

GLAST Large Area Telescope

Science Analysis Software

WBS 4.1.D

Richard Dubois SAS System Manager

richard@slac.stanford.edu

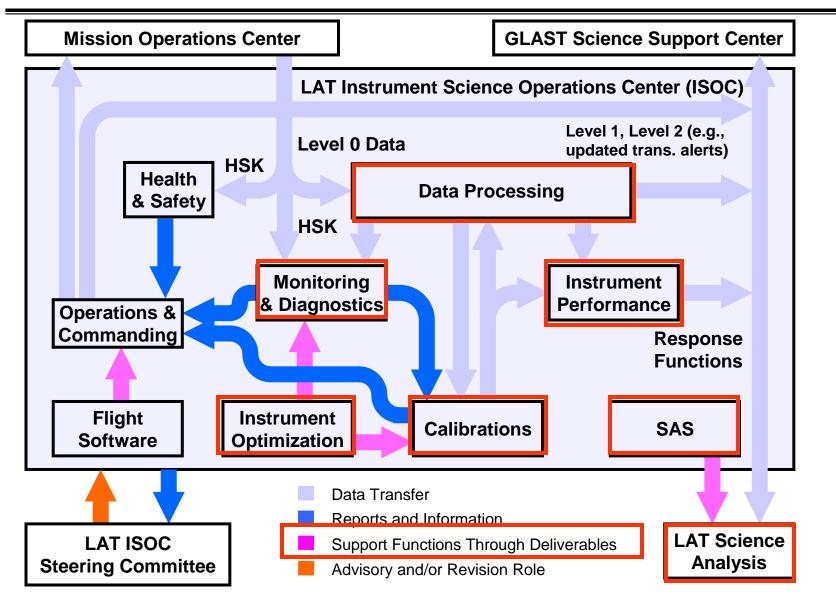
DOE/NASA Status Review, March 30 & 31, 2004

Outline

- Introduction to SAS Scope and Requirements
- Overall Test Plan
- Data Challenges
- DC1 Summary
- Flight Integration Support
- Network Monitoring
- Outlook

Science Analysis Software Overview

- Processing Pipelines
 - Prompt processing of Level 0 data through to Level 1 event quantities
 - Providing near real time monitoring information to the IOC
 - Monitoring and updating instrument calibrations
 - Transients searches (including GRBs)
 - Reprocessing of instrument data
 - Performing bulk production of Monte Carlo simulations
- Higher Level Analysis
 - Creating high level science tools
 - Creating high level science products from Level 1
 - Providing access to event and photon data for higher level data analysis
- Interfacing with other sites (sharing data and analysis tool development)
 - Mirror PI team site(s)
 - -SSC
- Supporting Engineering Model and Calibration tests
- Supporting the collaboration for the use of the tools


Level III Requirements Summary

Ref: LAT-SS-00020

Function	Requirement	Expected Performance (if	Verification		
		applicable)			
Flight Ground Processing	perform prompt processing	keep pace with up to 10 GB	demonstration		
	from Level 0 through Level 1	Level 0 per day and deliver to			
		SSC within 24 hrs			
	provide near-real time	within 6 hrs	demonstration		
	monitoring to IOC				
	maintain state and		demonstration		
	performance tracking				
	facilitate monitoring and		demonstration		
	updating of iinstrument				
	calibrations				
	archive all data passing	> 50 TB on disk and tape	demonstration		
	through	backup			
Instrument Design Support	Create simulation tool, based		system test -		
	on instrument geometry, that		comparison to		
	reproduces the interactions of		balloon flight and		
	photons and background		existing data		
	Create physics model of		system test -		
	expected photons and		comparison to		
	backgrounds incident upon		balloon flight and		
	the instrument		existing data		
	Create algorithms to interpret		system test -		
	the data from the instrument		comparison to		
	to identify the interaction and		engineering model		
	estimate photon direction and		tests		
	energy				
	Create algorithms to generate		system test - in		
	calibration constants for the		conjunction with		
	subsystem components		engineering model		
			tests		
High Level Tools	Interface with the SSC and PI		demonstration		
	mirror sites, sharing selected				
	data and algorithms				
	Create High-Level Science		demonstration		
	products. Development of				
	analysis tools				
Mission Support	Support the Software system		demonstration		
••	for the life of the mission				

SAS in and around the ISOC

DOE/NASA Status Review, March 30 & 31, 2004

Manpower

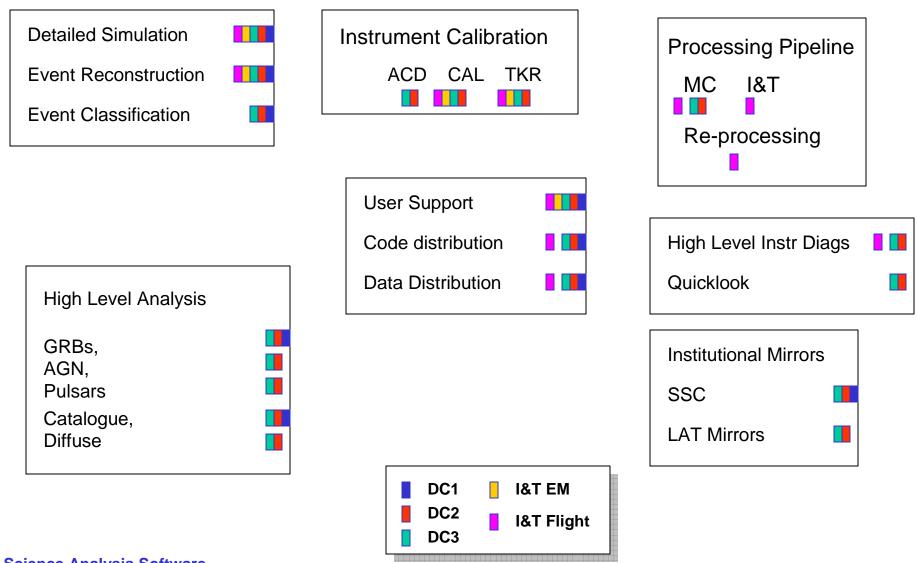
- Mostly off-project
 - From collaboration and SSC
- Effort divided amongst
 - Infrastructure
 - ~6-8 FTEs
 - Sim/recon
 - ~6 FTEs
 - Science Tools
 - 8-10 FTEs
- Effort ramping up for Flight Integration support
 - From infrastructure and sim/recon areas

