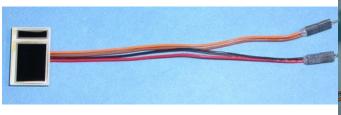

- □ Technical Status
- □ Schedule
- □ Cost and Budget
- □ Next 6 months
- □ Summary


Technical Status Engineering Model

- Completion of the CAL Engineering Model environmental test program (qualification levels)
 - No problems identified in Vibration or Thermal Vac testing
 - EMI/EMC issues were identified
 - Contributing causes test configuration issues and fidelity of TEM/PS unit used (GSE not flight-like).
 - Design changes have been applied to flight design to address these problems.
- EM CAL supported LAT I&T
 development at SLAC MUSIC vs Elay0
- EM CAL performance measured at heavy ion beam test at GSI in Darmstadt, Germany.

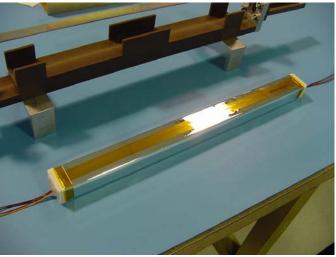
EM Energy vs Beam Tagger shows quenching in Csl

EM Calorimeter installation at heavy ion beam facility



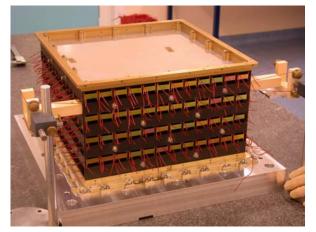
Technical Status Crystal Detector Elements

- Csl Crystal Procurement essentially complete (~80% delivered from Amcrys-H).
- Hamamatsu photodiode procurement is complete.
- PIN Diode Assembly process and contract established. Flight production is well under way (> 40% complete).
- PIN diode and CDE qualification programs are complete.
- Flight CDE production is well under way (>25% complete.)


ISSUES:	None
SCHEDULE:	Baseline

PIN Diode Assembly (PDA)

CDE Bonding at Swales Aerospace



Technical Status Mechanical Structure

- All flight machined aluminum, titanium and steel parts have been manufactured and plated as required.
- Flight carbon composite structure manufacturing process has been finalized at IN2P3/LLR and qualified with Structural Model 2 (SM2) testing.
- First three flight structures have been manufactured, tested. Two have been delivered to NRL.

ISSUES: None SCHEDULE: - 35 Day Variance

Carbon structure with test Al parts and dummy CDEs

Vibration test of FMA structure

DOE/NASA Stratus Review, March 30 & 31, 2004

Technical Status ASICS

- New revision of analog ASIC, GCFE9A, has been manufactured and tested.
- Over 11,000 flight parts were received after two month delay in packaging at ASAT in Hong Kong.
- Functional test screening provided >7,000 parts.
 Screening and qualification program is on-going. No problems to date.

Add testing picture

ISSUES:

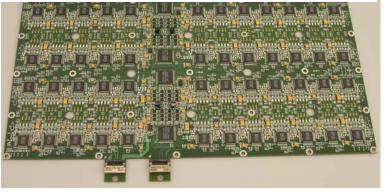
Recovering from 9 week delay in delivery.

Use before completion of qualification

SCHEDULE: -53 day variance

Technical Status

Analog Front End Electronics


- □ All EEE parts are approved except ASICs which are in qualification testing.
 - Radiation testing complete except for Total Dose on ASICs. No problems.
- Prototype of flight AFEE boards have been manufactured, assembled and tested.
 - Minor adjustments required to avoid potential mechanical interference with structure for parts added for EMI/EMC filtering.
- □ Flight PCBs are being manufactured.
 - Contract for assembly of flight AFEE boards is in place.

ISSUES:

Rework of mechanical interference problems on PCB and preproduction review

SCHEDULE: -24 day variance

Prototype Flight AFEE Card Assembly

Technical Status Assembly and Test

- GLAST CAL assembly and test clean room has been commissioned.
 - Upgrades for improved control of humidity are underway.
- Pre Electronics Module (PEM) for the first flight module has been assembled.

PEM in cosmic muon test station.

