ELECTROMAGNETIC INTERFERENCE TEST REPORT
 FOR THE STANFORD LINEAR ACCELERATOR CENTER (SLAC)
 TOWER EQUIPMENT MODULE/TOWER POWER SUPPLY, TEM/TPS

MIL-STD-461E (1999), SECTIONS CE102, RE101, RE102, RS101 AND RS103 MIL-STD-462 SECTIONS: CS102 (NOTICE 5 1986) AND CS06 (NOTICE 3 1971) TESTING IN ACCORDANCE WITH TEST PLAN TP05-82840-1

DATE OF ISSUE: MARCH 18, 2005

PREPARED FOR:

Stanford Linear Accelerator Center (SLAC) P.O. Box 20450

Stanford, CA 94309
P.O. No.: 0000053584
W.O. No.: 82840

PREPARED BY:

Valerie Honsinger
CKC Laboratories, Inc.
5473A Clouds Rest
Mariposa, CA 95338
Date of test: February 21 - March 4, 2005

> Report No.: MIL05-015

This report contains a total of 224 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information 3
Approvals 4
Unit Under Test (UUT) Description 5
Unit Under Test 5
Peripheral Devices 5
Summary of Results6
Report of Measurements 8
CE102 - Conducted Emissions, Power Leads, 10 kHz to 10 MHz 8
CECM - Conducted Emissions, Common Mode, DC to 150 MHz 31
RE101 - Radiated Emissions, Magnetic Field, 30Hz to 100 kHz 39
RE102 - Radiated Emissions, Electric Field, 10kHz to 18 GHz 60
CS06 - Conducted Susceptibility, Spikes on Power Leads 186
CS102 - Conducted Susceptibility, Powert Leads, 10 kHz to 10 MHz 189
CSCM - Conducted Susceptibility, Common Mode, 30 Hz to 150 MHz 197
RS101 - Radiated Susceptibility, Magnetic Field, 30 Hz to 100 kHz 202
RS103 - Radiated Susceptibility, Electric Field, 10kHz to 18 GHz 205
Test Log 213

ADMINISTRATIVE INFORMATION

SCOPE:

To demonstrate testing of the Tower Equipment Module/Tower Power Supply, TEM/TPS with the requirements for MIL-STD-461E in accordance with test plan TP05-82840-1.

CONTRACT NUMBERS:

NA

APPLICABLE DOCUMENTS:

1. MIL-STD-461E - Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference
2. MIL-STD-462E - .Measurements of Electromagnetic Interference Characteristics
3. MIL-STD-464A - Electromagnetic Environmental Effects Requirements for Systems
4. 433-RQMT-0005, Rev A - GLAST Observatory Electromagnetic Interference (EMI) Requirements Document, NASA/GSFC, Oct 6, 2003
5. LAT-MD-00408 - "LAT Instrument Performance Verification Plan", SLAC
6. CKC Test Procedure: TP05-82840-1.

MANUFACTURER:

Stanford Linear Accelerator Center (SLAC)
P.O. Box 20450

Stanford, CA 94309

REPRESENTATIVE:

Dave Nelson

TEST LOCATION:
CKC Laboratories, Inc.
1120 Fulton Place
Fremont, CA 94539

FREMONT, CA MILITARY CHAMBER \#2

The CKC Laboratories, Inc. Fremont EMI Chamber used for the testing was a $32^{\prime} \times 21^{\prime} \mathbf{" ' ~}^{\prime \prime}$ x 10' high shielded enclosure designed to attenuate radio frequency noise over 80 dB up to 1 GHz , and over 60 dB at 18 GHz . The enclosure uses ferrite tiles on all six internal faces with foam anechoic material in key areas to achieve uniform testing from 1 MHz to 40 GHz . Power brought into the room is filtered over 100 dB for frequencies over 14 kHz . All emissions measurement equipment is operated from isolation transformers, which help eliminate the possibility of ground loops. All lighting in the laboratory is filtered to reduce electrical noise. In addition, incandescent lights are used during emissions testing to further reduce the potential for electrical noise.

The ground plane in the chamber consists of a 3^{\prime} x $10^{\prime} 6^{\prime \prime} \times 0.020^{\prime \prime}$ thick copper sheet bonded to the shield room wall with $0.1 \mathrm{~m} \Omega$ of bonding resistance.

APPROVALS

QUALITY ASSURANCE:

Steve Behm, Director of Engineering Services

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

Christine Nicklas, Project Manager \& Principal Consultant

Amrinder Brar, EMC Test Engineer

UNIT UNDER TEST (UUT) DESCRIPTION

UNIT UNDER TEST

TEM/TPS

Manuf: Stanford Linear Accelerator Center (SLAC)
Model: TEM/TPS
Serial: GLA1754

PERIPHERAL DEVICES

The UUT was tested with the following peripheral device(s):

VME Processor

Manuf:	DAWN VME
Model:	NA
Serial:	GLAT0404

Keyboard
Manuf: Dell
Model: RT6D20
Serial: TH-04N454-37171-399-5494

PC
Manuf: Dell
Model: DHM
Serial: HXNLB41

1 MHz Filter (7 each)
Manuf: SLAC
Model: LAT-DS-04767
Serial: GLAT1962, GLAT1958,
GLAT1963, GLAT1957,
GLAT1504, GLAT1501 \&
GLAT1500

Mouse
Manuf: Dell
Model: X09-13962
Serial: 69557-492-6014557-20350
$\underline{\text { Monitor }}$
Manuf: Dell
Model: 1901FP
Serial: CN-
05Y232071616041R0B363
Power Supply

Manuf:	BK Precision
Model:	1697
Serial:	S240500299

Voltmeter (7 each)
Manuf: HP

Model: 3400A
Serial: 1218A26780, 2415A33270, 1218A19573, 2415A37548, 1218A27552, 2225A28975
\& 14-006698

SUMMARY OF RESULTS
As received, the Stanford Linear Accelerator Center Tower Equipment Module (TEM)/Tower Power Supply (TPS) was tested to following standards and specifications:

The following table summarizes the results of this testing.

Test Description	Results	Outcome
CE102 - Conducted Emissions, Power Leads, 10kHz to 10 MHz	No emissions exceeding the limit were observed from 10kHz to 10MHz on the 28VDC Input Power Lead and on the 28VDC Return Lead with input power set to 28VDC and 33VDC.	PASS
CECM - Conducted Emissions, Common Mode, DC to 150 MHz	No emissions exceeding the limit were observed on the 28VDC Input Power Lead and on the 28VDC Return Lead to 150MHz.	PASS
RE101 - Radiated Emissions, 20Hz to 50 kHz	No out of spec emissions were observed exceeding the 7 cm and 50cm limits from 30Hz to 100kHz on all six faces of the UUT.	PASS
RE102 - Radiated Emissions, 10kHz to 18GHz	The UUT exhibited no out of spec emissions from 10 kHz to 30MHz in Vertical polarization and from 30 MHz to 1GHz in Vertical and Horizontal antenna polarizations. From 2.3 - 18GHz no out of spec emissions were observed. Emissions exceeding the limit were observed from 1.55 $-2.3 G H z ~ i n ~ b o t h ~ V e r t i c a l ~ a n d ~ H o r i z o n t a l ~ P o l a r i z a t i o n s . ~$	FAIL
CS06 - Conducted Susceptibility,	The UUT exhibited no signs of susceptibility during the extent of the testing on the 28VDC Input Power Line, the 28VDC Return Line.	PASS
Spikes on Power Leads	The UUT exhibited no signs of susceptibility during the extent of the testing from 10kHz to 10MHz on the 28VDC Power and 28VDC Return Lines.	PASS
CSusceptibility, Power Leads, 10kHz to 10MHz		

CSCM - Conducted Susceptibility, Common Mode, 30 Hz to 150 MHz	The UUT exhibited no signs of susceptibility during the extent of the testing from 30 Hz to 150 MHz on the 28VDC Input Power Line, the 28VDC Return Line.	PASS
RS101-Radiated Susceptibility, Magnetic Field, 20 Hz to 50 kHz	The UUT showed no signs of susceptibility during the extent of the testing from 30 Hz to 50 kHz on the front, back, right side, left side and top faces of the UUT at test levels exceeding the levels specified in Figure RS101-2.	PASS
RS103 - Radiated Susceptibility, Electric Field, 30 MHz to 18 GHz	The UUT showed no signs of susceptibility during the extent of the testing at $1 \mathrm{~V} / \mathrm{m}$ from 30 MHz to 18 GHz in horizontal and vertical antenna polarizations.	PASS

REPORT OF MEASUREMENTS

CE102 - Conducted Emissions, Power Leads, 10 kHz to 10 MHz

Test Equipment

Function	Asset $\#$	S/N	Calibration Date	Cal Due Date
SA-8568A	00447	$2235 A 02391$	$10 / 25 / 2004$	$10 / 25 / 2006$
SA Display	00446	$2237 A 04350$	$10 / 25 / 2004$	$10 / 25 / 2006$
Cable RG214/U	02410	None	$06 / 07 / 2004$	$06 / 07 / 2005$
Current Probe F-35	00731	296	$05 / 07 / 2003$	$05 / 07 / 2005$
Cable RG214/U	02410	None	$06 / 07 / 2004$	$06 / 07 / 2005$
Cable E24304	None	None	$04 / 12 / 2004$	$04 / 12 / 2005$
10uF FeedThrough Cap -6512-106R	01737	None	$06 / 02 / 2003$	$06 / 02 / 2005$
10uF FeedThrough Cap -6512-106R	01739	None	$06 / 02 / 2003$	$06 / 02 / 2005$

Calibration Procedure

The output of the signal generator was connected to a 50 ohms load. An Oscilloscope was connected across the 50 ohms load and the measurement probe was clamped over the lead connecting the signal generator to the 50 ohms load. A signal was injected 6 dB below the limit at $.01,2$, and 10 MHz . A sweep was performed at each frequency and we ensured the reading on the Spectrum Analyzer was within $+/-3 \mathrm{~dB}$ of the expected levels.

Test Procedure

The UUT power was connected to the power source with (2) 10uF feed through capacitors in series with the DC power line. The measurement probe was clamped over the 28VDC Power Lead and a sweep was performed. The measurement probe was switched over to 28VDC Return Lead and a sweep was performed. During the sweeps, the UUT was running FuncTest.py.

Seq. \#	Test Description	Test Lead/ Polarity
0	CE102 Pre- Calibration Sweep / 10kHz inj. 2.86m Vpp	
0	CE102 Pre- Calibration Sweep / 10MHz inj. 14.3m Vpp	
0	CE102 Pre- Calibration Sweep / 2MHz inj. 113.7m Vpp	
1	CE102	28VDC Positive Lead
2	CE102	28VDC Negative Lead

CE102 Pre-cal

CE102 Close-up

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Date: 2/22/2005
Time: 1:12:18 PM
Sequence\#: 0
Tested By: A. Brar
28V DC

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Pre-Cal Sweep. Signal at 10 KHz . Injecting 2.86 mVpp and expecting $17.1 \mathrm{dBuV}+/-3 \mathrm{~dB}$ as meter reading.
Transducer Legend:

Measu	ment Data	Reading listed by margin.					Test Lead: None				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	40.060k	19.0					+0.0	19.0	66.0	-47.0	None
2	10.090k	18.3					+0.0	18.3	66.0	-47.7	None
3	12.880k	15.7					+0.0	15.7	66.0	-50.3	None
4	31.330k	15.1					+0.0	15.1	66.0	-50.9	None
5	53.380k	14.8					+0.0	14.8	66.0	-51.2	None
6	29.080k	14.3					+0.0	14.3	66.0	-51.7	None
7	59.500 k	14.0					+0.0	14.0	66.0	-52.0	None
8	19.090k	14.0					+0.0	14.0	66.0	-52.0	None
9	68.320k	13.9					+0.0	13.9	66.0	-52.1	None
10	19.900k	13.9					+0.0	13.9	66.0	-52.1	None
11	97.570 k	13.7					+0.0	13.7	66.0	-52.3	None

12	69.310k	13.7	+0.0	13.7	66.0	-52.3	None
13	25.030 k	13.7	+0.0	13.7	66.0	-52.3	None
14	23.410 k	13.7	+0.0	13.7	66.0	-52.3	None
15	62.650k	13.2	$+0.0$	13.2	66.0	-52.8	None
16	35.740 k	13.2	+0.0	13.2	66.0	-52.8	None
17	78.850k	13.1	+0.0	13.1	66.0	-52.9	None
18	60.310 k	13.1	+0.0	13.1	66.0	-52.9	None
19	44.020 k	13.0	+0.0	13.0	66.0	-53.0	None
20	18.370k	13.0	+0.0	13.0	66.0	-53.0	None
21	16.120k	13.0	+0.0	13.0	66.0	-53.0	None
22	49.600k	12.8	+0.0	12.8	66.0	-53.2	None
23	47.080k	12.5	+0.0	12.5	66.0	-53.5	None
24	64.990k	12.4	+0.0	12.4	66.0	-53.6	None
25	66.070k	12.4	+0.0	12.4	66.0	-53.6	None
26	73.540k	12.3	$+0.0$	12.3	66.0	-53.7	None
27	66.520k	12.3	+0.0	12.3	66.0	-53.7	None
28	45.820 k	12.3	+0.0	12.3	66.0	-53.7	None
29	77.050 k	12.2	+0.0	12.2	66.0	-53.8	None
30	89.200k	12.1	+0.0	12.1	66.0	-53.9	None

Page 11 of 224
Report No.: MIL05-015

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Date: 2/22/2005
Time: 1:41:56 PM
Sequence\#: 0
Tested By: A. Brar
28V DC

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Pre-Cal Sweep. Signal at 10 MHz . Injecting 14.3 mVpp and expecting $40.3 \mathrm{dBuV}+/-3 \mathrm{~dB}$ as meter reading.
Transducer Legend:

Measu	ment Data	Reading listed by margin.					Test Lead: None				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	9.993 M	39.5					+0.0	39.5	80.0	-40.5	None
2	40.420k	17.7					+0.0	17.7	66.0	-48.3	None
3	15.940k	14.9					+0.0	14.9	66.0	-51.1	None
4	54.100 k	14.8					+0.0	14.8	66.0	-51.2	None
5	25.030 k	14.6					+0.0	14.6	66.0	-51.4	None
6	33.490 k	14.6					+0.0	14.6	66.0	-51.4	None
7	38.710 k	14.6					+0.0	14.6	66.0	-51.4	None
8	48.700k	14.5					+0.0	14.5	66.0	-51.5	None
9	36.370k	13.7					+0.0	13.7	66.0	-52.3	None
10	71.830k	13.7					+0.0	13.7	66.0	-52.3	None
11	28.000 k	13.3					+0.0	13.3	66.0	-52.7	None

12	32.320k	13.3	+0.0	13.3	66.0	-52.7	None
13	11.260k	13.2	+0.0	13.2	66.0	-52.8	None
14	57.430k	13.2	+0.0	13.2	66.0	-52.8	None
15	65.170k	13.2	+0.0	13.2	66.0	-52.8	None
16	60.580k	13.1	$+0.0$	13.1	66.0	-52.9	None
17	29.080k	13.0	+0.0	13.0	66.0	-53.0	None
18	31.150k	13.0	+0.0	13.0	66.0	-53.0	None
19	34.750k	13.0	+0.0	13.0	66.0	-53.0	None
20	77.860k	12.9	+0.0	12.9	66.0	-53.1	None
21	56.080k	12.7	+0.0	12.7	66.0	-53.3	None
22	79.570k	12.7	+0.0	12.7	66.0	-53.3	None
23	30.250k	12.5	+0.0	12.5	66.0	-53.5	None
24	58.510k	12.5	+0.0	12.5	66.0	-53.5	None
25	66.700k	12.5	+0.0	12.5	66.0	-53.5	None
26	61.300k	12.3	+0.0	12.3	66.0	-53.7	None
27	59.140k	12.2	+0.0	12.2	66.0	-53.8	None
28	94.960k	12.2	+0.0	12.2	66.0	-53.8	None
29	31.690k	12.1	+0.0	12.1	66.0	-53.9	None
30	75.430k	12.1	+0.0	12.1	66.0	-53.9	None
31	62.470k	12.0	+0.0	12.0	66.0	-54.0	None
32	98.650 k	12.0	+0.0	12.0	66.0	-54.0	None
33	69.220k	11.9	$+0.0$	11.9	66.0	-54.1	None