Overall Test Plan

- Combination of Engineering Model tests, Data Challenges and LAT Integration Support
- EM tests
 - EM1 demonstrated ability to simulate/reconstruct real data from single (non-standard) tower
 - All within standard code framework/tools
 - Data analyzed with SAS tools
- Data Challenges
 - End to end tests of sky simulation through astro analysis
 - Generate instrument response functions
 - Exercise pipeline
- LAT Flight Integration
 - Combine tools from EM & DC applications
 - Sim/recon/analysis & pipeline processing and record keeping

S.Ritz

Purposes of the Data Challenges


- "End-to-end" testing of analysis software.
- Familiarize team with data content, formats, tools and realistic details of analysis issues (both instrumental and astrophysical).
- If needed, develop additional methods for analyzing LAT data, encouraging alternatives that fit within the existing framework.
- Provide feedback to the SAS group on what works and what is missing from the data formats and tools.
- Uncover systematic effects in reconstruction and analysis.

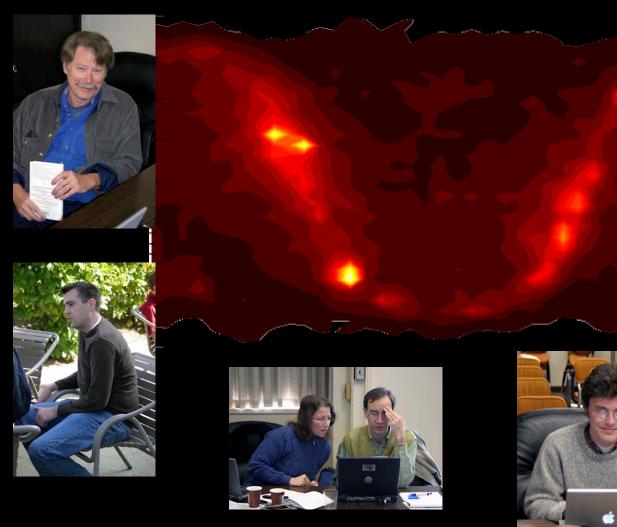
Support readiness by launch time to do all first-year science.

DOE/NASA Status Review, March 30 & 31, 2004

SAS Checklist

Data Challenge Planning Approach

S.Ritz


- Walk before running: design a progression of studies.
- DC1. Modest goals. Contains most essential features of a data challenge. Original plan:
 - 1 simulated day all-sky survey simulation, including backgrounds
 - find flaring AGN, a GRB
 - recognize simple hardware problem(s)
 - a few physics surprises
 - exercise:
 - exposure, orbit/attitude handling, data processing pipeline components, analysis tools
- DC2, start end of CY04. More ambitious goals. Encourage further development, based on lessons from DC1. One simulated month.
- DC3. Support for flight science production.

DOE/NASA Status Review, March 30 & 31, 2004

Data Challenge 1 Closeout 12-13 Feb 2004

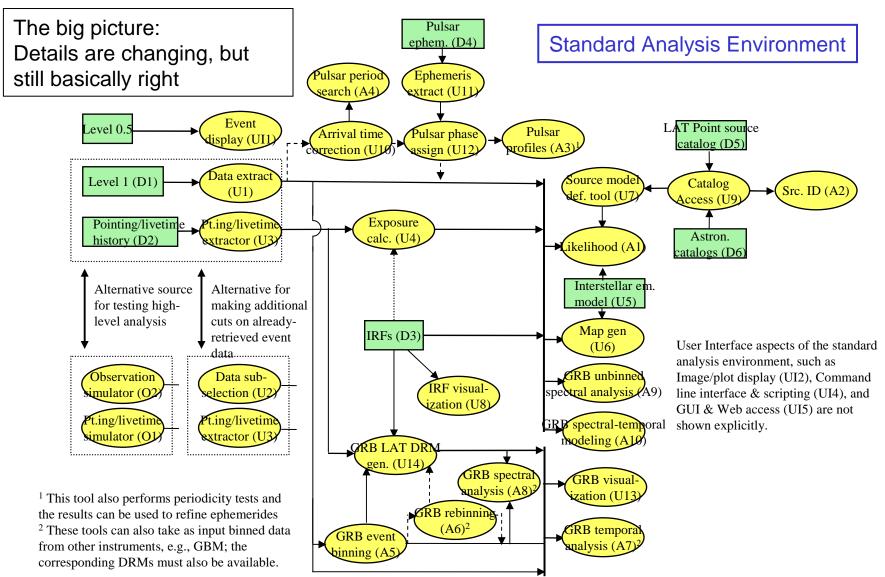
http://www-glast.slac.stanford.edu/software/Workshops/Feb04DC1CloseOut/coverpage.htm

DOE/NASA Status Review, March 30 & 31, 2004

DC1 Components

- Focal point for many threads
 - Orbit, rocking, celestial coordinates, pointing history
 - Plausible model of the sky
 - Background rejection and event selection
 - Instrument Response Functions
 - Data formats for input to high level tools(*)
 - First look at major science tools Likelihood, Observation Simulator
 - Generation of datasets (*)
 - Populate and exercise data servers at SSC & LAT (*)
 - Code distribution on windows and linux (*)
- Involve new users
- Teamwork!