ISSUES: None

SCHEDULE: -17 day variance

Outstanding Issues

- **EMI/EMC** performance
 - Design changes have been made to address EMI/EMC problems discovered in CAL EM testing.
 - Results of these changes will not be known until EMI/EMC testing on 1st flight module.
 - Issues are
 - Shielding of CAL TEM cable and box attach points.
 - Test specification difficulty in separating CAL and TEM/PS performance issues.
 - Test configuration identification of subsystem configuration which represents LAT environment, shielding, etc.

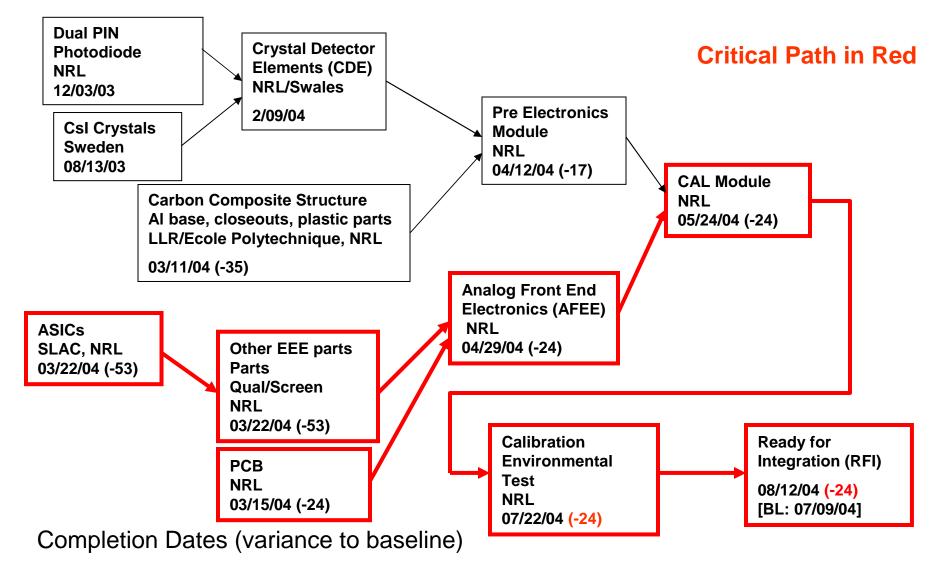
First opportunity to close this issue is during testing of FMA.

CAL Risk Summary

	Risk	Diele Description	Diale Mitigatian Ctat	
ID #	Rank	Risk Description	Risk Mitigation Stat	us
CAL- 0xxx	Moderate	IF a problem is found in EMI/EMC testing at the CAL module level caused by CAL, EM TEM/PS; or test configuration THEN LAT EMI/EMC performance is at risk and can not be verified until system level test.	 Based on EM testing, CAL Operative mechanical design modified to include EMI gaskets and "o-rings" to provide improved shielding. Additional filtering added to AFEE electronics cards 	en
			 Develop more realistic test configuration and use more flight-like TEM/PS. 	
AFEE board design manufacturing, test assembly and qual		IF a problem is found in CAL AFEE board design, SMT manufacturing, testing, PEM assembly and qualification (due	1. Prototype of board layout was manufactured and hand assembled. Several minor layout changes are required for final flight.	
0008	Low	to late qualification) THEN redesign of AFEE boards will cause schedule slip.	2. First flight article will be assembled, tested and thermal cycled before release to assembly of remainder. Schedule issue, however.	