Page 13 of 224
Report No.: MIL05-015

34	93.520k	11.8	+0.0	11.8	66.0	-54.2	None
35	67.420k	11.7	+0.0	11.7	66.0	-54.3	None
36	68.500k	11.6	+0.0	11.6	66.0	-54.4	None
37	90.190k	11.4	+0.0	11.4	66.0	-54.6	None
38	97.750 k	11.3	$+0.0$	11.3	66.0	-54.7	None
39	62.110 k	11.2	+0.0	11.2	66.0	-54.8	None
40	64.360k	11.2	${ }^{+0.0}$	11.2	66.0	-54.8	None
41	64.720k	11.2	+0.0	11.2	66.0	-54.8	None
42	81.730k	11.2	${ }^{+0.0}$	11.2	66.0	-54.8	None
43	89.110 k	11.2	+0.0	11.2	66.0	-54.8	None
44	88.660k	11.0	+0.0	11.0	66.0	-55.0	None
45	86.410k	10.9	+0.0	10.9	66.0	-55.1	None
46	87.580k	10.9	+0.0	10.9	66.0	-55.1	None
47	82.720k	10.8	+0.0	10.8	66.0	-55.2	None
48	84.610k	10.8	+0.0	10.8	66.0	-55.2	None
49	1.173M	22.0	+0.0	22.0	110.8	-88.8	None
50	2.419M	10.6	+0.0	10.6	101.4	-90.8	None
51	2.266M	10.1	+0.0	10.1	102.6	-92.5	None
52	103.900k	12.6	+0.0	12.6	106.0	-93.4	None
53	106.300k	12.5	+0.0	12.5	106.0	-93.5	None
54	810.250k	18.3	+0.0	18.3	112.0	-93.7	None
55	122.200k	11.6	+0.0	11.6	106.0	-94.4	None

Page 14 of 224
Report No.: MIL05-015

56	118.150k	11.4	+0.0	11.4	106.0	-94.6	None
57	115.150k	11.2	+0.0	11.2	106.0	-94.8	None
58	201.850k	11.1	+0.0	11.1	106.0	-94.9	None
59	673.000k	16.8	+0.0	16.8	112.0	-95.2	None
60	123.550 k	10.7	+0.0	10.7	106.0	-95.3	None
61	1.049 M	16.3	+0.0	16.3	111.6	-95.3	None
62	126.100k	10.6	+0.0	10.6	106.0	-95.4	None
63	161.200k	10.5	$+0.0$	10.5	106.0	-95.5	None
64	167.500k	10.2	+0.0	10.2	106.0	-95.8	None
65	215.650 k	10.2	+0.0	10.2	106.0	-95.8	None
66	249.700k	10.1	+0.0	10.1	106.0	-95.9	None
67	176.800k	10.0	+0.0	10.0	106.0	-96.0	None
68	130.900k	9.9	+0.0	9.9	106.0	-96.1	None
69	137.650k	9.9	+0.0	9.9	106.0	-96.1	None
70	146.350k	9.9	+0.0	9.9	106.0	-96.1	None
71	174.100k	9.8	+0.0	9.8	106.0	-96.2	None
72	179.650k	9.8	+0.0	9.8	106.0	-96.2	None
73	223.150 k	9.8	+0.0	9.8	106.0	-96.2	None
74	132.400k	9.7	+0.0	9.7	106.0	-96.3	None
75	246.100k	9.7	+0.0	9.7	106.0	-96.3	None
76	230.050k	9.6	+0.0	9.6	106.0	-96.4	None
77	195.100k	9.5	+0.0	9.5	106.0	-96.5	None

78	212.950 k	9.5	+0.0	9.5	106.0	-96.5	None	
79	1.222 M	14.0	+0.0	14.0	110.5	-96.5	None	
80	218.650 k	9.3	+0.0	9.3	106.0	-96.7	None	
81	229.450 k	9.3	+0.0	9.3	106.0	-96.7	None	
82	133.600 k	9.2	+0.0	9.2	106.0	-96.8	None	
83	187.300 k	9.2	+0.0	9.2	106.0	-96.8	None	
84	170.200 k	9.1	+0.0	9.1	106.0	-96.9	None	
85	147.700 k	9.0	+0.0	9.0	106.0	-97.0	None	
86	199.600 k	9.0	+0.0	9.0	106.0	-97.0	None	
87	203.200 k	9.0	+0.0	9.0	106.0	-97.0	None	
88	205.450 k	9.0	+0.0	8.6	106.0	-97.4	None	
99	224.950 k	9.0	+0.0	9.0	106.0	-97.0	None	
99	245.650 k	8.6	+0.0	9.0	106.0	-97.0	None	
90	149.800 k	8.9	+0.0	106.0	-97.5	None		
91	188.500 k	8.9	+0.0	+0.0	8.0	8.0	106.0	-97.2

Page 16 of 224
Report No.: MIL05-015

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Date: 2/22/2005
Time: 1:20:36 PM
Sequence\#: 0
Tested By: A. Brar
28V DC

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Pre-Cal Sweep. Signal at 2 MHz . Injecting 113.7 mVpp and expecting $58.3 \mathrm{dBuV}+/-3 \mathrm{~dB}$ as meter reading.
Transducer Legend:

Measu	ment Data	Reading listed by margin.					Test Lead: None				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	2.003 M	58.1					+0.0	58.1	104.9	-46.8	None
2	40.510k	18.6					+0.0	18.6	66.0	-47.4	None
3	38.800k	15.3					+0.0	15.3	66.0	-50.7	None
4	28.720 k	15.1					+0.0	15.1	66.0	-50.9	None
5	10.810k	15.0					+0.0	15.0	66.0	-51.0	None
6	33.220 k	14.9					+0.0	14.9	66.0	-51.1	None
7	37.180k	14.7					+0.0	14.7	66.0	-51.3	None
8	12.070k	14.3					+0.0	14.3	66.0	-51.7	None
9	53.650k	14.3					+0.0	14.3	66.0	-51.7	None
10	19.450k	14.2					+0.0	14.2	66.0	-51.8	None
11	16.570k	13.9					+0.0	13.9	66.0	-52.1	None

12	47.440 k	13.9	+0.0	13.9	66.0	-52.1	None	
13	58.690 k	13.5	+0.0	13.5	66.0	-52.5	None	
14	76.150 k	13.3	+0.0	13.3	66.0	-52.7	None	
15	26.470 k	13.1	+0.0	13.1	66.0	-52.9	None	
16	50.590 k	13.1	+0.0	13.1	66.0	-52.9	None	
17	50.050 k	13.0	+0.0	13.0	66.0	-53.0	None	
18	72.370 k	13.0	+0.0	13.0	66.0	-53.0	None	
19	78.400 k	13.0	+0.0	13.0	66.0	-53.0	None	
20	66.430 k	12.9	+0.0	12.9	66.0	-53.1	None	
21	74.530 k	12.9	+0.0	12.9	66.0	-53.1	None	
22	24.760 k	12.8	+0.0	12.8	66.0	-53.2	None	
23	73.180 k	12.8	+0.0	12.8	66.0	-53.2	None	
24	46.360 k	12.7	+0.0	12.7	66.0	-53.3	None	
25	22.420 k	12.6	+0.0	12.6	66.0	-53.4	None	
26	68.320 k	12.6	+0.0	12.6	66.0	-53.4	None	
22.780 k	12.5	+0.0	12.5	66.0	-53.5	None		
29	71.560 k	12.4	12.5	66.0	-53.5	None		
30	87.580 k	12.4						

Page 18 of 224
Report No.: MIL05-015

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Support Devices:

Function	Manufacturer	Model \#	S/N
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=F-35 SN 296 AN 00731
 T2 $=20^{\prime}$ Cable Male N to Male N AN None

T3=Cable 2410

Measu	ent Data	Reading listed by margin.				Test Lead: Positive					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	60.040k	51.7	+1.2	+0.0	+0.0		+0.0	52.9	66.0	-13.1	Posit
2	58.960k	47.5	+1.2	+0.0	+0.0		+0.0	48.7	66.0	-17.3	Posit
3	10.270k	36.4	+8.9	+0.1	+0.1		+0.0	45.5	66.0	-20.5	Posit
4	12.520k	33.7	+7.8	+0.1	+0.1		+0.0	41.7	66.0	-24.3	Posit
5	12.970k	33.7	+7.6	+0.1	+0.1		+0.0	41.5	66.0	-24.5	Posit

6	12.340k	32.9	+7.9	+0.1	+0.1	+0.0	41.0	66.0	-25.0	Posit
7	13.330k	32.7	+7.4	+0.1	$+0.1$	+0.0	40.3	66.0	-25.7	Posit
8	13.690k	32.5	+7.2	+0.1	+0.1	+0.0	39.9	66.0	-26.1	Posit
9	58.060k	38.2	+1.2	+0.0	$+0.0$	+0.0	39.4	66.0	-26.6	Posit
10	57.880k	36.1	+1.2	+0.0	$+0.0$	+0.0	37.3	66.0	-28.7	Posit
11	14.230k	29.3	+7.0	+0.0	+0.1	+0.0	36.4	66.0	-29.6	Posit
12	13.960k	28.3	+7.1	+0.1	$+0.1$	$+0.0$	35.6	66.0	-30.4	Posit
13	14.680k	28.2	+6.8	+0.0	+0.1	+0.0	35.1	66.0	-30.9	Posit
14	15.310k	28.4	+6.6	+0.0	+0.1	+0.0	35.1	66.0	-30.9	Posit
15	17.200k	22.7	+5.9	+0.0	+0.1	+0.0	28.7	66.0	-37.3	Posit
16	56.980k	26.4	+1.3	+0.0	$+0.0$	+0.0	27.7	66.0	-38.3	Posit
17	62.380k	26.1	+1.2	+0.0	$+0.0$	+0.0	27.3	66.0	-38.7	Posit
18	62.740k	24.8	+1.1	+0.0	$+0.0$	+0.0	25.9	66.0	-40.1	Posit
19	18.640k	20.2	+5.4	+0.0	+0.1	+0.0	25.7	66.0	-40.3	Posit
20	56.800k	24.2	+1.3	$+0.0$	$+0.0$	+0.0	25.5	66.0	-40.5	Posit
21	51.580k	23.6	+1.4	$+0.0$	+0.1	+0.0	25.1	66.0	-40.9	Posit
22	21.970k	18.2	+4.5	+0.0	$+0.1$	+0.0	22.8	66.0	-43.2	Posit
23	21.070k	17.7	+4.7	$+0.0$	$+0.1$	+0.0	22.5	66.0	-43.5	Posit
24	24.760k	18.3	$+3.9$	+0.0	$+0.1$	+0.0	22.3	66.0	-43.7	Posit
25	22.510k	17.3	+4.4	+0.0	+0.1	+0.0	21.8	66.0	-44.2	Posit
26	26.560k	17.8	+3.6	$+0.0$	$+0.1$	$+0.0$	21.5	66.0	-44.5	Posit
27	25.750k	17.2	+3.8	$+0.0$	$+0.1$	+0.0	21.1	66.0	-44.9	Posit

Page 20 of 224
Report No.: MIL05-015

28	40.060k	18.3	+2.1	$+0.0$	+0.1	$+0.0$	20.5	66.0	-45.5	Posit
29	27.190k	16.6	+3.5	$+0.0$	+0.1	$+0.0$	20.2	66.0	-45.8	Posit
30	33.670k	17.2	+2.6	$+0.0$	+0.1	$+0.0$	19.9	66.0	-46.1	Posit
31	74.710k	18.9	+0.9	$+0.0$	+0.1	$+0.0$	19.9	66.0	-46.1	Posit
32	78.310k	18.9	+0.8	$+0.0$	+0.0	$+0.0$	19.7	66.0	-46.3	Posit
33	77.680k	18.7	+0.8	$+0.0$	+0.0	$+0.0$	19.5	66.0	-46.5	Posit
34	27.640k	15.7	+3.4	$+0.0$	+0.1	$+0.0$	19.2	66.0	-46.8	Posit
35	28.720k	15.9	+3.2	$+0.0$	+0.1	$+0.0$	19.2	66.0	-46.8	Posit
36	63.910k	18.1	+1.1	$+0.0$	${ }^{+0.0}$	$+0.0$	19.2	66.0	-46.8	Posit
37	76.330k	18.1	+0.9	$+0.0$	+0.0	$+0.0$	19.0	66.0	-47.0	Posit
38	63.640k	17.8	+1.1	$+0.0$	+0.0	$+0.0$	18.9	66.0	-47.1	Posit
39	30.700k	15.8	+2.9	$+0.0$	+0.1	$+0.0$	18.8	66.0	-47.2	Posit
40	31.780 k	15.8	+2.8	$+0.0$	+0.1	$+0.0$	18.7	66.0	-47.3	Posit
41	79.840k	17.3	$+0.8$	$+0.0$	+0.0	$+0.0$	18.1	66.0	-47.9	Posit
42	80.650k	17.3	$+0.8$	$+0.0$	${ }^{+0.0}$	$+0.0$	18.1	66.0	-47.9	Posit
43	38.260 k	15.7	+2.2	$+0.0$	+0.1	$+0.0$	18.0	66.0	-48.0	Posit
44	36.910k	15.3	+2.4	$+0.0$	+0.1	$+0.0$	17.8	66.0	-48.2	Posit
45	79.300 k	16.9	$+0.8$	$+0.0$	+0.0	$+0.0$	17.7	66.0	-48.3	Posit
46	38.440k	14.8	+2.2	$+0.0$	+0.1	$+0.0$	17.1	66.0	-48.9	Posit
47	38.890k	14.3	+2.2	$+0.0$	+0.1	$+0.0$	16.6	66.0	-49.4	Posit
48	42.310k	14.6	+1.9	$+0.0$	+0.1	$+0.0$	16.6	66.0	-49.4	Posit
49	64.990k	15.1	+1.1	$+0.0$	+0.1	$+0.0$	16.3	66.0	-49.7	Posit

Page 21 of 224
Report No.: MIL05-015

50	70.120k	15.2	+1.0	+0.0	+0.1	+0.0	16.3	66.0	-49.7	Posit
51	45.820k	13.9	+1.7	+0.0	+0.1	$+0.0$	15.7	66.0	-50.3	Posit
52	81.190k	14.5	+0.8	+0.0	+0.0	$+0.0$	15.3	66.0	-50.7	Posit
53	71.650k	13.9	+1.0	+0.0	+0.1	$+0.0$	15.0	66.0	-51.0	Posit
54	74.260k	13.8	+0.9	+0.0	+0.1	+0.0	14.8	66.0	-51.2	Posit
55	70.390k	13.6	+1.0	+0.0	+0.1	$+0.0$	14.7	66.0	-51.3	Posit
56	85.960k	13.3	+0.7	+0.0	+0.1	$+0.0$	14.1	66.0	-51.9	Posit
57	67.780k	12.6	+1.0	+0.0	+0.1	+0.0	13.7	66.0	-52.3	Posit
58	72.640k	12.4	+0.9	+0.0	+0.1	$+0.0$	13.4	66.0	-52.6	Posit
59	84.880k	12.6	+0.7	+0.0	+0.1	+0.0	13.4	66.0	-52.6	Posit
60	83.350k	12.5	+0.7	+0.0	$+0.0$	$+0.0$	13.2	66.0	-52.8	Posit
61	89.920k	12.1	$+0.7$	+0.0	+0.1	$+0.0$	12.9	66.0	-53.1	Posit
62	98.110k	12.1	+0.6	$+0.0$	+0.0	$+0.0$	12.7	66.0	-53.3	Posit
63	92.350k	11.2	$+0.7$	$+0.0$	+0.1	$+0.0$	12.0	66.0	-54.0	Posit
64	5.605M	27.2	-0.2	+0.1	+0.1	$+0.0$	27.2	85.8	-58.6	Posit
65	5.478M	25.8	-0.2	+0.1	+0.1	$+0.0$	25.8	86.1	-60.3	Posit
66	5.725M	24.2	-0.2	+0.1	+0.1	$+0.0$	24.2	85.6	-61.4	Posit
67	124.600 k	43.1	+0.5	$+0.0$	$+0.0$	$+0.0$	43.6	106.0	-62.4	Posit
68	5.980M	22.7	-0.2	+0.1	+0.1	+0.0	22.7	85.2	-62.5	Posit
69	5.350M	23.0	-0.3	+0.1	+0.1	$+0.0$	22.9	86.5	-63.6	Posit
70	5.853M	20.6	-0.2	+0.1	+0.1	$+0.0$	20.6	85.4	-64.8	Posit
71	6.228M	19.6	-0.2	+0.1	+0.1	$+0.0$	19.6	84.8	-65.2	Posit