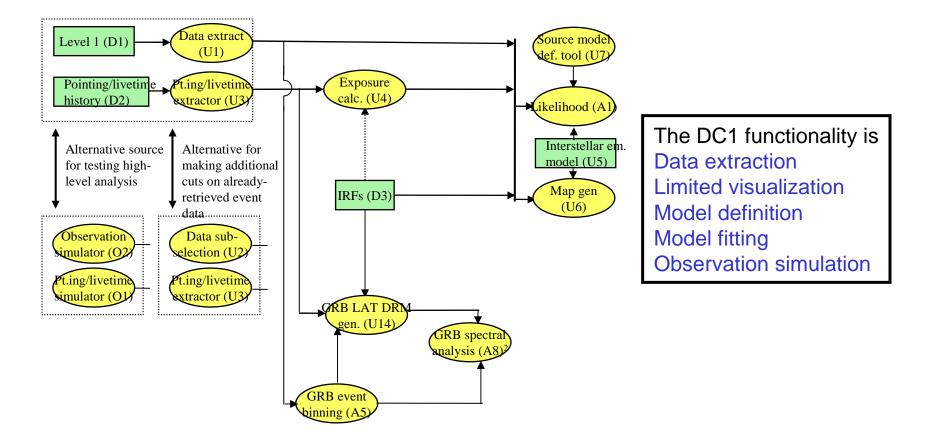
(*) – done – no further comment here



DC1 Minimum Results

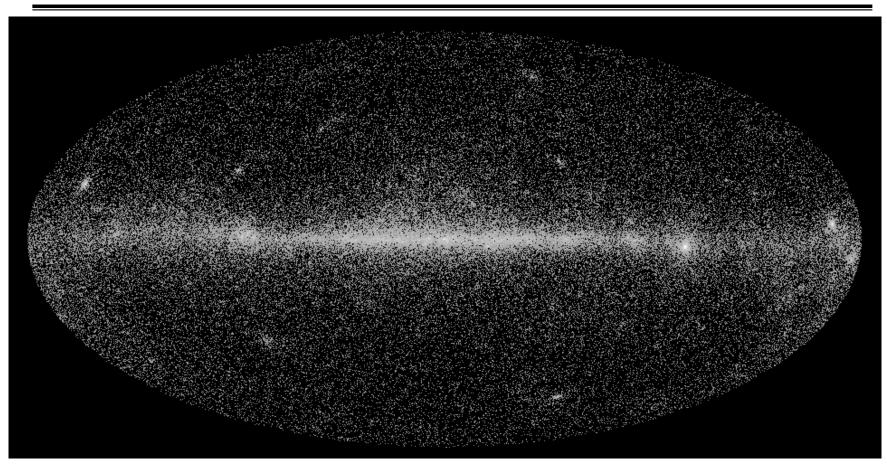
- The existence of the data sets and the volume of data generated for background analyses already meets one of the success criteria.
- A minimum set of plots and tables that we must collectively produce:
 - TABLE 1: found sources, ranked by flux (E>100 MeV). Table has the following columns
 - reconstructed location and error circle
 - flux (E>100 MeV) and error
 - significance
 - **3EG identification (yes or no)** [note: DON'T assume DC1 sky is the 3EG catalog!]
 - extra credit:
 - » include flux below 100 MeV
 - » spectral indices of brightest sources
 - » comparison of 3EG position and flux characteristics with GLAST analysis
 - FIGURE 1: LogN-logs plot of TABLE1
 - TABLE 2: list of transients detected. Columns are
 - location and error circle
 - flux (E>100 MeV) and error
 - significance
 - duration
 - FIGURE 2: light curve
 - Extra credit: FIGURE 2a: spectra.
 - PLUS: reports of any physics surprises found.

S.Digel and P.Nolan Science Tools in DC3



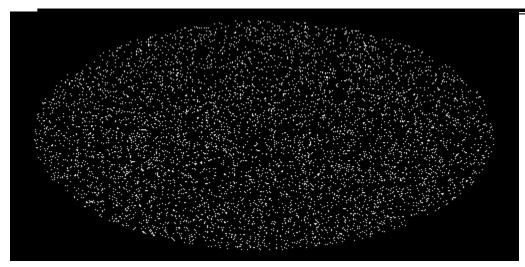
DOE/NASA Status Review, March 30 & 31, 2004