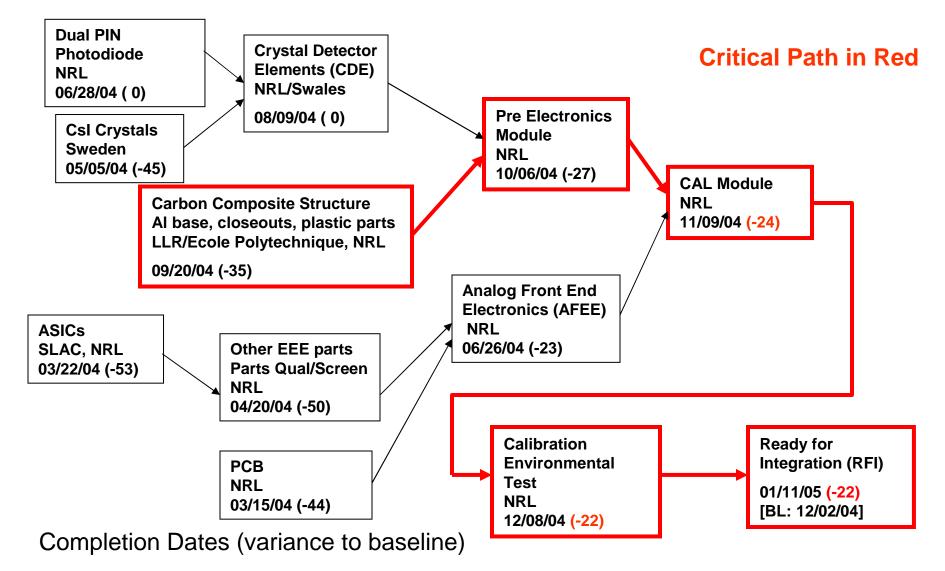
CAL Risk Summary (2)

ID #	Risk Rank	Risk Description	Risk Mitigation	Status
CAL- 0010	Low	IF CAL ASICs fail qualification testing; THEN the flight CAL AFEE boards in build will be impacted causing schedule impact and loss of flight parts.	 Boards will be assembled in three lots 1. 1st article verification 2. lot of 6 modules 3. lot of 18 modules the assembly of which will not occur until qualification testing is complete. 	On Track
CAL- 0011	Moderate	IF CAL problem is found during production; THEN multiple flight units may be impacted due to schedule compression resulting in schedule impact.	 Verify production processes during EM program Extensive EM environment test program 	On Track

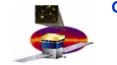


Schedule Variances

- □ Flight ASIC manufacture (-53 days)
 - Packaging of CAL ASICs took ~45 days longer than programmed due to vendor work load and priorities.
- □ AFEE Printed Circuit Board (-24 days)
 - Testing of prototype flight PCB and mechanical verification has taken longer than programmed.
 - Implementation of layout modifications add additional EMI/EMC filtering, to improve potential mechanical interference issues and to improve reliability were not programmed.
- □ Carbon Composite Structure (-17 days)
 - Materials problems and over test anomalies delayed the manufacture of the 1st flight structure.



Path to first flight CAL Module (FMA)



Path to 16th flight CAL Module (FM14)

DOE/NASA Stratus Review, March 30 & 31, 2004

Cost Summary

Approved Cost Changes since Rebaseline

4.1.5 Baseline, November 03	\$22,648K
Changes: CDE Manuf. Develop. Savings	<u>\$ (546K)</u>
4.1.5 Baseline, February 04	\$22,103K

DOE/NASA Stratus Review, March 30 & 31, 2004

Cost Variance

Cumulative Cost Variance: + \$640K

□ Mgmt, Sys Eng, R&QA: +\$259K (6%)

- Understaffed (60%)
- Travel underrun (40%)
- □ Crystal Detector Elements: +\$27K (1%)
- □ PreElectronics Module: +\$168K (18%)
 - Invoicing for delivered material and outstanding commitments
- □ Analog Electronics: +\$3K (0%)
- □ Module Assembly and Test: +\$161K (9%)
 - Invoicing for facilities and GSE

Cost Liens

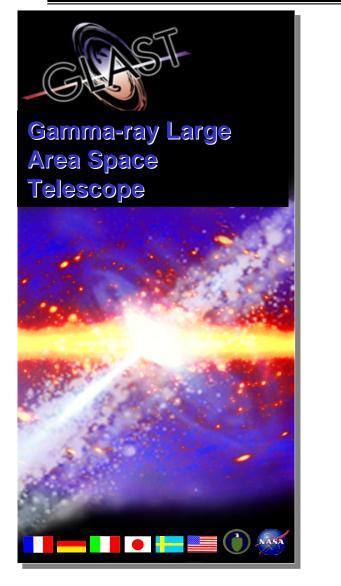
Additional duration for Thermal Vacuum Testing

- EM Test experience indicated that CAL temperature changes can not be driven as quickly as estimated in baseline: 3 days per cycle rather than baseline 2 days.
 - Additional TVAC operation time and supporting staff is ~\$30K per TVAC. This affects 8 of the 9 TVACs.
 - Cost increase is partially mitigated by the removal of requirement for 12 cycles of TVAC for FMA/B. This recovers \$111K.
 - Net cost estimate is ~ \$130K. Approximately 50K of this is in FY04.