Page 22 of 224
Report No.: MIL05-015

72	5.103M	20.6	-0.3	+0.1	+0.1	+0.0	20.5	87.4	-66.9	Posit
73	9.978 M	12.9	-0.2	+0.1	+0.2	+0.0	13.0	80.0	-67.0	Posit
74	8.973 M	12.9	-0.2	+0.1	+0.2	+0.0	13.0	81.1	-68.1	Posit
75	4.728 M	20.4	-0.2	+0.1	+0.1	+0.0	20.4	88.8	-68.4	Posit
76	7.728M	13.5	-0.2	+0.2	+0.2	+0.0	13.7	82.6	-68.9	Posit
77	5.223 M	18.1	-0.3	+0.1	+0.1	+0.0	18.0	87.0	-69.0	Posit
78	8.605M	12.3	-0.2	+0.1	+0.2	+0.0	12.4	81.5	-69.1	Posit
79	4.975 M	18.4	-0.3	+0.1	+0.1	+0.0	18.3	87.9	-69.6	Posit
80	2.598 M	30.2	-0.3	+0.1	+0.1	+0.0	30.1	100.1	-70.0	Posit
81	8.103M	11.9	-0.2	+0.2	+0.2	+0.0	12.1	82.1	-70.0	Posit
82	8.230M	11.7	-0.2	+0.2	+0.2	+0.0	11.9	82.0	-70.1	Posit
83	6.355 M	14.1	-0.2	+0.1	$+0.1$	+0.0	14.1	84.5	-70.4	Posit
84	8.853M	10.7	-0.2	+0.1	+0.2	+0.0	10.8	81.2	-70.4	Posit
85	250.000 k	35.2	+0.1	+0.0	+0.0	+0.0	35.3	106.0	-70.7	Posit
86	7.353 M	11.4	-0.2	+0.1	+0.2	+0.0	11.5	83.1	-71.6	Posit
87	6.850M	11.6	-0.2	+0.1	+0.2	+0.0	11.7	83.8	-72.1	Posit
88	7.225 M	10.8	-0.2	+0.1	+0.2	+0.0	10.9	83.3	-72.4	Posit
89	5.673 M	13.0	-0.2	+0.1	+0.1	+0.0	13.0	85.7	-72.7	Posit
90	4.600 M	16.0	-0.2	+0.1	+0.1	+0.0	16.0	89.3	-73.3	Posit
91	2.372 M	28.3	-0.2	+0.1	+0.1	+0.0	28.3	101.8	-73.5	Posit
92	4.855 M	14.9	-0.3	+0.1	+0.1	+0.0	14.8	88.3	-73.5	Posit
93	4.353 M	16.3	-0.2	+0.1	+0.2	+0.0	16.4	90.4	-74.0	Posit
94	4.225 M	15.0	-0.1	+0.1	+0.2	+0.0	15.2	90.9	-75.7	Posit

Page 23 of 224
Report No.: MIL05-015

95	119.650 k	29.7	+0.5	+0.0	+0.0	+0.0	30.2	106.0	-75.8	Posit
96	2.725 M	22.7	-0.3	+0.1	+0.1	+0.0	22.6	99.2	-76.6	Posit
97	249.850 k	29.1	+0.1	+0.0	+0.0	+0.0	29.2	106.0	-76.8	Posit
98	4.795 M	11.9	-0.3	+0.1	+0.1	+0.0	11.8	88.6	-76.8	Posit
99	4.480 M	12.9	-0.2	+0.1	+0.1	+0.0	12.9	89.8	-76.9	Posit
100	4.638 M	12.3	-0.2	+0.1	+0.1	+0.0	12.3	89.2	-76.9	Posit

CKC Laboratories, Inc. Date: 2/22/2005 Time: 2:39:32 PM Stanford Linear Accelerator Center WO\#: 82840 CE102 MLL-STD-462 Test Lead: Positive 28V DC Sequence\#: 1

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	CE102 MIL-STD-462		Date: 2/22/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 2:43:53 PM	
Test Type:	Conducted Emissions	Sequence\#:	2
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		28V DC
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model \#	S/N
Mouse	Dell	P/N X09-13962	$69557-492-6014557-20350$
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

$\mathrm{T} 1=\mathrm{F}-35 \mathrm{SN} 296$ AN 00731	$\mathrm{~T} 2=20^{\prime}$ Cable Male N to Male N AN None
$\mathrm{T} 3=$ Cable 2410	

Measurement Data: Reading listed by margin. Test Lead: Return

| $\#$ | Freq
 MHz | Rdng
 $\mathrm{dB} \mu \mathrm{V}$ | T 1
 dB | T 2
 dB | T 3
 dB | dB | Dist
 Table | Corr
 $\mathrm{dB} \mu \mathrm{V}$ | Spec
 $\mathrm{dB} \mu \mathrm{V}$ | Margin
 dB | Polar
 Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 59.950 k | 52.5 | +1.2 | +0.0 | +0.0 | | +0.0 | 53.7 | 66.0 | -12.3 | Retur |
| 2 | 58.600 k | 44.8 | +1.2 | +0.0 | +0.0 | | +0.0 | 46.0 | 66.0 | -20.0 | Retur |
| 3 | 58.420 k | 43.2 | +1.2 | +0.0 | +0.0 | +0.0 | 44.4 | 66.0 | -21.6 | Retur | |
| 4 | 11.800 k | 35.7 | +8.1 | +0.1 | +0.1 | +0.0 | 44.0 | 66.0 | -22.0 | Retur | |
| 5 | 10.090 k | 34.7 | +9.0 | +0.1 | +0.1 | +0.0 | 43.9 | 66.0 | -22.1 | Retur | |

6	10.360k	33.6	+8.9	+0.1	+0.1	+0.0	42.7	66.0	-23.3	Retur
7	58.240k	41.3	+1.2	$+0.0$	$+0.0$	$+0.0$	42.5	66.0	-23.5	Retur
8	12.970k	33.4	+7.6	+0.1	+0.1	+0.0	41.2	66.0	-24.8	Retur
9	13.510k	30.4	+7.3	+0.1	+0.1	+0.0	37.9	66.0	-28.1	Retur
10	13.960k	30.2	+7.1	$+0.1$	+0.1	+0.0	37.5	66.0	-28.5	Retur
11	15.130k	27.7	+6.7	$+0.0$	+0.1	+0.0	34.5	66.0	-31.5	Retur
12	57.520k	32.7	+1.2	$+0.0$	$+0.0$	+0.0	33.9	66.0	-32.1	Retur
13	14.680k	26.4	+6.8	$+0.0$	+0.1	+0.0	33.3	66.0	-32.7	Retur
14	57.340k	30.9	+1.3	$+0.0$	$+0.0$	+0.0	32.2	66.0	-33.8	Retur
15	57.160k	29.3	+1.3	$+0.0$	+0.0	+0.0	30.6	66.0	-35.4	Retur
16	15.580k	23.7	+6.5	$+0.0$	+0.1	+0.0	30.3	66.0	-35.7	Retur
17	18.550k	19.4	+5.4	$+0.0$	+0.1	+0.0	24.9	66.0	-41.1	Retur
18	23.590k	20.4	+4.2	$+0.0$	+0.1	+0.0	24.7	66.0	-41.3	Retur
19	21.430k	19.4	+4.7	$+0.0$	+0.1	+0.0	24.2	66.0	-41.8	Retur
20	19.990k	18.7	+5.0	$+0.0$	+0.1	+0.0	23.8	66.0	-42.2	Retur
21	22.870k	18.5	+4.3	$+0.0$	+0.1	+0.0	22.9	66.0	-43.1	Retur
22	22.420 k	18.2	+4.4	$+0.0$	+0.1	+0.0	22.7	66.0	-43.3	Retur
23	63.280k	21.6	+1.1	$+0.0$	$+0.0$	+0.0	22.7	66.0	-43.3	Retur
24	24.940k	18.3	+3.9	+0.0	+0.1	+0.0	22.3	66.0	-43.7	Retur
25	62.920 k	21.2	+1.1	$+0.0$	$+0.0$	+0.0	22.3	66.0	-43.7	Retur
26	56.440k	19.4	+1.3	$+0.0$	$+0.0$	+0.0	20.7	66.0	-45.3	Retur
27	26.830k	16.8	+3.6	$+0.0$	+0.1	+0.0	20.5	66.0	-45.5	Retur

Page 26 of 224
Report No.: MIL05-015

28	74.620 k	19.5	+0.9	+0.0	+0.1	+0.0	20.5	66.0	-45.5	Retur
29	36.370k	17.7	+2.4	$+0.0$	$+0.1$	$+0.0$	20.2	66.0	-45.8	Retur
30	27.910k	16.5	+3.4	+0.0	+0.1	+0.0	20.0	66.0	-46.0	Retur
31	33.130 k	17.2	+2.7	+0.0	+0.1	+0.0	20.0	66.0	-46.0	Retur
32	56.260k	18.7	+1.3	+0.0	$+0.0$	+0.0	20.0	66.0	-46.0	Retur
33	40.510k	17.6	+2.1	+0.0	+0.1	+0.0	19.8	66.0	-46.2	Retur
34	28.450k	16.3	+3.3	+0.0	+0.1	+0.0	19.7	66.0	-46.3	Retur
35	74.980k	18.8	+0.9	+0.0	$+0.0$	+0.0	19.7	66.0	-46.3	Retur
36	76.690k	18.7	+0.9	+0.0	$+0.0$	+0.0	19.6	66.0	-46.4	Retur
37	52.210 k	18.0	+1.4	+0.0	$+0.1$	+0.0	19.5	66.0	-46.5	Retur
38	28.900k	16.0	+3.2	+0.0	+0.1	+0.0	19.3	66.0	-46.7	Retur
39	78.400k	17.8	$+0.8$	$+0.0$	$+0.0$	$+0.0$	18.6	66.0	-47.4	Retur
40	46.000k	16.5	+1.7	+0.0	$+0.1$	+0.0	18.3	66.0	-47.7	Retur
41	35.380k	15.6	+2.5	+0.0	+0.1	+0.0	18.2	66.0	-47.8	Retur
42	55.990k	16.8	+1.3	$+0.0$	$+0.0$	+0.0	18.1	66.0	-47.9	Retur
43	29.260k	14.7	+3.1	+0.0	$+0.1$	+0.0	17.9	66.0	-48.1	Retur
44	43.120 k	15.9	+1.9	+0.0	+0.1	+0.0	17.9	66.0	-48.1	Retur
45	38.620 k	15.5	+2.2	+0.0	+0.1	+0.0	17.8	66.0	-48.2	Retur
46	37.180k	15.3	+2.3	+0.0	+0.1	+0.0	17.7	66.0	-48.3	Retur
47	36.640k	14.9	+2.4	+0.0	$+0.1$	+0.0	17.4	66.0	-48.6	Retur
48	44.740k	15.3	+1.8	+0.0	+0.1	+0.0	17.2	66.0	-48.8	Retur
49	37.990k	14.5	+2.3	${ }^{+0.0}$	+0.1	${ }^{+0.0}$	16.9	66.0	-49.1	Retur

Page 27 of 224
Report No.: MIL05-015

50	64.900k	15.2	+1.1	+0.0	+0.1	+0.0	16.4	66.0	-49.6	Retur
51	47.890k	14.4	+1.6	+0.0	+0.1	+0.0	16.1	66.0	-49.9	Retur
52	45.370 k	13.9	+1.8	+0.0	+0.1	+0.0	15.8	66.0	-50.2	Retur
53	46.720 k	14.0	+1.7	+0.0	+0.1	+0.0	15.8	66.0	-50.2	Retur
54	64.360k	14.6	+1.1	+0.0	+0.0	+0.0	15.7	66.0	-50.3	Retur
55	80.560k	14.8	+0.8	+0.0	$+0.0$	+0.0	15.6	66.0	-50.4	Retur
56	81.190k	14.8	+0.8	+0.0	$+0.0$	+0.0	15.6	66.0	-50.4	Retur
57	81.910k	14.5	+0.8	+0.0	+0.0	+0.0	15.3	66.0	-50.7	Retur
58	46.360k	13.1	+1.7	${ }^{+0.0}$	+0.1	${ }^{+0.0}$	14.9	66.0	-51.1	Retur
59	86.050k	13.9	+0.7	+0.0	+0.1	+0.0	14.7	66.0	-51.3	Retur
60	66.340k	13.3	+1.1	+0.0	+0.1	+0.0	14.5	66.0	-51.5	Retur
61	70.930k	13.2	+1.0	+0.0	+0.1	+0.0	14.3	66.0	-51.7	Retur
62	73.630k	13.0	$+0.9$	+0.0	+0.1	+0.0	14.0	66.0	-52.0	Retur
63	73.270 k	12.9	$+0.9$	+0.0	+0.1	+0.0	13.9	66.0	-52.1	Retur
64	68.590k	12.7	+1.0	+0.0	$+0.1$	+0.0	13.8	66.0	-52.2	Retur
65	85.240k	13.0	$+0.7$	+0.0	+0.1	+0.0	13.8	66.0	-52.2	Retur
66	89.560k	12.6	+0.7	+0.0	+0.1	+0.0	13.4	66.0	-52.6	Retur
67	72.460 k	12.3	$+0.9$	+0.0	+0.1	+0.0	13.3	66.0	-52.7	Retur
68	88.210k	12.5	+0.7	+0.0	+0.1	+0.0	13.3	66.0	-52.7	Retur
69	70.480k	12.1	+1.0	+0.0	+0.1	+0.0	13.2	66.0	-52.8	Retur
70	71.380k	11.9	+1.0	+0.0	+0.1	+0.0	13.0	66.0	-53.0	Retur
71	87.040k	12.2	$+0.7$	+0.0	+0.1	+0.0	13.0	66.0	-53.0	Retur

Page 28 of 224
Report No.: MIL05-015

72	99.820 k	12.4	+0.6	$+0.0$	$+0.0$	$+0.0$	13.0	66.0	-53.0	Retur
73	95.590k	11.7	+0.6	$+0.0$	$+0.0$	$+0.0$	12.3	66.0	-53.7	Retur
74	91.270k	10.9	+0.7	$+0.0$	+0.1	$+0.0$	11.7	66.0	-54.3	Retur
75	93.700k	11.0	+0.6	$+0.0$	+0.1	$+0.0$	11.7	66.0	-54.3	Retur
76	5.478M	27.9	-0.2	$+0.1$	+0.1	$+0.0$	27.9	86.1	-58.2	Retur
77	5.605M	27.1	-0.2	+0.1	+0.1	$+0.0$	27.1	85.8	-58.7	Retur
78	5.980 M	24.5	-0.2	+0.1	+0.1	$+0.0$	24.5	85.2	-60.7	Retur
79	5.725M	24.0	-0.2	$+0.1$	+0.1	$+0.0$	24.0	85.6	-61.6	Retur
80	5.350M	22.6	-0.3	$+0.1$	+0.1	$+0.0$	22.5	86.5	-64.0	Retur
81	5.223 M	22.7	-0.3	$+0.1$	+0.1	$+0.0$	22.6	87.0	-64.4	Retur
82	124.600k	40.8	+0.5	$+0.0$	$+0.0$	$+0.0$	41.3	106.0	-64.7	Retur
83	6.228 M	18.3	-0.2	$+0.1$	$+0.1$	$+0.0$	18.3	84.8	-66.5	Retur
84	5.853M	18.7	-0.2	$+0.1$	+0.1	$+0.0$	18.7	85.4	-66.7	Retur
85	9.100 M	13.8	-0.2	+0.1	$+0.2$	$+0.0$	13.9	80.9	-67.0	Retur
86	8.230M	13.3	-0.2	$+0.2$	$+0.2$	$+0.0$	13.5	82.0	-68.5	Retur
87	4.975M	19.3	-0.3	+0.1	+0.1	$+0.0$	19.2	87.9	-68.7	Retur
88	9.858 M	11.3	-0.2	$+0.1$	$+0.2$	$+0.0$	11.4	80.1	-68.7	Retur
89	6.355M	15.2	-0.2	+0.1	+0.1	$+0.0$	15.2	84.5	-69.3	Retur
90	9.483 M	11.1	-0.2	+0.1	+0.2	+0.0	11.2	80.5	-69.3	Retur
91	2.605M	30.2	-0.3	$+0.1$	$+0.1$	$+0.0$	30.1	100.0	-69.9	Retur
92	5.523M	16.1	-0.2	+0.1	+0.1	$+0.0$	16.1	86.0	-69.9	Retur
93	7.728M	12.5	-0.2	$+0.2$	$+0.2$	$+0.0$	12.7	82.6	-69.9	Retur