S.Digel and P.Nolan Science Tools in DC1

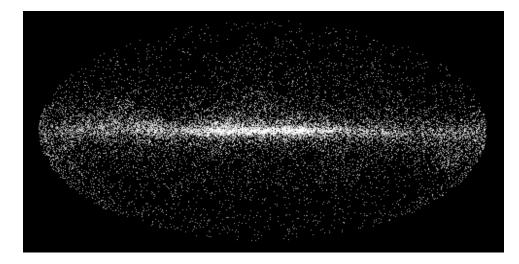

All components are still prototypes

DOE/NASA Status Review, March 30 & 31, 2004

The data

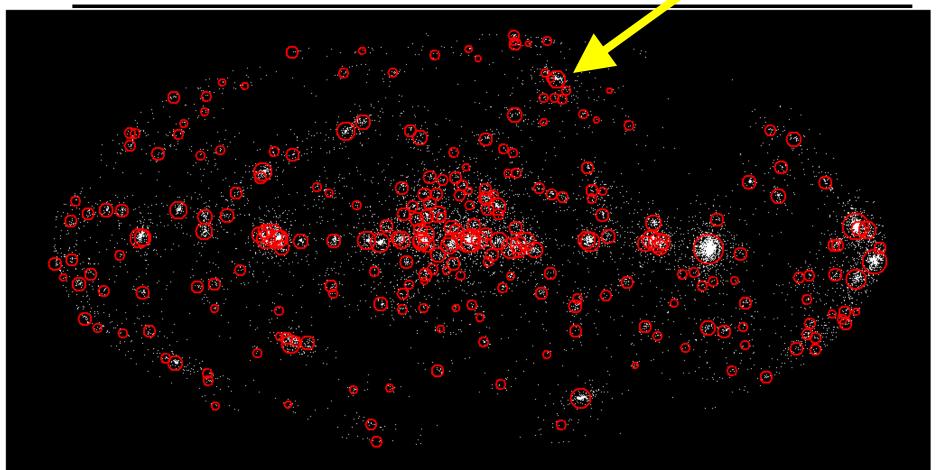

T.Burnett

on to individual components!