Next 6 months

By Oct 1, 2004

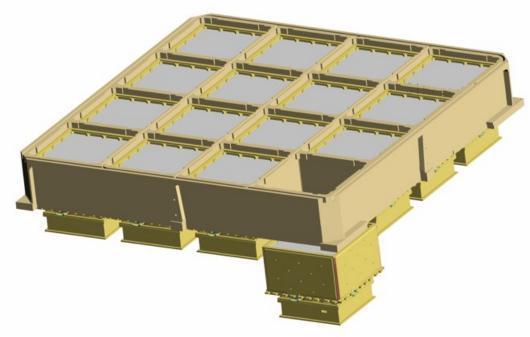
- **Crystal Detector Elements**
 - All Csl crystals delivered from Sweden (by August)
 - All CDE manufactured and tested (~1850 by Sept)
- □ Pre Electronics Modules
 - I7 of 18 structures delivered to NRL from IN2P3/LLR
 - 15 of 18 PEMs completely assembled and tested.
- □ Analog Front End Electronics
 - All AFEE circuit cards assembled and tested.
- Module Assembly and Test
 - It of 18 Modules completely assembled and in test.
 - 6 of 18 Modules delivered to SLAC.


Summary

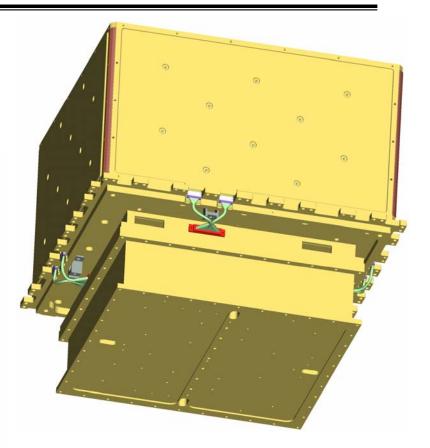
- □ CAL design and technical issues are well in hand
 - EM module verified design and assembly processes.
 Lessons learned incorporated in flight production.
 - EM subjected to qualification level environmental test program. No problems.
- **CAL** is well into flight module production
 - All flight hardware drawings are released.
 - Electronics assembly and test continue to define the critical path to the delivery of the first modules.
 - Flight parts availability and qualification continue to present schedule vs risk challenges.
- □ The CAL schedule is aggressive
 - Delivery of 1st two modules in August will be a significant challenge.