Page 29 of 224
Report No.: MIL05-015

94	8.103 M	11.9	-0.2	+0.2	+0.2	+0.0	12.1	82.1	-70.0	Retur
95	5.425 M	16.2	-0.3	+0.1	+0.1	+0.0	16.1	86.3	-70.2	Retur
96	6.978 M	12.7	-0.2	+0.1	+0.2	+0.0	12.8	83.6	-70.8	Retur
97	4.855 M	17.5	-0.3	+0.1	+0.1	+0.0	17.4	88.3	-70.9	Retur
98	6.603 M	12.6	-0.2	+0.1	+0.2	+0.0	12.7	84.2	-71.5	Retur
99	4.600 M	17.6	-0.2	+0.1	+0.1	+0.0	17.6	89.3	-71.7	Retur
100	5.103 M	15.3	-0.3	+0.1	+0.1	+0.0	15.2	87.4	-72.2	Retur

CKC Laboratories, Inc. Date: 2/22/2005 Time: $2: 43: 53$ PM Stanford Linear Accelerator Center WO\#\#: 82840 CE102 MIL-STD-462 Test Lead: Return 28 V DC Sequence\#t: 2

—— Sweep Data \quad - CE102 MIL-STD-462

Page 30 of 224
Report No.: MIL05-015

CECM - Conducted Emissions, Common Mode, DC to 150 MHz

Test Equipment

Equipment	Manufacturer	Model \#	Serial \#	Asset \#	Cal Date	Cal Due
Oscilloscope	HP	$54615 B$	US35420829	697	$8 / 29 / 03$	$8 / 29 / 05$
Isolation Transformer	Not Listed	None	None	00745	CNR	
10uF Capacitor	Solar	$6512-106 \mathrm{R}$	01739	01739	$6 / 2 / 03$	$6 / 2 / 05$
10uF Capacitor	Solar	$6512-106 \mathrm{R}$	01737	01737	$6 / 2 / 03$	$6 / 2 / 05$

CNR = Calibration Not Required

Test Procedure

Line to Chassis Ground: While the UUT was up and running in high noise mode, the oscilloscope was connected from the 28VDC Line to chassis ground using 150 MHz BW setting. The time scale on the oscilloscope was changed from $1 \mathrm{~ns} /$ division to $5 \mathrm{~s} /$ divison and the noise plots were captured.

Return to Chassis Ground: While the UUT was up and running in high noise mode, the oscilloscope was connected from the 28 VDC Return to chassis ground using 150 MHz BW setting. The time scale on the oscilloscope was changed from $1 \mathrm{~ns} /$ division to $5 \mathrm{~s} /$ divison and the noise plots were captured.

Conducted Emissions Common Mode Test Setup

Conducted Emissions Common Mode Closeup

CECM Capture 1 DC Line

CECM Capture 2 DC Line

CECM Capture 3 DC Line

CECM Capture 4 DC Line

CECM Capture 5 DC Line

CECM Capture 6 DC Return

CECM Capture 7 DC Return

CECM Capture 8 DC Return

CECM Capture 9 DC Return

CECM Capture 10 DC Return

CECM Capture 11 DC Return

CECM Capture 12 DC Return

RE101 - Radiated Emissions, Magnetic Field, 30Hz to 100kHz

Test Equipment

Function	Asset \#	S/N	Calibration Date	Cal Due Date
Cable RG214/U	02410	None	$06 / 07 / 2004$	$06 / 07 / 2005$
Cable RG58 C/U	None	None	$04 / 12 / 2004$	$04 / 12 / 2005$
RF Probe F-303	01485	21	$08 / 20 / 2003$	$08 / 20 / 2005$
SA - E4446A	02668	US44300408	$01 / 13 / 2005$	$01 / 13 / 2007$

Test Procedure

A signal generator was connected into the measurement system. The test engineer performed a path loss check by injecting a signal at 50 kHz that was 6 dB below the limit line and measuring the resulting emission on the spectrum analyzer. Then, the signal generator was removed and the test cable was connected from the loop sensor to the spectrum analyzer.

The UUT was powered up in standard operating mode. The loop was placed 7 cm from the front side of the UUT chassis and a scan was performed. Then, the loop was placed 7 cm from the backside of the UUT and the scan was repeated. Full scans were also performed on the top, bottom left and right sides of the UUT.

Seq. \#	Test Description	Test Lead/ Polarity
3	CE102	JT1, JT2 and JC1 Side
4	CE102	JT3, JS1, JT4, J2 \& JC2 Side
5	CE102	JS1 \& J2 parallel to cables JT7, JC4 \& JT8
6	CE102	JT7, JC4 \& JT8
7	CE102	JT5, JC3 \& JT6 side
8	CE102	Top Side

Radiated Emissions Path Check

Radiated Emissions Test Setup

Radiated Emissions Closeup

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170
$\left.\begin{array}{llrl}\text { Customer: } & \text { Stanford Linear Accelerator Center } & & \\ \text { Specification: } & \begin{array}{l}\text { RE101 Test Limit } \\ \text { Work Order \#: }\end{array} & \begin{array}{l}\text { 82840 }\end{array} & \text { Date: } \\ \text { 2/23/2005 }\end{array}\right]$

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at 56". JT1, JT2 \& JC1 Side.

Transducer Legend:

$\mathrm{T} 1=$ F-303 Loop Sensor	$\mathrm{T} 2=20^{\prime}$ Cable Male N to Male N AN None
T3 $=$ Cable 2410	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr dBpt	Spec dBpt	Margin dB	Polar Ant
1	40.560 k	11.0	+24.7	+0.0	+0.1		+0.0	35.8	53.8	-18.0	Magne
2	.053 k	14.8	+75.2	+0.0	+0.0		+0.0	90.0	111.5	-21.5	Magne
3	17.120 k	7.5	+28.0	+0.0	+0.1	+0.0	35.6	61.3	-25.7	Magne	
4	20.840 k	6.5	+27.2	+0.0	+0.1	+0.0	33.8	59.6	-25.8	Magne	
5	12.560 k	8.8	+29.1	+0.1	+0.1	+0.0	38.1	64.0	-25.9	Magne	

6	15.080k	7.8	+28.4	+0.0	+0.1	+0.0	36.3	62.4	-26.1	Magne
7	29.120k	4.4	+25.9	+0.0	+0.1	+0.0	30.4	56.7	-26.3	Magne
8	10.600k	9.0	+29.8	+0.1	+0.1	+0.0	39.0	65.5	-26.5	Magne
9	19.840k	6.0	+27.4	+0.0	+0.1	+0.0	33.5	60.0	-26.5	Magne
10	20.920k	5.7	+27.2	+0.0	+0.1	+0.0	33.0	59.6	-26.6	Magne
11	48.920k	1.5	+24.0	+0.0	+0.1	${ }^{+0.0}$	25.6	52.2	-26.6	Magne
12	47.160k	1.6	+24.1	+0.0	+0.1	+0.0	25.8	52.5	-26.7	Magne
13	20.160k	5.7	+27.3	+0.0	+0.1	+0.0	33.1	59.9	-26.8	Magne
14	25.760k	4.4	+26.4	+0.0	+0.1	+0.0	30.9	57.8	-26.9	Magne
15	33.080k	3.0	+25.5	+0.0	+0.1	+0.0	28.6	55.6	-27.0	Magne
16	48.200k	1.2	+24.0	+0.0	+0.1	$+0.0$	25.3	52.3	-27.0	Magne
17	49.480k	1.1	+23.9	$+0.0$	+0.1	+0.0	25.1	52.1	-27.0	Magne
18	11.520k	7.9	$+29.5$	$+0.1$	+0.1	+0.0	37.6	64.8	-27.2	Magne
19	11.200k	7.9	+29.6	+0.1	+0.1	$+0.0$	37.7	65.0	-27.3	Magne
20	16.000k	6.3	+28.2	$+0.0$	+0.1	+0.0	34.6	61.9	-27.3	Magne
21	20.600k	5.0	+27.3	$+0.0$	+0.1	$+0.0$	32.4	59.7	-27.3	Magne
22	25.640k	4.0	+26.4	$+0.0$	+0.1	+0.0	30.5	57.8	-27.3	Magne
23	34.240k	2.5	+25.3	$+0.0$	+0.1	$+0.0$	27.9	55.3	-27.4	Magne
24	45.040k	1.1	+24.3	$+0.0$	+0.1	+0.0	25.5	52.9	-27.4	Magne
25	14.040k	6.6	+28.7	+0.1	+0.1	+0.0	35.5	63.0	-27.5	Magne
26	25.280 k	3.8	+26.5	$+0.0$	+0.1	+0.0	30.4	57.9	-27.5	Magne
27	36.520 k	2.0	$+25.1$	$+0.0$	+0.1	+0.0	27.2	54.7	-27.5	Magne

Page 43 of 224
Report No.: MIL05-015

28	37.320 k	1.9	+25.0	+0.0	+0.1	+0.0	27.0	54.5	-27.5	Magne
29	24.400 k	3.9	+26.6	+0.0	+0.1	+0.0	30.6	58.2	-27.6	Magne
30	35.920 k	2.0	+25.2	+0.0	+0.1	+0.0	27.3	54.9	-27.6	Magne

CKC Laboratories, Inc. Date: 2/23/2005 Time: 9:56:38 AM Stanford Linear Accelerator Center WO\#: 82840 RE101 Test Limit Test Distance: 1 Meter Sequence\#: 3 JT1, JT2 \& JC1 Side

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE101 Test Limit		Date: 2/23/2005
Work Order \#:	82840	Time: 10:33:12 AM	
Test Type:	Radiated Scan	Sequence\#: 4	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$. JT3, JS1, JT4, J2 \& JC2 Side.

Transducer Legend:

$\mathrm{T} 1=\mathrm{F}-303$ Loop Sensor	$\mathrm{T} 2=20^{\prime}$ Cable Male N to Male N AN None
$\mathrm{T} 3=$ Cable 2410	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr dBpt	Spec dBpt	Margin dB	Polar Ant
1	.055 k	18.7	+74.9	+0.0	+0.0		+0.0	93.6	111.2	-17.6	Magne
2	40.880 k	10.7	+24.7	+0.0	+0.1		+0.0	35.5	53.8	-18.3	Magne
3	39.440 k	4.3	+24.8	+0.0	+0.1	+0.0	29.2	54.1	-24.9	Magne	
4	30.320 k	5.3	+25.8	+0.0	+0.1	+0.0	31.2	56.3	-25.1	Magne	
5	13.000 k	8.7	+29.0	+0.1	+0.1	+0.0	37.9	63.7	-25.8	Magne	

6	32.600k	4.1	+25.5	+0.0	+0.1	+0.0	29.7	55.7	-26.0	Magne
7	12.240k	8.5	+29.2	+0.1	+0.1	+0.0	37.9	64.2	-26.3	Magne
8	43.240k	2.4	+24.5	+0.0	+0.1	+0.0	27.0	53.3	-26.3	Magne
9	13.480k	7.9	+28.9	+0.1	+0.1	+0.0	37.0	63.4	-26.4	Magne
10	10.360k	9.0	+29.9	+0.1	+0.1	+0.0	39.1	65.7	-26.6	Magne
11	25.800k	4.7	+26.4	+0.0	+0.1	+0.0	31.2	57.8	-26.6	Magne
12	24.360k	4.7	+26.6	+0.0	+0.1	+0.0	31.4	58.2	-26.8	Magne
13	11.120k	8.3	+29.6	+0.1	+0.1	+0.0	38.1	65.1	-27.0	Magne
14	24.560k	4.4	+26.6	+0.0	+0.1	+0.0	31.1	58.2	-27.1	Magne
15	33.000k	2.9	+25.5	+0.0	+0.1	+0.0	28.5	55.6	-27.1	Magne
16	44.640k	1.5	+24.3	+0.0	+0.1	+0.0	25.9	53.0	-27.1	Magne
17	48.200k	1.1	+24.0	$+0.0$	+0.1	+0.0	25.2	52.3	-27.1	Magne
18	46.560k	1.1	+24.2	$+0.0$	+0.1	+0.0	25.4	52.6	-27.2	Magne
19	16.880k	6.0	+28.0	$+0.0$	+0.1	+0.0	34.1	61.4	-27.3	Magne
20	23.600k	4.4	+26.7	$+0.0$	+0.1	+0.0	31.2	58.5	-27.3	Magne
21	30.920k	3.1	+25.7	$+0.0$	+0.1	+0.0	28.9	56.2	-27.3	Magne
22	31.080k	3.0	+25.7	$+0.0$	+0.1	$+0.0$	28.8	56.1	-27.3	Magne
23	28.840k	3.2	+26.0	$+0.0$	+0.1	+0.0	29.3	56.8	-27.5	Magne
24	49.640k	0.6	+23.9	$+0.0$	+0.1	+0.0	24.6	52.1	-27.5	Magne
25	27.440k	3.3	+26.2	$+0.0$	+0.1	+0.0	29.6	57.2	-27.6	Magne
26	27.840k	3.2	+26.1	$+0.0$	+0.1	$+0.0$	29.4	57.1	-27.7	Magne
27	47.160k	0.6	+24.1	$+0.0$	+0.1	+0.0	24.8	52.5	-27.7	Magne

Page 46 of 224
Report No.: MIL05-015

28	47.680 k	0.5	+24.1	+0.0	+0.1	+0.0	24.7	52.4	-27.7	Magne
29	42.280 k	1.1	+24.5	+0.0	+0.1	+0.0	25.7	53.5	-27.8	Magne
30	23.840 k	3.6	+26.7	+0.0	+0.1	+0.0	30.4	58.4	-28.0	Magne
31	32.080 k	2.2	+25.6	+0.0	+0.1	+0.0	27.9	55.9	-28.0	Magne
32	24.120 k	3.3	+26.7	+0.0	+0.1	+0.0	30.1	58.3	-28.2	Magne
33	26.000 k	3.0	+26.4	+0.0	+0.1	+0.0	29.5	57.7	-28.2	Magne

CKC Laboratories, Inc. Date: 2/23/2005 Time: 10:33:12 AM Stanford Linear Accelerator Center MO\#: 82840 RE101 Test Limit Test Distance: 1 Meter Sequence\#: 4
JT3, JS1, JT4, J2 \& JC2 Side

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE101 Test Limit		Date: 2/23/2005
Work Order \#:	82840	Time: 10:41:20 AM	
Test Type:	Radiated Scan	Sequence\#: 5	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $566^{\prime \prime} . \mathrm{JS} 1 \& \mathrm{~J} 2$, parallel to cables

Transducer Legend:

$\mathrm{T} 1=\mathrm{F}-303$ Loop Sensor	$\mathrm{T} 2=20^{\prime}$ Cable Male N to Male N AN None
$\mathrm{T} 3=$ Cable 2410	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr dBpt	Spec dBpt	Margin dB	Polar Ant
1	.055 k	19.1	+74.9	+0.0	+0.0		+0.0	94.0	111.2	-17.2	Magne
2	40.680 k	10.0	+24.7	+0.0	+0.1	+0.0	34.8	53.8	-19.0	Magne	
3	20.880 k	6.6	+27.2	+0.0	+0.1	+0.0	33.9	59.6	-25.7	Magne	
4	27.400 k	5.2	+26.2	+0.0	+0.1	+0.0	31.5	57.2	-25.7	Magne	
5	28.040 k	4.7	+26.1	+0.0	+0.1	+0.0	30.9	57.0	-26.1	Magne	