DOE/NASA Status Review, March 30 & 31, 2004

The Diffuse Truth

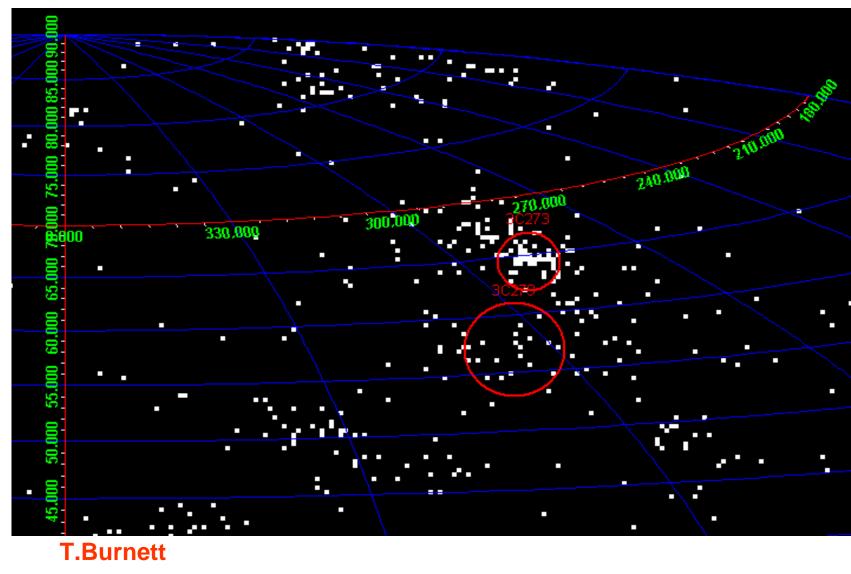
T.Burnett



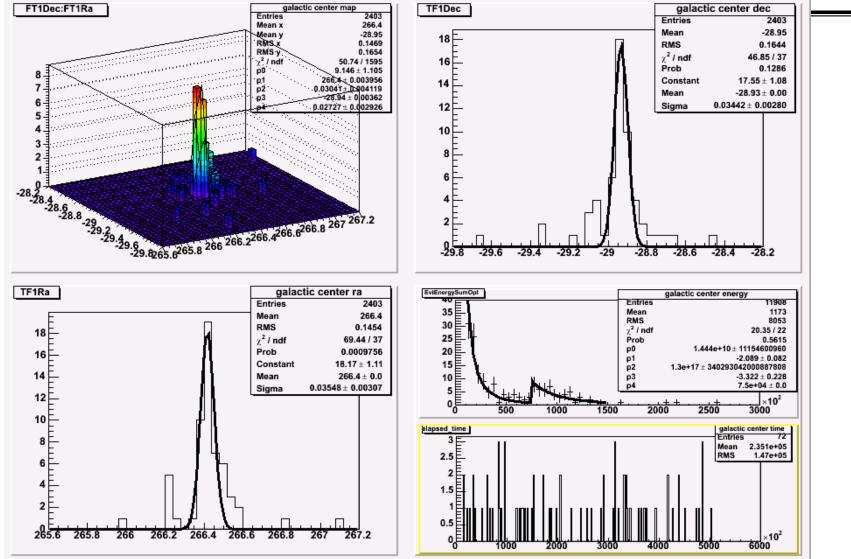
No surprises, excitement

DOE/NASA Status Review, March 30 & 31, 2004

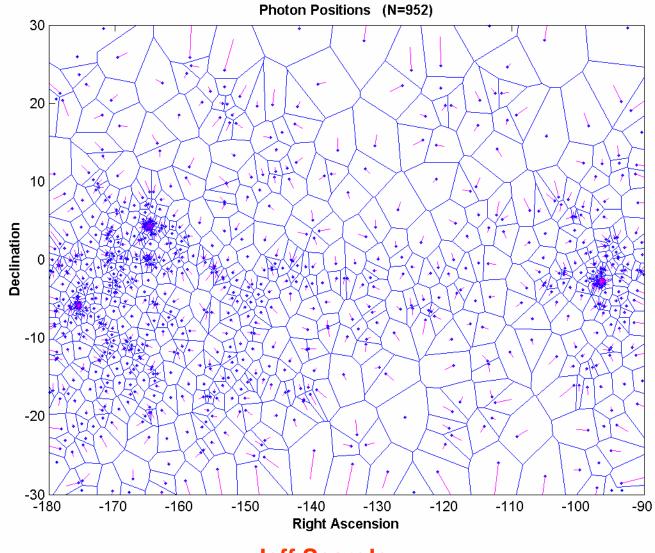
3EG – and a twist



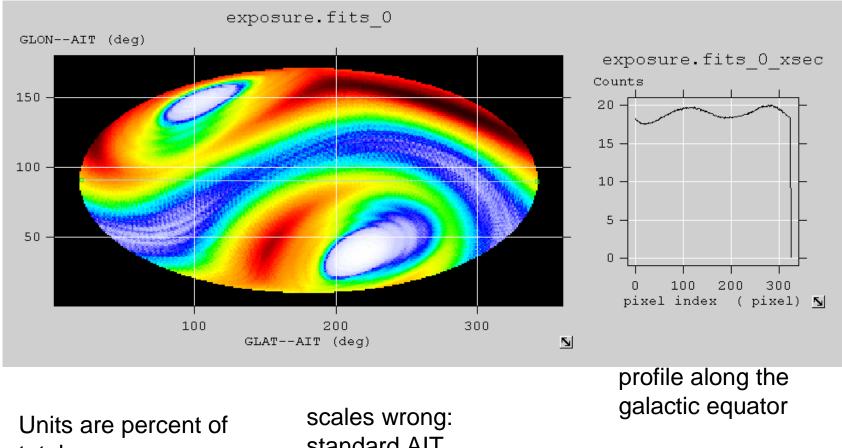
T.Burnett


DOE/NASA Status Review, March 30 & 31, 2004

The blow-up


110 GeV WIMP at Galactic Center Review, March 30 & 31, 2004 Plot of Everything ...

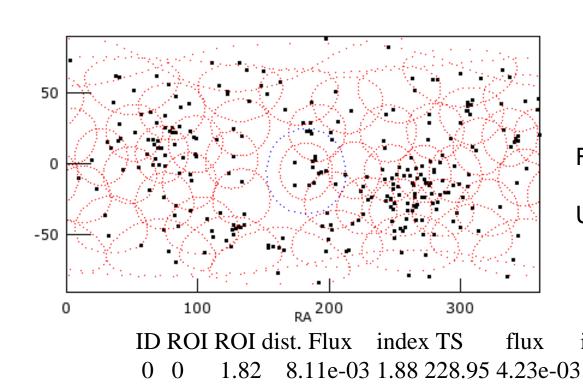
Michael Kuss


DOE/NASA Status Review, March 30 & 31, 2004

Bayesian Block source finding – Voronoi Tesselation

Exposure: the 1-day map

total exposure.


scales wrong: standard AIT projection

Toby Burnett

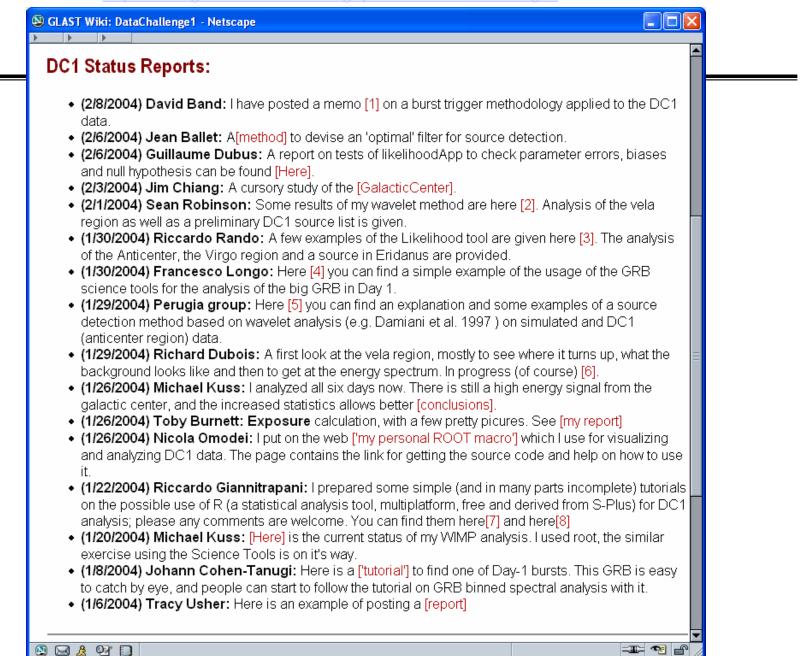
Dec

DOE/NASA Status Review, March 30 & 31, 2004 Source Finding

3EG Sources and ROIs

Jim Chiang

First 8 rows of catalogue


Using 3EG sources as seeds

index catalog ID 8.11e-03 1.88 228.95 4.23e-03 1.85 3EG J0010+7309 5 11.93 3.42e-03 2.51 35.59 1.20e-03 2.70 3EG J0038-0949 1 2 4 7.05 1.89e-03 2.61 16.34 5.10e-04 2.63 3EG J0118+0248 3 5 10.44 1.70e-03 3.40 21.07 1.16e-03 2.50 3EG J0130-1758 6 7.19 2.78e-03 3.18 37.89 9.80e-04 2.89 3EG J0159-3603 4 5 4 11.24 1.96e-03 2.67 10.82 8.70e-04 2.23 3EG J0204+1458 8.50 2.00e-02 2.16 740.77 8.55e-03 1.99 3EG J0210-5055 6 6 3.06e-03 2.22 49.66 9.30e-04 2.03 3EG J0215+1123 7 4 10.04