DOE/NASA Stratus Review, March 30 & 31, 2004

Backup Material Overview

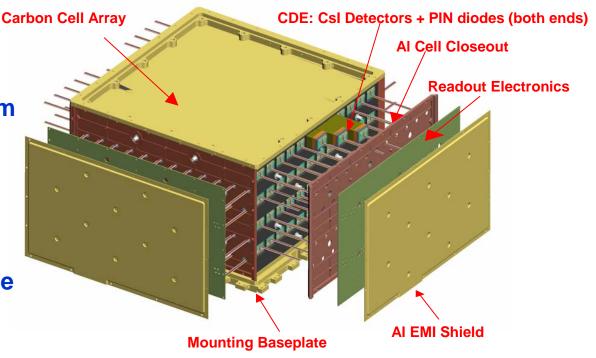

Calorimeter Subsystem

DOE/NASA Stratus Review, March 30 & 31, 2004



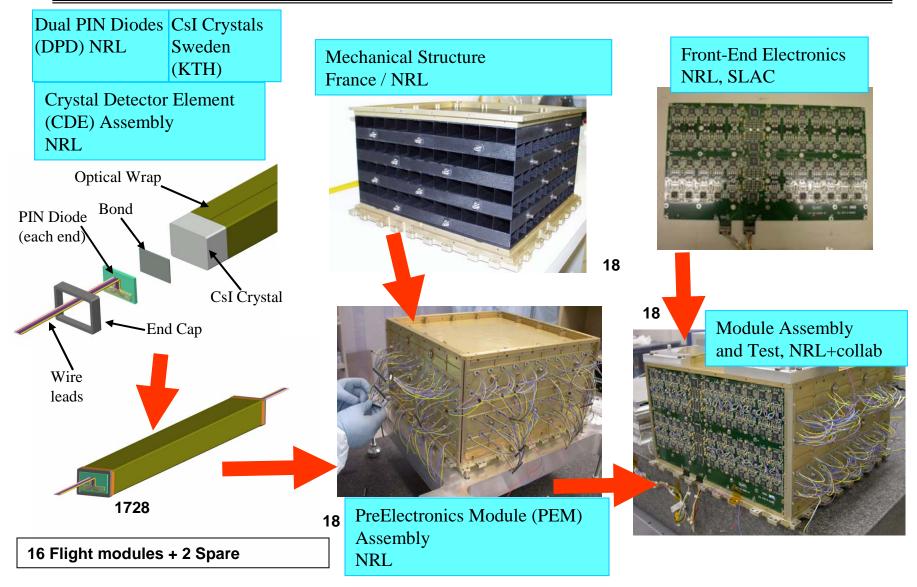
Modular Design

LAT GRID with 16 CAL Modules

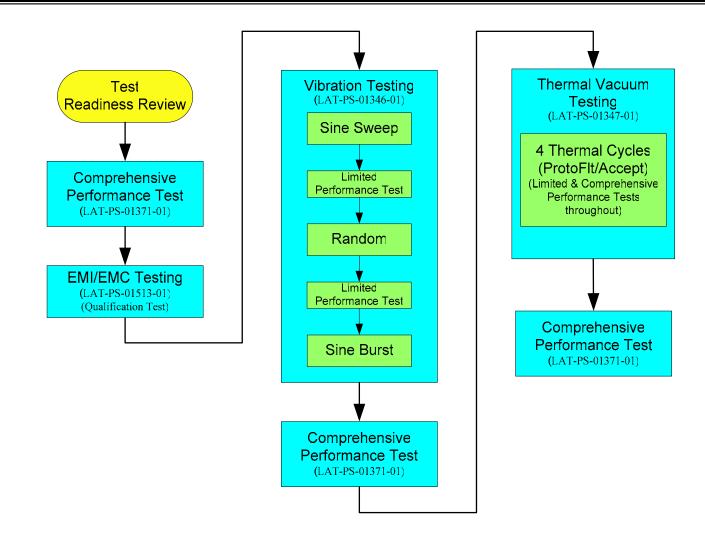

CAL Module with TEM and Power Supply mounted to base plate

DOE/NASA Stratus Review, March 30 & 31, 2004

CAL Module


- 8 layers of 12 Csl(Tl) crystals
 - Crystal dimensions
 - 27 x 20 x 326 mm
 - Hodoscopic stacking
 - alternating orthogonal layers
 - Dual PIN photodiode on each end of crystals
- Mechanical packaging
 - Carbon Composite cell structure
 - Al base plate and side cell closeouts

- **□** Electronics boards attached to each side
 - Interface connectors to TEM at base of calorimeter
- Outer wall is EMI shield and provides structural stiffness as well


Calorimeter Assembly Flow

Calorimeter Subsystem

Environmental Test Flow

CAL Hardware Collaborators

Organization	Responsibility	
Naval Research Lab	CAL Subsystem Management & System Engineering	
	Safety & Mission Assurance, Subsystem Design	
	PIN photodiode spec and entire procurement	
	CDE manufacture and test.	
	Aluminium, titanium structures manufacture.	
	CAL Electronics Design & Fab, Digital ASIC design,	
	CAL Module Assy & Test, LAT I&T Support	
SLAC	CAL Analog ASIC Design and support. EM AFEE PCB layout	
Sweden	CsI Crystal procurement and acceptance test	
France / CEA	PIN Diode test equipment, CDE shipping containers.	
France / IN2P3	 Mechanical Structure design and configuration management. Carbon composite cell structure. Elastomer bumpers and cords. Finite element and thermal analyses. Beam Test Planning and Support 	