6	17.400k	7.0	+27.9	+0.0	+0.1	+0.0	35.0	61.2	-26.2	Magne
7	20.680k	6.1	+27.2	+0.0	+0.1	+0.0	33.4	59.7	-26.3	Magne
8	16.280k	7.0	+28.2	${ }^{+0.0}$	+0.1	+0.0	35.3	61.8	-26.5	Magne
9	30.520 k	3.9	+25.8	+0.0	+0.1	+0.0	29.8	56.3	-26.5	Magne
10	36.400k	3.1	+25.1	+0.0	+0.1	+0.0	28.3	54.8	-26.5	Magne
11	10.000k	9.2	+30.0	+0.1	+0.1	$+0.0$	39.4	66.0	-26.6	Magne
12	21.800k	5.5	+27.0	+0.0	+0.1	+0.0	32.6	59.2	-26.6	Magne
13	25.440k	4.7	+26.5	+0.0	+0.1	$+0.0$	31.3	57.9	-26.6	Magne
14	15.240k	7.1	+28.4	+0.0	+0.1	+0.0	35.6	62.3	-26.7	Magne
15	31.480k	3.5	+25.7	+0.0	+0.1	+0.0	29.3	56.0	-26.7	Magne
16	22.800k	5.0	+26.9	+0.0	+0.1	+0.0	32.0	58.8	-26.8	Magne
17	27.080k	3.8	+26.2	$+0.0$	+0.1	+0.0	30.1	57.3	-27.2	Magne
18	44.440k	1.4	+24.3	$+0.0$	+0.1	$+0.0$	25.8	53.0	-27.2	Magne
19	21.200k	4.8	+27.2	$+0.0$	+0.1	+0.0	32.1	59.5	-27.4	Magne
20	32.920k	2.6	+25.5	$+0.0$	+0.1	+0.0	28.2	55.6	-27.4	Magne
21	14.240k	6.5	+28.7	$+0.0$	+0.1	+0.0	35.3	62.9	-27.6	Magne
22	42.760 k	1.2	+24.5	$+0.0$	+0.1	+0.0	25.8	53.4	-27.6	Magne
23	16.760k	5.7	+28.0	$+0.0$	+0.1	+0.0	33.8	61.5	-27.7	Magne
24	43.760k	1.0	+24.4	$+0.0$	+0.1	+0.0	25.5	53.2	-27.7	Magne
25	24.480k	3.6	+26.6	$+0.0$	+0.1	+0.0	30.3	58.2	-27.9	Magne
26	29.160k	2.8	+25.9	$+0.0$	+0.1	+0.0	28.8	56.7	-27.9	Magne
27	31.960k	2.3	+25.6	$+0.0$	${ }^{+0.1}$	${ }^{+0.0}$	28.0	55.9	-27.9	Magne

Page 49 of 224
Report No.: MIL05-015

28	43.160 k	0.8	+24.5	+0.0	+0.1	+0.0	25.4	53.3	-27.9	Magne
29	44.160 k	0.5	+24.4	+0.0	+0.1	+0.0	25.0	53.1	-28.1	Magne

CKC Laboratories, Inc. Date: 2/23/2005 Time: 10:41:20 AM Stanford Linear Accelerator Center MO\#: 82840 RE101 Test Lirit Test Distance: 1 Meter Sequence\#: 5
JS1 \& J2, parallel to cables

—— Sweep Data 1 -RE101 Test Lirnit

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE101 Test Limit		Date: 2/23/2005
Work Order \#:	82840	Time: 10:51:00 AM	
Test Type:	Radiated Scan	Sequence\#: 6	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at 56". JT7, JC4 \& JT8 side

Transducer Legend:

$\mathrm{T} 1=\mathrm{F}-303$ Loop Sensor	$\mathrm{T} 2=20^{\prime}$ Cable Male N to Male N AN None
$\mathrm{T} 3=$ Cable 2410	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr dBpt	Spec dBpt	Margin dB	Polar Ant
1	.055 k	17.9	+74.9	+0.0	+0.0		+0.0	92.8	111.2	-18.4	Magne
2	40.600 k	9.8	+24.7	+0.0	+0.1		+0.0	34.6	53.8	-19.2	Magne
3	22.360 k	6.7	+27.0	+0.0	+0.1	+0.0	33.8	59.0	-25.2	Magne	
4	14.440 k	8.5	+28.6	+0.0	+0.1	+0.0	37.2	62.8	-25.6	Magne	
5	22.760 k	6.0	+26.9	+0.0	+0.1	+0.0	33.0	58.8	-25.8	Magne	

6	20.160k	6.3	+27.3	+0.0	+0.1	+0.0	33.7	59.9	-26.2	Magne
7	30.520k	4.2	+25.8	+0.0	+0.1	+0.0	30.1	56.3	-26.2	Magne
8	16.120k	7.2	+28.2	+0.0	+0.1	+0.0	35.5	61.8	-26.3	Magne
9	25.400k	5.0	+26.5	+0.0	+0.1	+0.0	31.6	57.9	-26.3	Magne
10	29.880k	4.2	+25.9	+0.0	+0.1	+0.0	30.2	56.5	-26.3	Magne
11	49.520k	1.7	+23.9	+0.0	+0.1	${ }^{+0.0}$	25.7	52.1	-26.4	Magne
12	35.360k	3.2	+25.2	+0.0	+0.1	+0.0	28.5	55.0	-26.5	Magne
13	11.920k	8.4	+29.3	+0.1	+0.1	+0.0	37.9	64.5	-26.6	Magne
14	17.600k	6.5	+27.9	+0.0	+0.1	+0.0	34.5	61.1	-26.6	Magne
15	48.960k	1.4	+24.0	+0.0	+0.1	+0.0	25.5	52.2	-26.7	Magne
16	10.400k	8.7	+29.9	+0.1	+0.1	$+0.0$	38.8	65.6	-26.8	Magne
17	11.600k	8.2	+29.4	+0.1	+0.1	+0.0	37.8	64.7	-26.9	Magne
18	44.920k	1.6	+24.3	$+0.0$	+0.1	+0.0	26.0	52.9	-26.9	Magne
19	36.680k	2.5	+25.1	$+0.0$	+0.1	$+0.0$	27.7	54.7	-27.0	Magne
20	15.560k	6.6	+28.3	$+0.0$	+0.1	+0.0	35.0	62.1	-27.1	Magne
21	18.200k	5.9	+27.7	$+0.0$	+0.1	+0.0	33.7	60.8	-27.1	Magne
22	12.120k	7.6	+29.3	+0.1	+0.1	+0.0	37.1	64.3	-27.2	Magne
23	13.280k	7.2	+28.9	+0.1	+0.1	$+0.0$	36.3	63.5	-27.2	Magne
24	17.920k	5.8	+27.8	$+0.0$	+0.1	+0.0	33.7	60.9	-27.2	Magne
25	28.360k	3.6	+26.0	$+0.0$	+0.1	+0.0	29.7	56.9	-27.2	Magne
26	12.680k	7.3	+29.1	$+0.1$	+0.1	+0.0	36.6	63.9	-27.3	Magne

Page 52 of 224
Report No.: MIL05-015

27	19.800 k	5.3	+27.4	+0.0	+0.1	+0.0	32.8	60.1	-27.3	Magne
28	45.560 k	1.1	+24.3	+0.0	+0.1	+0.0	25.5	52.8	-27.3	Magne

CKC Laboratories, Inc. Date: 2/23/2005 Time: 10:51:00 AM Stanford Linear Accelerator Center WO\#: 82840 RE101 Test Lirit Test Distance: 1 Meter Sequence\#: 6 JT7, JC4 \& JT8 side

[^0]Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE101 Test Limit		Date: 2/23/2005
Work Order \#:	82840	Time: 10:59:17 AM	
Test Type:	Radiated Scan	Sequence\#: 7	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at 56". JT5, JC3 \& JT6 side

Transducer Legend:

T1 $=$ F-303 Loop Sensor	T2 $=20^{\prime}$ Cable Male N to Male N AN None
T3 $=$ Cable 2410	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr dBpt	Spec dBpt	Margin dB	Polar Ant
1	.054 k	17.5	+75.0	+0.0	+0.0		+0.0	92.5	111.3	-18.8	Magne
2	40.640 k	9.8	+24.7	+0.0	+0.1		+0.0	34.6	53.8	-19.2	Magne
3	14.040 k	8.0	+28.7	+0.1	+0.1	+0.0	36.9	63.0	-26.1	Magne	
4	15.840 k	7.5	+28.3	+0.0	+0.1	+0.0	35.9	62.0	-26.1	Magne	
5	14.200 k	7.9	+28.7	+0.0	+0.1	+0.0	36.7	62.9	-26.2	Magne	

6	21.200k	5.9	+27.2	+0.0	+0.1	+0.0	33.2	59.5	-26.3	Magne
7	47.360k	1.6	+24.1	+0.0	+0.1	+0.0	25.8	52.5	-26.7	Magne
8	13.280k	7.6	+28.9	+0.1	+0.1	+0.0	36.7	63.5	-26.8	Magne
9	20.840k	5.5	+27.2	+0.0	+0.1	+0.0	32.8	59.6	-26.8	Magne
10	16.120k	6.6	+28.2	+0.0	$+0.1$	+0.0	34.9	61.8	-26.9	Magne
11	31.720k	3.3	+25.6	+0.0	+0.1	$+0.0$	29.0	56.0	-27.0	Magne
12	46.320k	1.4	+24.2	+0.0	+0.1	+0.0	25.7	52.7	-27.0	Magne
13	20.040k	5.2	+27.4	+0.0	+0.1	$+0.0$	32.7	59.9	-27.2	Magne
14	20.240k	5.3	+27.3	+0.0	+0.1	+0.0	32.7	59.9	-27.2	Magne
15	26.400k	4.0	+26.3	+0.0	+0.1	+0.0	30.4	57.6	-27.2	Magne
16	45.920k	1.2	+24.2	+0.0	+0.1	+0.0	25.5	52.7	-27.2	Magne
17	24.480k	4.2	+26.6	$+0.0$	+0.1	+0.0	30.9	58.2	-27.3	Magne
18	44.200k	1.3	+24.4	$+0.0$	$+0.1$	$+0.0$	25.8	53.1	-27.3	Magne
19	10.160k	8.3	+29.9	+0.1	+0.1	+0.0	38.4	65.8	-27.4	Magne
20	25.000k	4.0	+26.5	$+0.0$	+0.1	+0.0	30.6	58.0	-27.4	Magne
21	46.000k	0.6	+24.2	$+0.0$	+0.1	+0.0	24.9	52.7	-27.8	Magne
22	12.880k	6.7	+29.0	+0.1	+0.1	+0.0	35.9	63.8	-27.9	Magne
23	1.224k	1.8	+48.2	+0.1	+0.0	+0.0	50.1	84.2	-34.1	Magne
24	.109k	0.9	+68.9	$+0.0$	$+0.0$	+0.0	69.8	105.3	-35.5	Magne
25	.182k	-0.3	+64.5	$+0.0$	$+0.0$	+0.0	64.2	100.8	-36.6	Magne
26	.218k	-1.1	+62.9	$+0.0$	$+0.0$	+0.0	61.8	99.2	-37.4	Magne
27	.024k	-1.3	+82.1	$+0.0$	$+0.0$	+0.0	80.8	118.3	-37.5	Magne

Page 55 of 224
Report No.: MIL05-015

28	2.480 k	-1.8	+42.1	+0.1	+0.0	+0.0	40.4	78.1	-37.7	Magne
29	2.832 k	-1.7	+40.9	+0.1	+0.0	+0.0	39.3	77.0	-37.7	Magne
30	5.576 k	-2.0	+35.1	+0.1	+0.0	+0.0	33.2	71.1	-37.9	Magne

CKC Laboratories, Inc. Date: 2/23/2005 Time: 10:59:17 AM Stanford Linear Accelerator Center WO\#: 82840 RE101 Test Lirnit Test Distance: 1 Meter Sequence\#: 7
JT5, JC3 \& JT6 side

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE101 Test Limit		Date: 2/23/2005
Work Order \#:	82840	Time: 11:06:17 AM	
Test Type:	Radiated Scan	Sequence\#: 8	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$. Top side

Transducer Legend:

$\mathrm{T} 1=\mathrm{F}-303$ Loop Sensor	$\mathrm{T} 2=20^{\prime}$ Cable Male N to Male N AN None
$\mathrm{T} 3=$ Cable 2410	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr dBpt	Spec dBpt	Margin dB	Polar Ant
1	40.680 k	10.5	+24.7	+0.0	+0.1		+0.0	35.3	53.8	-18.5	Magne
2	.054 k	16.9	+75.1	+0.0	+0.0		+0.0	92.0	111.4	-19.4	Magne
3	14.440 k	8.8	+28.6	+0.0	+0.1	+0.0	37.5	62.8	-25.3	Magne	
4	12.800 k	8.7	+29.1	+0.1	+0.1	+0.0	38.0	63.8	-25.8	Magne	
5	37.320 k	3.6	+25.0	+0.0	+0.1	+0.0	28.7	54.5	-25.8	Magne	
6	32.280 k	4.2	+25.6	+0.0	+0.1	+0.0	29.9	55.8	-25.9	Magne	

7	12.040 k	8.3	+29.3	+0.1	+0.1	+0.0	37.8	64.4	-26.6	Magne
8	13.360 k	7.8	+28.9	+0.1	+0.1	+0.0	36.9	63.5	-26.6	Magne
9	18.560 k	6.1	+27.7	+0.0	+0.1	+0.0	33.9	60.6	-26.7	Magne
10	11.520 k	8.3	+29.5	+0.1	+0.1	+0.0	38.0	64.8	-26.8	Magne
11	37.760 k	2.4	+25.0	+0.0	+0.1	+0.0	27.5	54.4	-26.9	Magne
12	38.320 k	2.4	+24.9	+0.0	+0.1	+0.0	27.4	54.3	-26.9	Magne
13	43.920 k	1.7	+24.4	+0.0	+0.1	+0.0	26.2	53.1	-26.9	Magne
14	43.280 k	1.7	+24.4	+0.0	+0.1	+0.0	26.2	53.3	-27.1	Magne
15	17.720 k	5.9	+27.8	+0.0	+0.1	+0.0	33.8	61.0	-27.2	Magne
16	43.600 k	1.5	+24.4	+0.0	+0.1	+0.0	26.0	53.2	-27.2	Magne
17	47.520 k	1.0	+24.1	+0.0	+0.1	+0.0	25.2	52.4	-27.2	Magne
18	11.800 k	7.6	+29.4	+0.1	+0.1	+0.0	37.2	64.5	-27.3	Magne
19	43.440 k	1.4	+24.4	+0.0	+0.1	+0.0	25.9	53.2	-27.3	Magne
20	27.480 k	3.5	+26.2	+0.0	+0.1	+0.0	29.8	57.2	-27.4	Magne
21	32.720 k	2.7	+25.5	+0.0	+0.1	+0.0	28.3	55.7	-27.4	Magne
22	10.240 k	8.2	+29.9	+0.1	+0.1	+0.0	38.3	65.8	-27.5	Magne
23	19.280 k	5.2	+27.5	+0.0	+0.1	+0.0	32.8	60.3	-27.5	Magne
24	27.040 k	3.4	+26.2	+0.0	+0.1	+0.0	29.7	57.3	-27.6	Magne
25	41.840 k	1.2	+24.6	+0.0	+0.1	+0.0	25.9	53.5	-27.6	Magne
26	19.120 k	5.1	+27.5	+0.0	+0.1	+0.0	32.7	60.4	-27.7	Magne
27	42.600 k	1.1	+24.5	+0.0	+0.1	+0.0	25.7	53.4	-27.7	Magne

Page 58 of 224
Report No.: MIL05-015

28	16.560 k	5.5	+28.1	+0.0	+0.1	+0.0	33.7	61.6	-27.9	Magne
29	43.800 k	0.8	+24.4	+0.0	+0.1	+0.0	25.3	53.2	-27.9	Magne
30	41.960 k	0.8	+24.6	+0.0	+0.1	+0.0	25.5	53.5	-28.0	Magne