GLAST LAT Project/www-glast.stanford.edu/cgi-prot/wiki?DQE/NASA Status Review, March 30 & 31, 2004

DOE/NASA Status Review, March 30 & 31, 2004

Lessons Learned

- Analysis Issues
 - Astrophysical data analysis
 - Software usage and reliability
 - Documentation
 - Data access and data server usage
 - UI stuff
 - Software installation and release
 - Software infrastructure & framework
 - Communication and Time frame

Closeout report will contain the details.

- Infrastructure Issues
 - SciTools did not run on windows at the last minute
 - We discovered problems with sources and ACD ribbons late
 - Manual handling of the processing
 - No checking of file integrity
 - Large failure rate in batch jobs (~10%)
 - Tools are not checking inputs much
 - Code distribution scripts were written manually

Strawperson Updated Plan for DC2

DC2, based on lessons from DC1

- S.Ritz
- 1 simulated month of all-sky survey gammas (backgrounds: see next slide)
- key sky addition: source variability
 - AGN variability, including bright flares, quiescent periods
 - expand burst variety (and include GBM? see later slides)
 - pulsars, including Gemingas, w/ orbit position effects.
- more realistic attitude profile
- background rate varies with orbit position
- more physics surprises, and add nominal hardware problems (and misalignments?), add deadtime effects and corrections
- Analysis Goals:
 - produce toy 1-month catalog and transient releases
 - detailed point source sensitivity and localization studies
 - first systematic pulsar searches (timing!); detailed diffuse analyses
 - recognize simple hardware problems (connect with ISOC/SOG)
- benchmark:

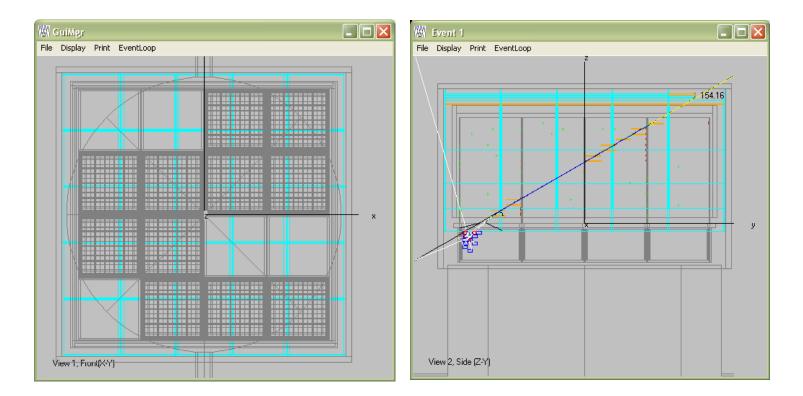
• processing times, data volume, data transfers.

Flight Ops - Expected Capacity

- We routinely made use of 100-300 processors on the SLAC farm for repeated Monte Carlo simulations, lasting weeks
 - Expanding farm net to France and Italy
 - Unknown yet what our MC needs will be
 - We are very small compared to our SLAC neighbour BABAR computing center sized for them
 - 2000-3000 CPUS; 300 TB of disk; 6 robotic silos holding ~30000 200 GB tapes total
 - SLAC computing center has guaranteed our needs for CPU and disk, including maintenance for the life of the mission.
 - Data rate less than already demonstrated MC capability
 - ~75 of today's CPUs to handle 5 hrs of data in 1 hour @ 0.15 sec/event
 - Onboard compression may make it 75 of tomorrow's CPUs too

Disk and Archives

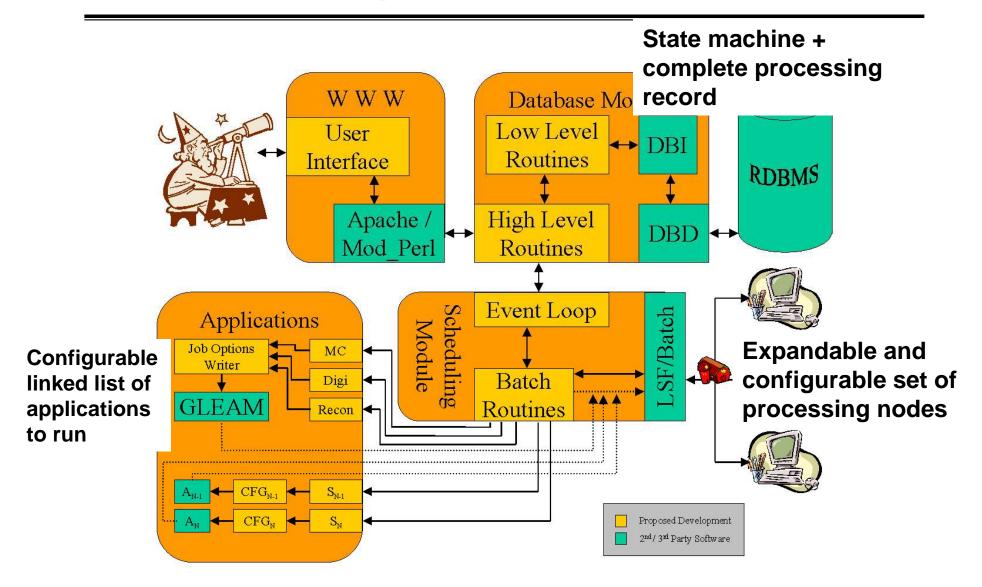
- We expect ~10 GB raw data per day and assume comparable volume of events for MC
 - Leads to ~100-250 TB per year for all data types
 - Current filesizes and background rates
 - No longer as frightening keep it all on disk
 - Use SLAC's mstore archiving system to keep a copy in the silo
 - Already practicing with it and will hook it up to OPUS
 - Archive all data we touch; track in dataset catalogue


Flight Integration Support

- Simulation/Reconstruction package
 - Running stress tests now
- Calibration algorithms and infrastructure
 - TKR exercising TOT and Splits now
 - Thinking about alignments
 - Negotiating with CAL now
 - User interface for entering parameters into system underway
- Geometry
 - Flexible scheme to describe towers as they are inserted under test now
- High Level Diagnostics
 - Adapt "System Tests" to this purpose
 - Tracked in database etc
 - New version under construction
- Processing Pipeline
 - Due end April with tests demonstrating EM MC & Data handling
- Strategy is to use the same systems for Flight Integration as we expect to use for flight databases; diagnostics system; pipeline; reconstruction, etc.

Simulating/reconstructing tower data

- Can run full sim/recon on the incremental configurations during installation.
- Uses same code as for EM1 and full 16 towers


Pipeline Spec

- Function
 - The Pipeline facility has five major functions
 - automatically process Level 0 data through reconstruction (Level 1)
 - provide near real-time feedback to IOC
 - facilitate the verification and generation of new calibration constants
 - produce bulk Monte Carlo simulations
 - backup all data that passes through
- Must be able to perform these functions in parallel
- Fully configurable, parallel task chains allow great flexibility for use online as well as offline
 - Will test the online capabilities during Flight Integration
- The pipeline database and server, and diagnostics database have been specified (will need revision after prototype experience!)
 - database: LAT-TD-00553
 - server: <u>LAT-TD-00773</u>
 - diagnostics: <u>LAT-TD-00876</u>

DOE/NASA Status Review, March 30 & 31, 2004

Pipeline in Pictures

First Prototype - OPUS

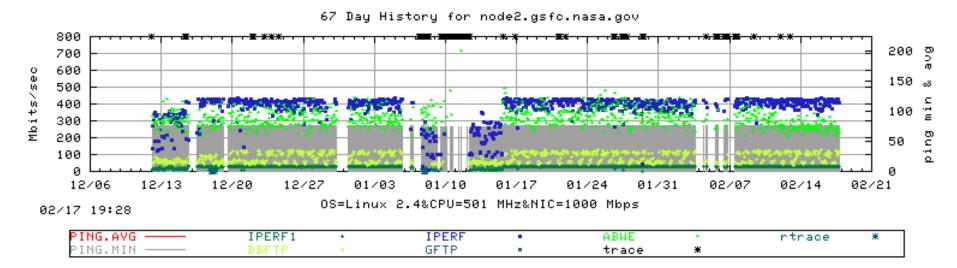
IN 4V SR R C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
C C C C C C C C C C C C C C C C C C C
C C
2 2 2 3 2 3 3 2 2 3 3 2 2 3 3 2 3 3
C C C C C C C C C C C C
C C C C C C C C
C C C C
C C C C
ссвж
C C C C
C C C P
C C D W
C C P W
C C P W
C C W W
C C W W
C C W W
C C W W
C C W W
C C W W

Open source project from STScI

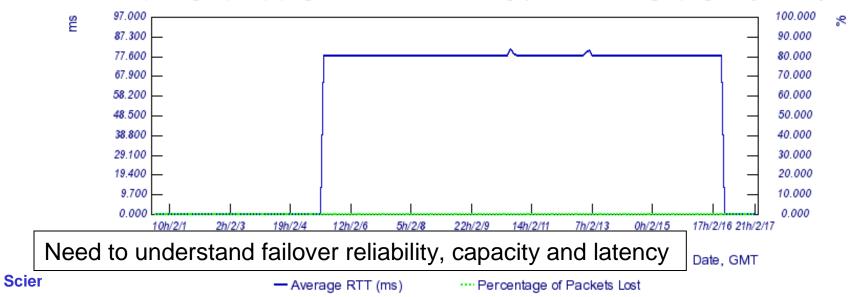
In use by several missions Now outfitted to run DC1 dataset