CKC Laboratories, Inc. Date: 2/23/2005 Time: 11:06:17 AM Stanford Linear Accelerator Center WO\#: 82840 RE101 Test Lirnit Test Distance: 1 Meter Sequence\#: 8
Top side

RE102 - Radiated Emissions, Electric Field, 10kHz to 18GHz

Test Equipment

Function	Asset \#	S/N	Calibration Date	Cal Due Date
SA - E4446A	02668	US44300408	$01 / 13 / 2005$	$01 / 13 / 2007$
Cable RG214/U	02410	None	$06 / 07 / 2004$	$06 / 07 / 2005$
Rod Antenna - 3301B	01579	92073275	$01 / 12 / 2004$	$01 / 12 / 2006$
Sig Gen - 2022D	00727	$119190-018$	$11 / 15 / 2004$	$11 / 15 / 2006$
Cable E24304	None	None	$04 / 12 / 2004$	$04 / 12 / 2005$
Cable RG58 C/U	None	None	$04 / 12 / 2004$	$04 / 12 / 2005$
Cable RG58 C/U	None	None	$04 / 12 / 2004$	$04 / 12 / 2005$
Pre-Amp 8447D	00567	$1937 A 03055$	$07 / 21 / 2003$	$07 / 21 / 2005$
SA-8568A	00447	$2235 A 02391$	$10 / 25 / 2004$	$10 / 25 / 2006$
SA Display	00446	$2237 A 04350$	$10 / 25 / 2004$	$10 / 25 / 2006$
Sig Gen - 2022D	00727	$119190-018$	$11 / 15 / 2004$	$11 / 15 / 2006$
Bi-Con Antenna - 3110	00503	$9205-1522$	$01 / 07 / 2005$	$01 / 07 / 2007$
Horn - SAS 570	02525	155 part $\# 2490$	$06 / 04 / 2003$	$06 / 04 / 2005$
SA - E4446A	02668	US44300408	$01 / 13 / 2005$	$01 / 13 / 2007$
HF Cable	None	$02 / 08 / 2005$	$02 / 08 / 2007$	
HF Cable	None	$02 / 08 / 2005$	$02 / 08 / 2007$	
Horn Antenna-3115	02113	$9602-4660$	$02 / 26 / 2003$	$02 / 26 / 2005$
HF-Pre-Amp 83051A	00941 A	31 A00238	$03 / 17 / 2003$	$03 / 17 / 2005$
Sig Gen - HP 8673C	02547	$2447 A 00198$	$08 / 09 / 2004$	$08 / 09 / 2006$

Test Procedure

The signal generator was connected to the rod antenna through the calibration fixture. The test engineer injected a signal at 10 kHz that was 6 dB below the limit line and measured the resulting emission on the spectrum analyzer. The check was repeated at 15.005 MHz and 30 MHz . Then, the signal generator was removed and the antenna element was connected to the antenna and the antenna output was connected to the measurement system.

The UUT was powered up in standard operating mode. The rod antenna was placed one meter in front of the UUT. The EMITest ${ }^{\text {TM }}$ software automatically scanned from 10 kHz to 30 MHz using the sweep rates required by the MIL-STD 461E. The biconical antenna was placed one meter in front of the UUT and was connected to the measurement system. The test engineer removed performed a path loss check at 200 MHz . The EMITest ${ }^{\mathrm{TM}}$ software automatically scanned from 30 MHz to 200 MHz in horizontal and vertical antenna polarizations using the sweep rates required by the MIL-STD 461E. The double ridge guide horn antenna was connected into the setup and placed one meter from the UUT setup. The test engineer performed a path loss check at 1 GHz . The EMITest ${ }^{\mathrm{TM}}$ software automatically scanned from 200 MHz to 1 GHz in horizontal and vertical antenna polarizations using the sweep rates required by the MIL-STD 461E. Then, the high frequency double ridge guide horn antenna was installed and placed one meter from the UUT setup. The antenna was then connected to the measurement system. The test engineer performed a path loss check at 18 GHz . The EMITest ${ }^{\mathrm{TM}}$ software automatically scanned from 1 GHz to 18 GHz in horizontal and vertical antenna polarizations using the sweep rates required by the MIL-STD 461E.

Seq. \#	Test Description	Test Lead/ Polarity
0	Path Check at 10 kHz	
0	Path Check at 15.005 MHz	
0	Path Check at 30 MHz	
0	Path Check at 200 MHz	
0	Path Check at 1000 MHz	
0	Path Check at $1-1.55 \mathrm{GHz}$	
0	Path Check at $1.55-1.6 \mathrm{GHz}$	
0	Path Check at $1.6-1.77 \mathrm{GHz}$	
0	Path Check at $1.77-2.3 \mathrm{GHz}$	
0	Path Check at $2.3-18 \mathrm{GHz}$	Vertical
0	Path Check at 18 GHz	Horizontal
9	$30-200 \mathrm{MHz}$	Horizontal
10	$30-200 \mathrm{MHz}$	Vertical
11	$200-1000 \mathrm{MHz}$	Horizontal
12	$200-1000 \mathrm{MHz}$	Horizontal $/$ Fail
13	$1-1.55 \mathrm{GHz}$	Horizontal
14	$1.55-1.6 \mathrm{GHz}$	Horizontal / Fail
15	$1.6-1.77 \mathrm{GHz}$	
16	$1.77-2.3 \mathrm{GHz}$	

Seq. \#	Test Description	Test Lead/ Polarity
17	$2.3-18 \mathrm{GHz}$	Horizontal
18	$1.77-1.9 \mathrm{GHz}$	Horizontal / Fail
19	$1.9-2.03 \mathrm{GHz}$	Horizontal
20	$2.03-2.16 \mathrm{GHz}$	Horizontal
21	$2.16-2.3 \mathrm{GHz}$	Horizontal
22	$1-1.55 \mathrm{GHz}$	Vertical
23	$1.55-1.6 \mathrm{GHz}$	Vertical / Fail
24	$1.6-1.77 \mathrm{GHz}$	Vertical
25	$1.77-2.3 \mathrm{GHz}$	Vertical / Fail
26	$2.3-18 \mathrm{GHz}$	Vertical
27	$1.55-1.6 \mathrm{GHz}$	Vertical / Fail
28	$1.55-1.6 \mathrm{GHz}$	Vertical / Fail
29	$1.55-1.6 \mathrm{GHz}$	Vertical / Fail
30	$1.55-1.563 \mathrm{GHz}$	Vertical
31	$1.563-1.576 \mathrm{GHz}$	Vertical
32	$1.576-1.589 \mathrm{GHz}$	Vertical
33	$1.589-1.6 \mathrm{GHz}$	Vertical

RE102 Path Check

Rod Antenna, 10 kHz - 30MHz Pre-Cal

Rod Antenna, 10 kHz - 30MHz Test Setup

Bicon Antenna, 30-200 MHz Vertical Polarization Test Setup

Horn Antenna, 200-1000MHz Horizontal Polarization Test Setup

Horn Antenna, 200-1000MHz Horizontal Polarization Closeup

18GHz Path Check

Horn Antenna, 1-18GHz Horizontal Polarization Test Setup

Radiated Emissions Fix

Radiated Emissions Fix Closeup

Radiated Emissions Fix

Radiated Emissions Foil Fix

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Stanford Linear Accelerator Center
RE102 10KHz-18GHz
82840
Radiated Scan

Date: 2/25/2005
Time: 9:12:51 AM
Sequence\#: 0
Tested By: A. Brar

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 10KHz. 100 (spec limit) - 6dB - 4.2 (Antenna Factor) $=89.8 \mathrm{dBuV}$ signal level.
Transducer Legend:
$\begin{array}{ll}\mathrm{T} 1=\text { AN } 01579 \text { Rod Antenna } & \mathrm{T} 2=20^{\prime} \text { Cable Male } \mathrm{N} \text { to Male N AN None } \\ \mathrm{T} 3=\text { Cable } 2410\end{array}$

Measu	ment Data	Reading listed by margin.					Test Distance: None				
\#	Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	10.134k	91.9	+4.2	+0.1	+0.1		+0.0	96.3	99.9	-3.6	None
2	1.168 M	22.8	+4.2	+0.0	+0.1		+0.0	27.1	67.7	-40.6	None
3	20.201k	46.5	+4.0	+0.0	+0.1		+0.0	50.6	95.2	-44.6	None
4	27.941 M	8.3	+10.3	+0.2	+0.3		+0.0	19.1	64.0	-44.9	None
5	28.228 M	8.0	+10.4	+0.2	+0.3		+0.0	18.9	64.0	-45.1	None
6	27.422 M	8.0	+10.2	+0.2	+0.3		+0.0	18.7	64.0	-45.3	None

7	28.556 M	7.7	+10.5	+0.2	+0.3	+0.0	18.7	64.0	-45.3	None
8	16.004 M	10.9	+7.2	+0.2	+0.2	+0.0	18.5	64.0	-45.5	None
9	27.821 M	7.5	+10.3	+0.2	+0.3	+0.0	18.3	64.0	-45.7	None
10	21.850 M	9.0	+8.7	+0.2	+0.3	+0.0	18.2	64.0	-45.8	None
11	24.183 M	8.2	+9.3	+0.2	+0.3	+0.0	18.0	64.0	-46.0	None
12	25.811 M	7.8	+9.7	+0.2	+0.3	+0.0	18.0	64.0	-46.0	None
13	26.018 M	7.7	+9.7	+0.2	+0.3	+0.0	17.9	64.0	-46.1	None
14	26.473 M	7.5	+9.9	+0.2	+0.3	+0.0	17.9	64.0	-46.1	None
15	27.008 M	7.3	+10.1	+0.2	+0.3	+0.0	17.9	64.0	-46.1	None
16	19.507 M	9.1	+8.0	+0.2	+0.3	+0.0	17.6	64.0	-46.4	None
17	20.238 M	8.8	+8.2	+0.2	+0.3	+0.0	17.5	64.0	-46.5	None
18	20.979 M	8.6	+8.4	+0.2	+0.3	+0.0	17.5	64.0	-46.5	None
19	20.679 M	8.6	+8.3	+0.2	+0.3	+0.0	17.4	64.0	-46.6	None
20	9.928 M	10.9	+6.0	+0.1	+0.2	+0.0	17.2	64.0	-46.8	None
21	1.217 M	16.1	+4.2	+0.0	+0.1	+0.0	20.4	67.4	-47.0	None
22	3.271 M	12.0	+4.8	+0.1	+0.1	+0.0	17.0	64.0	-47.0	None
23	10.929 M	10.4	+6.2	+0.1	+0.2	+0.0	16.9	64.0	-47.1	None
24	5.313 M	11.2	+5.1	+0.1	+0.1	+0.0	16.5	64.0	-47.5	None
25	7.936 M	10.5	+5.6	+0.2	+0.2	+0.0	16.5	64.0	-47.5	None
26	7.586 M	10.5	+5.5	+0.2	+0.2	+0.0	16.4	64.0	-47.6	None
27	8.607 M	10.4	+5.7	+0.1	+0.2	+0.0	16.4	64.0	-47.6	None

Page 70 of 224
Report No.: MIL05-015

28	4.462 M	11.1	+4.9	+0.1	+0.2	+0.0	16.3	64.0	-47.7	None
29	6.124 M	10.9	+5.2	+0.1	+0.1	+0.0	16.3	64.0	-47.7	None
30	1.920 M	11.8	+4.4	+0.1	+0.1	+0.0	16.4	64.3	-47.9	None

CKC Laboratories, Inc. Date: 2/25/2005 Time: 9:12:51 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 $10 \mathrm{KHz}-18 \mathrm{GHz}$ Test Distance: None Sequence\#: 0

—— Sweep Data 1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification:
RE102 10KHz-18GHz
82840
Radiated Scan
Date: 2/25/2005
Time: 9:17:29 AM
Sequence\#: 0
Tested By: A. Brar

Test Type:
Equipment:
Manufacturer:
Model:
S/N:
Equipment Under $\boldsymbol{\text { Test }}$ (* $=$ UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 15.005 MHz .64 (spec limit) $-6 \mathrm{~dB}-6.9$ (Antenna Factor) $=51.1 \mathrm{dBuV}$ signal level.
Transducer Legend:

$\mathrm{T} 1=$ AN 01579 Rod Antenna	$\mathrm{T} 2=20^{\prime}$ Cable Male N to Male N AN None
$\mathrm{T} 3=$ Cable 2410	

Measu	ment Data	Reading listed by margin.					Test Distance: None				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	15.003 M	51.9	+6.9	$+0.2$	+0.2		+0.0	59.2	64.0	-4.8	None
2	1.169M	21.4	+4.2	+0.0	+0.1		+0.0	25.7	67.6	-41.9	None
3	27.279M	7.8	+10.2	+0.2	+0.3		+0.0	18.5	64.0	-45.5	None
4	20.859M	9.0	+8.4	+0.2	+0.3		+0.0	17.9	64.0	-46.1	None
5	1.216 M	16.2	+4.2	+0.0	+0.1		+0.0	20.5	67.4	-46.9	None
6	13.121 M	10.2	+6.4	+0.2	+0.2		+0.0	17.0	64.0	-47.0	None

7	10.478 M	10.4	+6.1	+0.1	+0.2	+0.0	16.8	64.0	-47.2	None
8	20.088 M	8.2	+8.1	+0.2	+0.3	+0.0	16.8	64.0	-47.2	None
9	18.557 M	8.0	+7.8	+0.2	+0.3	+0.0	16.3	64.0	-47.7	None
10	18.707 M	7.8	+7.8	+0.2	+0.3	+0.0	16.1	64.0	-47.9	None
11	19.277 M	7.5	+8.0	+0.2	+0.3	+0.0	16.0	64.0	-48.0	None
12	1.850 M	10.9	+4.4	+0.1	+0.1	+0.0	15.5	64.5	-49.0	None
13	1.837 M	10.8	+4.4	+0.1	+0.1	+0.0	15.4	64.6	-49.2	None
14	1.739 M	10.8	+4.3	+0.1	+0.1	+0.0	15.3	64.9	-49.6	None
15	1.051 M	14.4	+4.1	+0.0	+0.1	+0.0	18.6	68.4	-49.8	None
16	1.689 M	10.3	+4.3	+0.1	+0.1	+0.0	14.8	65.1	-50.3	None
17	1.097 M	13.4	+4.1	+0.0	+0.1	+0.0	17.6	68.1	-50.5	None
18	1.580 M	10.5	+4.3	+0.1	+0.1	+0.0	15.0	65.6	-50.6	None
19	1.617 M	10.3	+4.3	+0.1	+0.1	+0.0	14.8	65.4	-50.6	None
20	1.643 M	9.9	+4.3	+0.1	+0.1	+0.0	14.4	65.3	-50.9	None
21	1.447 M	10.4	+4.3	+0.1	+0.1	+0.0	14.9	66.2	-51.3	None
22	1.417 M	9.9	+4.3	+0.1	+0.1	+0.0	14.4	66.3	-51.9	None
23	819.700 k	13.6	+4.0	+0.0	+0.0	+0.0	17.6	70.1	-52.5	None
24	692.050 k	14.3	+4.0	+0.1	+0.1	+0.0	18.5	71.2	-52.7	None
25	618.050 k	12.2	+4.1	+0.1	+0.0	+0.0	16.4	72.0	-55.6	None
26	288.750 k	14.4	+3.9	+0.0	+0.0	+0.0	18.3	77.1	-58.8	None

Page 73 of 224
Report No.: MIL05-015

27	327.600 k	12.9	+4.0	+0.0	+0.0	+0.0	16.9	76.3	-59.4	None
28	155.550 k	16.5	+4.0	+0.0	+0.0	+0.0	20.5	81.4	-60.9	None
29	40.604 k	19.6	+4.0	+0.0	+0.1	+0.0	23.7	90.5	-66.8	None

CKC Laboratories, Inc. Date: 2/25/2005 Time: 9:17:29 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 $10 \mathrm{KHz}-18 \mathrm{GHz}$ Test Distance: None Sequence\#: 0