OPUS Java mangers for pipelines

gsim: glast: PMG								
	ols <u>H</u> elp							
OPUS	gsim							
P 🗂 Processes	pid	process	proc_stat	start time	path	node	proc cmd	class
🖗 🛄 GLAST	00001	fourvect	idle	2004 02/24 1	gsim	glast04		gsim
🍳 🗂 GSIM	00003	fourvect	idle	2004 02/24 1		glast04		gsim
- 🗅 fourvect	00001		allSky 0106	2004 02/24 1		glast04		gsim
- C qsim	00003		allSky 0115	2004 02/24 1		glast04		qsim
	00003		allSky 0105	2004 02/24 1		glast04		qsim
— 🗋 joboptin	00003		allSky 0107	2004 02/24 1		glast04		qsim
🗕 🗋 rootsum		joboptin	idle	2004 02/24 1		glast04		qsim
🕒 🗐 TEST		rootsum	idle	2004 02/24 1		glast04		gsim
	gsim: idle	: 4 other: 4 to	tal: 8					
2/24.12:33:06-D-MGRFrame Sta	atusInfo: idl	e: 4 other: 4 t	otal: 8					Log



ISOC Stanford/SLAC Network


- SLAC Computing Center
 - OC48 connection to outside world
 - provides data connections to MOC and SSC
 - hosts the data and processing pipeline
 - Transfers MUCH larger datasets around the world for BABAR
 - World renowned for network monitoring expertise
 - Will leverage this to understand our open internet model
 - Sadly, a great deal of expertise with enterprise security as well
- Part of ISOC expected to be in new Kavli Institute building on campus
 - Connected by fiber (~2 ms ping)
 - <u>Mostly</u> monitoring and communicating with processes/data at SLAC

Network Monitoring

RTT & Lost packages (in %): pinger.slac.stanford.edu - king.qbed.nren.nasa.gov,pinged by 1000 bytes

GLAST LAT Project	DOF/NASA Status Review March 30 & 31 2004										
	http://www-iepm.s	lac.stanford.edu/	'cgi-wrap/	pingtable.pl	?dataset=he	p&file=pa	cket_loss&by	=by-site - N	\i 💶 🗖 🔀		
	<u>F</u> ile <u>E</u> dit <u>V</u> iew F <u>a</u> vor	ites <u>T</u> ools <u>H</u> elp									
	🚱 Back 🔹 🌍 👻 📓 🏠 🔎 Search 🤺 Favorites <table-cell> Media 🚱 😒 🎍 🖬 🔹 📃</table-cell>										
	Address 🗃 http://www-iepm.slac.stanford.edu/cgi-wrap/pingtable.pl?dataset=hep&file=packet_loss&by=by-site&size=10							100&ticł 💌 📘	Go Links X		
	Google - icarus rubbia	🖌 😽	Search Web	o 🔹 👰 Seard	h Site 🛛 🕡	PageRank	🕽 🗸 🛃 Optic	ons 💼 🔹	🖉 👸 icaru 🕺		
LAT Monitoring	Or Change the data	iset									
	Change to	hep 🖌									
Keep track of connections to	Packet losses of			Click on			Please Note				
collaboration sites	less than 1% are sho	less than 1% are shown black .		Each Column Header to sort by that			The values shown here are for the full				
	1% to 2.5% are show	vn green.	column			day	GMT time.				
				toring Site to graph the data							
Alerts if they go down	5% to 12% are show 12% or more are show		with GD: Remote	Site to jump	n to the gran	hing		=			
		o mi i cu.	facility at		p to the grup				=		
Eaddar for complaints if poor	Monitoring Node to ping that site					te					
Fodder for complaints if poor	from the Mo			Mon_site (if available)							
connectivity	Further Information is provided. See also the PingER Group History Table.										
	This report can also be provided in <u>tab-separated-value (.tsv)</u> format for use with Excel										
Monitoring nodes at most	Monitoring-Site	Remote-Site		<u>Feb2004</u>	<u>Jan2004</u>	Dec2003	<u>Nov2003</u>	<u>Oct2003</u>	<u>Sep2003</u>		
0	SLAC	QBED.NREN.NA:		0.000							
LAT collaborating institutions	SLAC SLAC	MTPLIR.IN2P3 phys.washing		0.168 0.066	0.338 0.437	:	1	1	1		
	SLAC	ba.infn.it		4.452	1.198	1		1	1		
	SLAC	FISICA.UNIUD	.IT	1.052							
	SLAC	UCSC GLAST-IN2P3.	FR	0.005	0.441 0.000	0.010	0.077	0.013	0.034		
	SLAC	ccali.in2p3.		0.019	0.110	0.000		÷			
	SLAC	PI.INFN.IT		2.459	2.915						
	SLAC	TS.INFN.IT		0.012	0.017			÷			
	SLAC SLAC	pollinbg.in2 PG.INFN.IT	p3.1r	0.009	0.077	0.000					
	SLAC	OHIO-STATE.E	DU	0.012	0.000						
									~		
	<								>		
	ē							🔮 Interne	t		

Outlook for next 12 Months

- Flight Integration support
 - Subsystem calibration algs; Analysis; Pipeline processing
 - Getting priority now
- DC2 prep
 - 2nd iteration of Science Tools
 - Apply lessons learned from DC1 + new functionality
 - Improve CAL digitization/reconstruction based on EM and flight hardware data
- Continue infrastructure improvements
 - Release Manager upgrades
 - Code distribution
 - Institute an issues tracker
 - An endless list of small improvements

Summary

- We believe that EMs, DCs and Flight Integration will leave us ready for flight
- EM1 worked with our tools
- DC1 worked well, showing very good capabilities from sky modeling through astronomical analysis
 - Plenty of work still to do, but reasonably understood
- Will be demonstrated in DC2, 3 and LAT Integration, 16-tower cosmic ray tests and the beam test prior to launch

LAT Flight Integration in 5 months

DC2 in 9 months