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Stanford Linear Accelerator Center
RE102 10KHz-18GHz
82840
Radiated Scan

Date: 2/25/2005
Time: 9:36:02 AM
Sequence\#: 0
Tested By: A. Brar

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 15.005 MHz .64 (spec limit) $-6 \mathrm{~dB}-10.9$ (Antenna Factor) $=47.1 \mathrm{dBuV}$ signal level.
Transducer Legend:

$\mathrm{T} 1=$ AN 01579 Rod Antenna	$\mathrm{T} 2=20^{\prime}$ Cable Male N to Male N AN None
$\mathrm{T} 3=$ Cable 2410	

Measu	ment Data	Reading listed by margin.					Test Distance: None				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	29.992M	44.5	+10.9	+0.2	$+0.3$		+0.0	55.9	64.0	-8.1	None
2	1.166M	21.8	+4.2	+0.0	+0.1		+0.0	26.1	67.7	-41.6	None
3	28.109M	7.7	+10.3	+0.2	+0.3		+0.0	18.5	64.0	-45.5	None
4	27.534 M	7.2	+10.2	+0.2	+0.3		+0.0	17.9	64.0	-46.1	None
5	26.273 M	7.1	+9.8	+0.2	+0.3		$+0.0$	17.4	64.0	-46.6	None
6	1.216 M	16.4	+4.2	+0.0	+0.1		+0.0	20.7	67.4	-46.7	None

7	26.521 M	6.9	+9.9	+0.2	+0.3	+0.0	17.3	64.0	-46.7	None
8	26.640M	6.8	+10.0	+0.2	$+0.3$	+0.0	17.3	64.0	-46.7	None
9	26.058M	7.0	+9.7	+0.2	$+0.3$	+0.0	17.2	64.0	-46.8	None
10	24.590 M	7.2	+9.4	+0.2	$+0.3$	+0.0	17.1	64.0	-46.9	None
11	21.479 M	7.9	+8.5	+0.2	$+0.3$	+0.0	16.9	64.0	-47.1	None
12	21.650M	7.8	+8.6	+0.2	$+0.3$	+0.0	16.9	64.0	-47.1	None
13	19.087M	8.3	+7.9	$+0.2$	$+0.3$	+0.0	16.7	64.0	-47.3	None
14	16.935M	8.6	+7.4	+0.2	$+0.2$	+0.0	16.4	64.0	-47.6	None
15	8.767M	9.7	+5.7	+0.1	$+0.2$	+0.0	15.7	64.0	-48.3	None
16	1.053M	15.5	+4.1	${ }^{+0.0}$	$+0.1$	+0.0	19.7	68.4	-48.7	None
17	1.364M	12.8	+4.2	+0.0	$+0.1$	+0.0	17.1	66.6	-49.5	None
18	1.983M	10.0	+4.4	+0.1	$+0.1$	+0.0	14.6	64.1	-49.5	None
19	1.789M	10.1	+4.4	+0.1	$+0.1$	+0.0	14.7	64.8	-50.1	None
20	1.710M	10.4	+4.3	+0.1	$+0.1$	+0.0	14.9	65.1	-50.2	None
21	1.957M	9.3	+4.4	+0.1	+0.1	+0.0	13.9	64.1	-50.2	None
22	1.482M	10.6	+4.3	+0.1	+0.1	+0.0	15.1	66.0	-50.9	None
23	1.502 M	10.5	+4.3	$+0.1$	$+0.1$	$+0.0$	15.0	65.9	-50.9	None
24	1.094M	12.8	+4.1	$+0.0$	$+0.1$	+0.0	17.0	68.1	-51.1	None
25	1.926M	8.5	+4.4	$+0.1$	$+0.1$	+0.0	13.1	64.3	-51.2	None
26	1.432M	10.2	+4.3	+0.1	+0.1	+0.0	14.7	66.3	-51.6	None
27	1.414M	9.6	+4.2	$+0.0$	$+0.1$	$+0.0$	13.9	66.4	-52.5	None
28	816.000k	13.5	+4.0	$+0.0$	$+0.0$	+0.0	17.5	70.1	-52.6	None

Page 76 of 224
Report No.: MIL05-015

29	1.032 M	10.1	+4.1	+0.0	+0.1	+0.0	14.3	68.5	-54.2	None
30	692.050 k	12.7	+4.0	+0.1	+0.1	+0.0	16.9	71.2	-54.3	None
31	779.000 k	11.2	+4.0	+0.0	+0.0	+0.0	15.2	70.4	-55.2	None
32	745.700k	10.7	+4.0	+0.1	+0.1	+0.0	14.9	70.7	-55.8	None
33	614.350 k	11.6	+4.1	+0.1	+0.0	+0.0	15.8	72.0	-56.2	None
34	638.400k	10.9	+4.1	+0.1	+0.0	+0.0	15.1	71.8	-56.7	None
35	473.750 k	11.5	+4.1	+0.1	+0.0	+0.0	15.7	73.8	-58.1	None
36	431.200 k	11.8	+4.1	+0.1	+0.0	+0.0	16.0	74.4	-58.4	None
37	150.000k	14.9	+4.0	+0.0	+0.0	+0.0	18.9	81.6	-62.7	None
38	40.738k	18.3	+4.0	+0.0	+0.1	+0.0	22.4	90.5	-68.1	None
39	10.134 k	23.3	+4.2	+0.1	+0.1	+0.0	27.7	99.9	-72.2	None
40	82.750k	9.1	+4.1	+0.0	+0.0	+0.0	13.2	85.6	-72.4	None
41	11.879k	21.9	+4.2	+0.1	+0.1	+0.0	26.3	98.8	-72.5	None
42	12.550k	21.5	+4.1	+0.1	+0.1	+0.0	25.8	98.5	-72.7	None
43	20.201k	18.2	+4.0	+0.0	+0.1	+0.0	22.3	95.2	-72.9	None
44	149.965k	4.5	+4.0	+0.0	+0.0	+0.0	8.5	81.6	-73.1	None
45	117.784 k	6.0	+4.0	+0.0	+0.0	+0.0	10.0	83.2	-73.2	None
46	146.904 k	4.4	+4.0	+0.0	+0.0	+0.0	8.4	81.7	-73.3	None
47	144.611 k	4.3	+4.0	+0.0	+0.0	+0.0	8.3	81.8	-73.5	None

48	149.047 k	4.1	+4.0	+0.0	+0.0	+0.0	8.1	81.6	-73.5	None
49	149.365 k	4.0	+4.0	+0.0	+0.0	+0.0	8.0	81.6	-73.6	None
50	149.469 k	4.0	+4.0	+0.0	+0.0	+0.0	8.0	81.6	-73.6	None

CKC Laboratories, Inc. Date: 2/25/2005 Time: 9:36:02 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 $10 \mathrm{KHz}-18 \mathrm{GHz}$ Test Distance: None Sequence\#: 0

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Stanford Linear Accelerator Center
RE102 10KHz-18GHz
82840
Radiated Scan

Date: 2/23/2005
Time: 12:41:53 PM
Sequence\#: 0
Tested By: A. Brar

S/N:
Equipment Under $\boldsymbol{\text { Test }}$ (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 200MHz. 70(spec limit) - 6dB - 16.9 (Antenna Factor) $=47.1 \mathrm{dBuV}$ signal level.
Transducer Legend:

T1 $=20^{\prime}$ Cable Male N to Male N AN None	T2 $=$ Cable 2410
T3=Bicon503	T4 $=2^{\prime}$ Cable Male BNC to Male N AN None
T5=AN 0567 SN 1937A03055	

Measu	ment Data:	Reading listed by margin.				Test Distance: Path Check					
\#	Freq	Rdng	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \end{aligned}$	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1	199.918M	73.4	$\begin{gathered} +0.6 \\ -27.6 \end{gathered}$	+1.0	+16.9	+0.1	+0.0	64.4	70.1	-5.7	None
2	30.370 M	29.3	$\begin{array}{r} +0.2 \\ -27.5 \end{array}$	+0.3	+16.0	+0.0	+0.0	18.3	64.0	-45.7	None
3	152.926M	30.7	$\begin{gathered} +0.5 \\ -27.4 \end{gathered}$	+0.8	+15.3	+0.1	+0.0	20.0	67.7	-47.7	None
4	188.208M	29.5	$\begin{array}{r} +0.6 \\ -27.5 \end{array}$	+1.1	+16.5	+0.1	+0.0	20.3	69.5	-49.2	None
5	99.739 M	29.4	$\begin{array}{r} +0.4 \\ -27.3 \end{array}$	+0.8	+10.0	+0.1	+0.0	13.4	64.0	-50.6	None
6	97.692 M	29.8	$\begin{array}{r} +0.4 \\ -27.4 \\ \hline \end{array}$	+0.8	+9.6	+0.1	+0.0	13.3	64.0	-50.7	None
7	96.691 M	30.0	$\begin{array}{r} +0.4 \\ -27.4 \end{array}$	+0.7	+9.4	+0.1	+0.0	13.2	64.0	-50.8	None
8	57.810 M	28.9	$\begin{array}{r} +0.3 \\ -27.4 \end{array}$	$+0.5$	+9.2	+0.1	+0.0	11.6	64.0	-52.4	None
9	86.982M	29.6	$\begin{array}{r} +0.4 \\ -27.5 \end{array}$	+0.6	+7.5	+0.1	+0.0	10.7	64.0	-53.3	None

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Stanford Linear Accelerator Center
RE102 10KHz-18GHz
82840
Radiated Scan

Date: 2/23/2005
Time: 1:32:11 PM
Sequence\#: 0
Tested By: A. Brar

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 1000MHz. 84(spec limit) - 6dB - 22.7 (Antenna Factor) $=55.3 \mathrm{dBuV}$ signal level.
Transducer Legend:

T1 $=20^{\prime}$ Cable Male N to Male N AN None	T2=Cable 2410
T3=2' Cable Male BNC to Male N AN None	T4=AN 0567 SN 1937A03055

T5=SAS-570 Horn Antenna - 2525

10	828.928 M	29.5	+1.4 +19.6	+2.7	+0.5	-27.2	+0.0	26.5	82.5	-56.0	None
11	701.601 M	30.1	+1.4 +18.1	+2.3	+0.4	-27.3	+0.0	25.0	81.1	-56.1	None
12	833.533 M	29.0	+1.5 +19.6	+2.7	+0.5	-27.3	+0.0	26.0	82.6	-56.6	None
13	300.000 M	28.4	+0.8 +12.8	+1.7	+0.3	-27.7	+0.0	16.3	73.6	-57.3	None
14	358.659 M	29.2	+0.8 +13.5	+1.6	+0.2	-27.4	+0.0	17.9	75.2	-57.3	None
15	600.400 M	28.4	+1.2 +17.8	+2.2	+0.3	-27.5	+0.0	22.4	79.7	-57.3	None
16	628.128 M	28.9	+1.2 +17.6	+2.2	+0.4	-27.6	+0.0	22.7	80.1	-57.4	None
17	593.093 M	28.2	+1.2 +17.7	+2.1	+0.3	-27.6	+0.0	21.9	79.6	-57.7	None
18	784.984 M	28.2	+1.5 +18.8	+2.5	+0.5	-27.3	+0.0	24.2	82.0	-57.8	None
19	823.022 M	27.5	+1.4 +19.5	+2.7	+0.5	-27.1	+0.0	24.5	82.5	-58.0	None
20	900.700 M	27.5	+1.6 +20.2	+2.7	+0.5	-27.4	+0.0	25.1	83.2	-58.1	None

CKC Laboratories, Inc. Date: 2/23/2005 Time: 1:32:11 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: None Sequence\#: 0

—— Sweep Data —— 1 -RE102 10KHz-18GHz
Page 81 of 224
Report No.: MIL05-015

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date:
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time:	4:38:2005 PM
Test Type:	Radiated Scan	Sequence\#:	0
Equipment:		Tested By: A. Brar	
Manufacturer:			
Model:			
S/N:			

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:
Path Check Sweep. Signal at 1000MHz. 109 (spec limit) - 6dB - 45.2 (Antenna Factor) $=-49.2 \mathrm{dBm}$ signal level.
Transducer Legend:

Measurement Data: \quad Reading listed by margin.
Test Distance: None

$\#$	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant

CKC Laboratories, Inc. Date: $2 / 23 / 2005$ Time: $4: 38: 28$ PM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: None Sequence\#t: 0

— Sweep Data \quad - RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Stanford Linear Accelerator Center
RE102 10KHz-18GHz
82840
Radiated Scan

Date: 2/23/2005
Time: 4:39:45 PM
Sequence\#: 0
Tested By: A. Brar

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 1000MHz. 109 (spec limit) - 6dB - 45.2 (Antenna Factor) $=-49.2 \mathrm{dBm}$ signal level.
Transducer Legend:

T1 =AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 $1-40 \mathrm{GHz}$	T4=ANP5201 $1-40 \mathrm{GHz}$

Measurement Data:	Reading listed by margin.				Test Distance: None					
\#Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1 1551.793M	15.6	-30.3	+25.4	+1.0	+1.0	+0.0	12.7	14.0	-1.3	None
21583.352 M	15.4	-30.3	+25.5	+1.0	+1.0	+0.0	12.6	14.0	-1.4	None
31562.541 M	15.1	-30.3	+25.4	+1.0	+1.0	+0.0	12.2	14.0	-1.8	None
41591.490 M	15.0	-30.3	+25.5	+1.0	+1.0	+0.0	12.2	14.0	-1.8	None
51598.763 M	14.9	-30.3	+25.6	+1.0	+1.0	+0.0	12.2	14.0	-1.8	None
61595.265 M	14.8	-30.3	+25.6	+1.0	+1.0	+0.0	12.1	14.0	-1.9	None
7 1595.436M	14.8	-30.3	+25.6	+1.0	+1.0	+0.0	12.1	14.0	-1.9	None
81599.817 M	14.8	-30.3	+25.6	+1.0	+1.0	+0.0	12.1	14.0	-1.9	None
91551.297 M	14.9	-30.3	+25.4	+1.0	+1.0	+0.0	12.0	14.0	-2.0	None
$10 \quad 1558.625 \mathrm{M}$	14.9	-30.3	+25.4	+1.0	+1.0	+0.0	12.0	14.0	-2.0	None

11	1561.616M	14.9	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	None
12	1585.968M	14.8	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	None
13	1592.670M	14.7	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	None
14	1595.749M	14.7	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	None
15	1552.126M	14.8	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.9	14.0	-2.1	None
16	1556.817M	14.8	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.9	14.0	-2.1	None
17	1576.565M	14.7	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.9	14.0	-2.1	None
18	1584.532M	14.7	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.9	14.0	-2.1	None
19	1599.229M	14.6	-30.3	+25.6	+1.0	+1.0	$+0.0$	11.9	14.0	-2.1	None
20	1555.925M	14.7	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.8	14.0	-2.2	None
21	1598.353M	14.5	-30.3	+25.6	+1.0	+1.0	$+0.0$	11.8	14.0	-2.2	None
22	1559.345M	14.6	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.7	14.0	-2.3	None
23	1569.069M	14.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.7	14.0	-2.3	None
24	1580.529M	14.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.7	14.0	-2.3	None
25	1582.334M	14.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.7	14.0	-2.3	None
26	1586.385M	14.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.7	14.0	-2.3	None
27	1586.466M	14.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.7	14.0	-2.3	None
28	1590.184M	14.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.7	14.0	-2.3	None
29	1556.916M	14.5	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.6	14.0	-2.4	None
30	1574.778M	14.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.6	14.0	-2.4	None
31	1575.652M	14.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.6	14.0	-2.4	None
32	1578.307M	14.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.6	14.0	-2.4	None

Page 85 of 224
Report No.: MIL05-015

33	1585.166M	14.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.6	14.0	-2.4	None
34	1598.488M	14.3	-30.3	+25.6	+1.0	+1.0	+0.0	11.6	14.0	-2.4	None
35	1560.748M	14.4	-30.3	+25.4	+1.0	+1.0	+0.0	11.5	14.0	-2.5	None
36	1560.940M	14.4	-30.3	+25.4	+1.0	+1.0	+0.0	11.5	14.0	-2.5	None
37	1574.523M	14.3	-30.3	+25.5	+1.0	+1.0	+0.0	11.5	14.0	-2.5	None
38	1585.845M	14.3	-30.3	+25.5	+1.0	+1.0	+0.0	11.5	14.0	-2.5	None
39	1586.115M	14.3	-30.3	+25.5	+1.0	+1.0	+0.0	11.5	14.0	-2.5	None
40	1595.734M	14.2	-30.3	+25.6	+1.0	+1.0	+0.0	11.5	14.0	-2.5	None
41	1596.794M	14.2	-30.3	+25.6	+1.0	+1.0	+0.0	11.5	14.0	-2.5	None
42	1558.940M	14.3	-30.3	+25.4	+1.0	+1.0	+0.0	11.4	14.0	-2.6	None
43	1560.817M	14.3	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.4	14.0	-2.6	None
44	1560.967M	14.3	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.4	14.0	-2.6	None
45	1566.096M	14.2	-30.3	+25.5	+1.0	+1.0	+0.0	11.4	14.0	-2.6	None
46	1584.493M	14.2	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.4	14.0	-2.6	None
47	1585.082M	14.2	-30.3	+25.5	+1.0	+1.0	+0.0	11.4	14.0	-2.6	None
48	1586.082M	14.2	-30.3	+25.5	+1.0	+1.0	+0.0	11.4	14.0	-2.6	None
49	1586.568M	14.2	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.4	14.0	-2.6	None
50	1597.451M	14.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	11.4	14.0	-2.6	None
51	1598.726M	14.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	11.4	14.0	-2.6	None
52	1599.871M	14.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	11.4	14.0	-2.6	None
53	1599.949M	14.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	11.4	14.0	-2.6	None
54	1551.405M	14.2	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None

Page 86 of 224
Report No.: MIL05-015

55	1558.811M	14.2	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
56	1559.135M	14.2	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
57	1562.090M	14.2	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
58	1562.955M	14.2	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
59	1564.703M	14.2	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
60	1565.057M	14.1	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
61	1578.935M	14.1	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
62	1584.166M	14.1	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
63	1587.247M	14.1	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
64	1590.241M	14.1	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.3	14.0	-2.7	None
65	1560.634M	14.1	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
66	1563.427M	14.1	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
67	1565.147M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
68	1565.439M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
69	1566.381M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
70	1567.613M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
71	1571.021M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
72	1572.364M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
73	1572.808M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
74	1572.838M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
75	1573.973M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
76	1575.679M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None

Page 87 of 224
Report No.: MIL05-015

77	1577.484M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
78	1578.004M	14.0	-30.3	+25.5	+1.0	+1.0	+0.0	11.2	14.0	-2.8	None
79	1578.094M	14.0	-30.3	+25.5	+1.0	+1.0	+0.0	11.2	14.0	-2.8	None
80	1584.049M	14.0	-30.3	+25.5	+1.0	+1.0	+0.0	11.2	14.0	-2.8	None
81	1590.637M	14.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.2	14.0	-2.8	None
82	1592.238M	13.9	-30.3	+25.6	+1.0	+1.0	+0.0	11.2	14.0	-2.8	None
83	1597.659M	13.9	-30.3	+25.6	+1.0	+1.0	+0.0	11.2	14.0	-2.8	None
84	1551.495M	14.0	-30.3	+25.4	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
85	1559.276M	14.0	-30.3	+25.4	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
86	1564.066M	14.0	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.1	14.0	-2.9	None
87	1566.958M	13.9	-30.3	+25.5	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
88	1567.892M	13.9	-30.3	+25.5	+1.0	+1.0	$+0.0$	11.1	14.0	-2.9	None
89	1575.138M	13.9	-30.3	+25.5	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
90	1576.631M	13.9	-30.3	+25.5	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
91	1584.124M	13.9	-30.3	+25.5	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
92	1590.292M	13.9	-30.3	+25.5	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
93	1590.448M	13.9	-30.3	+25.5	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
94	1590.881M	13.9	-30.3	+25.5	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
95	1595.764M	13.8	-30.3	+25.6	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
96	1596.755M	13.8	-30.3	+25.6	+1.0	+1.0	+0.0	11.1	14.0	-2.9	None
97	1555.982M	13.9	-30.3	+25.4	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
98	1559.631M	13.9	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.0	14.0	-3.0	None

Page 88 of 224
Report No.: MIL05-015

99	1560.910 M	13.9	-30.3	+25.4	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
100	1561.778 M	13.9	-30.3	+25.4	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
101	1566.054 M	13.8	-30.3	+25.5	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
102	1566.922 M	13.8	-30.3	+25.5	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
103	1567.501 M	13.8	-30.3	+25.5	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
104	1579.541 M	13.8	-30.3	+25.5	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
105	1579.842 M	13.8	-30.3	+25.5	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
106	1583.535 M	13.8	-30.3	+25.5	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
107	1583.709 M	13.8	-30.3	+25.5	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
108	1587.415 M	13.8	-30.3	+25.5	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
109	1597.376 M	13.7	-30.3	+25.6	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
110	1597.529 M	13.7	-30.3	+25.6	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
111	1598.554 M	13.7	-30.3	+25.6	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
112	1598.829 M	13.7	-30.3	+25.6	+1.0	+1.0	+0.0	11.0	14.0	-3.0	None
113	1552.048 M	13.8	-30.3	+25.4	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
114	1559.207 M	13.8	-30.3	+25.4	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
115	1567.306 M	13.7	-30.3	+25.5	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
116	1572.222 M	13.7	-30.3	+25.5	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
117	1572.691 M	13.7	-30.3	+25.5	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
118	1585.148 M	13.7	-30.3	+25.5	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
119	1587.851 M	13.7	-30.3	+25.5	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
120	1588.205 M	13.7	-30.3	+25.5	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None

Page 89 of 224
Report No.: MIL05-015

121	1588.638 M	13.7	-30.3	+25.5	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
122	1597.397 M	13.6	-30.3	+25.6	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
123	1599.824 M	13.6	-30.3	+25.6	+1.0	+1.0	+0.0	10.9	14.0	-3.1	None
124	1559.586 M	13.7	-30.3	+25.4	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
125	1562.436 M	13.7	-30.3	+25.4	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
126	1571.226 M	13.6	-30.3	+25.5	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
127	1571.475 M	13.6	-30.3	+25.5	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
128	1572.147 M	13.6	-30.3	+25.5	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
129	1578.667 M	13.6	-30.3	+25.5	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
130	1578.812 M	13.6	-30.3	+25.5	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
131	1583.818 M	13.6	-30.3	+25.5	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
132	1592.100 M	13.5	-30.3	+25.6	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
133	1597.758 M	13.5	-30.3	+25.6	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
134	1597.866 M	13.5	-30.3	+25.6	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
135	1598.535 M	13.5	-30.3	+25.6	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
136	1598.638 M	13.5	-30.3	+25.6	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
137	1599.854 M	13.5	-30.3	+25.6	+1.0	+1.0	+0.0	10.8	14.0	-3.2	None
138	1562.835 M	13.6	-30.3	+25.4	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
139	1563.649 M	13.6	-30.3	+25.4	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
140	1571.565 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
1411575.793 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None	
142	1576.024 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None

Page 90 of 224
Report No.: MIL05-015

143	1576.054 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
144	1576.186 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
145	1578.544 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
146	1587.938 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
147	1587.974 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
148	1588.163 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
149	1590.397 M	13.5	-30.3	+25.5	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
150	1596.391 M	13.4	-30.3	+25.6	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
151	1597.571 M	13.4	-30.3	+25.6	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
152	1598.501 M	13.4	-30.3	+25.6	+1.0	+1.0	+0.0	10.7	14.0	-3.3	None
153	1552.105 M	13.5	-30.3	+25.4	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
154	1561.204 M	13.5	-30.3	+25.4	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
155	1567.234 M	13.4	-30.3	+25.5	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
156	1567.384 M	13.4	-30.3	+25.5	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
157	1572.481 M	13.4	-30.3	+25.5	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
158	1576.345 M	13.4	-30.3	+25.5	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
159	1577.184 M	13.4	-30.3	+25.5	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
160	1579.103 M	13.4	-30.3	+25.5	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
161	1588.307 M	13.4	-30.3	+25.5	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
162	1596.193 M	13.3	-30.3	+25.6	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
163	1597.286 M	13.3	-30.3	+25.6	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
164	1597.713 M	13.3	-30.3	+25.6	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None

Page 91 of 224
Report No.: MIL05-015

165	1598.800 M	13.3	-30.3	+25.6	+1.0	+1.0	+0.0	10.6	14.0	-3.4	None
166	1551.943 M	13.4	-30.3	+25.4	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
167	1563.478 M	13.4	-30.3	+25.4	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
168	1564.550 M	13.4	-30.3	+25.4	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
169	1565.841 M	13.3	-30.3	+25.5	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
170	1566.682 M	13.3	-30.3	+25.5	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
171	1573.315 M	13.3	-30.3	+25.5	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
1721573.685 M	13.3	-30.3	+25.5	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None	
173	1577.478 M	13.3	-30.3	+25.5	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
174	1583.757 M	13.3	-30.3	+25.5	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
175	1585.941 M	13.3	-30.3	+25.5	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
176	1586.499 M	13.3	-30.3	+25.5	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
177	1592.190 M	13.2	-30.3	+25.6	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
178	1596.538 M	13.2	-30.3	+25.6	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
179	1597.635 M	13.2	-30.3	+25.6	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
180	1597.743 M	13.2	-30.3	+25.6	+1.0	+1.0	+0.0	10.5	14.0	-3.5	None
181	1551.559 M	13.3	-30.3	+25.4	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
182	1552.006 M	13.3	-30.3	+25.4	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
183	1567.144 M	13.2	-30.3	+25.5	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
184	1575.261 M	13.2	-30.3	+25.5	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
185	1576.066 M	13.2	-30.3	+25.5	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
186	1576.796 M	13.2	-30.3	+25.5	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None

Page 92 of 224
Report No.: MIL05-015

187	1579.391 M	13.2	-30.3	+25.5	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
188	1584.025 M	13.2	-30.3	+25.5	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
189	1584.232 M	13.2	-30.3	+25.5	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
190	1584.313 M	13.2	-30.3	+25.5	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
191	1596.259 M	13.1	-30.3	+25.6	+1.0	+1.0	+0.0	10.4	14.0	-3.6	None
192	1564.414 M	13.2	-30.3	+25.4	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
193	1566.156 M	13.1	-30.3	+25.5	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
194	1572.679 M	13.1	-30.3	+25.5	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
195	1572.997 M	13.1	-30.3	+25.5	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
196	1573.856 M	13.1	-30.3	+25.5	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
197	1574.018 M	13.1	-30.3	+25.5	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
198	1575.541 M	13.1	-30.3	+25.5	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
199	1578.319 M	13.1	-30.3	+25.5	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
200	1584.385 M	13.1	-30.3	+25.5	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
201	1597.307 M	13.0	-30.3	+25.6	+1.0	+1.0	+0.0	10.3	14.0	-3.7	None
202	1560.682 M	13.1	-30.3	+25.4	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
203	1561.946 M	13.1	-30.3	+25.4	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
204	1564.120 M	13.1	-30.3	+25.4	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
205	1564.324 M	13.1	-30.3	+25.4	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
206	1566.015 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
207	1566.141 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
208	1566.273 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None

Page 93 of 224
Report No.: MIL05-015

209	1567.408 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
210	1572.391 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
211	1573.141 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
212	1573.180 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
213	1579.346 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	None
214	1551.691 M	13.0	-30.3	+25.4	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
215	1567.024 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
216	1572.069 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
217	1572.243 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
218	1573.069 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
219	1576.529 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
220	1576.541 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
221	1576.874 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
222	1578.388 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	None
223	1551.850 M	12.9	-30.3	+25.4	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None
224	1551.901 M	12.9	-30.3	+25.4	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None
225	1567.453 M	12.8	-30.3	+25.5	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None
226	1571.724 M	12.8	-30.3	+25.5	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None
227	1571.934 M	12.8	-30.3	+25.5	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None
228	1577.000 M	12.8	-30.3	+25.5	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None
229	1578.475 M	12.8	-30.3	+25.5	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None
230	1579.316 M	12.8	-30.3	+25.5	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None

Page 94 of 224
Report No.: MIL05-015

231	1583.953 M	12.8	-30.3	+25.5	+1.0	+1.0	+0.0	10.0	14.0	-4.0	None
232	1559.574 M	12.8	-30.3	+25.4	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
233	1562.634 M	12.8	-30.3	+25.4	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
234	1562.712 M	12.8	-30.3	+25.4	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
235	1563.907 M	12.8	-30.3	+25.4	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
236	1564.444 M	12.8	-30.3	+25.4	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
237	1567.423 M	12.7	-30.3	+25.5	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
238	1572.508 M	12.7	-30.3	+25.5	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
239	1576.469 M	12.7	-30.3	+25.5	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
240	1579.193 M	12.7	-30.3	+25.5	+1.0	+1.0	+0.0	9.9	14.0	-4.1	None
241	1559.460 M	12.7	-30.3	+25.4	+1.0	+1.0	+0.0	9.8	14.0	-4.2	None
242	1566.559 M	12.6	-30.3	+25.5	+1.0	+1.0	+0.0	9.8	14.0	-4.2	None
243	1561.087 M	12.6	-30.3	+25.4	+1.0	+1.0	+0.0	9.7	14.0	-4.3	None

244	1566.493 M	12.4	-30.3	+25.5	+1.0	+1.0	+0.0	9.6	14.0	-4.4	None
245	1573.033 M	12.3	-30.3	+25.5	+1.0	+1.0	+0.0	9.5	14.0	-4.5	None

CKC Laboratories, Inc. Date: 2/23/2005 Time: 4:39:45 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: None Sequence\#: 0

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center

Specification:
RE102 10KHz-18GHz
82840
Test Type:
Equipment:
Manufacturer:
Model:
S/N:

Date: 2/23/2005
Time: 4:47:34 PM
Sequence\#: 0
Tested By: A. Brar

Equipment Under Test (* = UUT):
Function \quad Manufacturer \quad Model \# \quad S/N

Support Devices:

Function \quad Manufacturer \quad Model \# \quad S/N

Test Conditions / Notes:
Path Check Sweep. Signal at 1000MHz. 109 (spec limit) - 6dB - 45.2 (Antenna Factor) $=-49.2 \mathrm{dBm}$ signal level.
Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:	Reading listed by margin.				Test Distance: None					
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
11769.063 M	42.2	-30.1	+26.2	+1.1	+1.1	+0.0	40.5	89.0	-48.5	None
21669.385 M	41.8	-30.2	+25.8	+1.0	+1.0	+0.0	39.4	88.4	-49.0	None
31607.942 M	41.5	-30.3	+25.6	+1.0	+1.0	+0.0	38.8	88.0	-49.2	None

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Stanford Linear Accelerator Center
RE102 10KHz-18GHz
82840
Radiated Scan

Date: 2/23/2005
Time: 4:50:09 PM
Sequence\#: 0
Tested By: A. Brar

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 1000MHz. 109 (spec limit) - 6dB - 45.2 (Antenna Factor) $=-49.2 \mathrm{dBm}$ signal level.
Transducer Legend:

T1 =AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4 $=$ ANP5201 $1-40 \mathrm{GHz}$

Measurement Data:	Reading listed by margin.				Test Distance: None					
\#Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
12277.087 M	20.3	-29.7	+27.9	+1.2	+1.2	+0.0	20.9	25.0	-4.1	None
22210.571 M	19.8	-29.4	+27.7	+1.2	+1.2	+0.0	20.5	25.0	-4.5	None
32111.932 M	19.4	-28.8	+27.3	+1.2	+1.2	+0.0	20.3	25.0	-4.7	None
42272.943 M	19.6	-29.7	+27.9	+1.2	+1.2	+0.0	20.2	25.0	-4.8	None
52276.116 M	19.5	-29.7	+27.9	+1.2	+1.2	+0.0	20.1	25.0	-4.9	None
62115.896 M	18.9	-28.8	+27.4	+1.2	+1.2	+0.0	19.9	25.0	-5.1	None
7 2286.076M	19.2	-29.7	+28.0	+1.2	+1.2	+0.0	19.9	25.0	-5.1	None
82207.407 M	19.0	-29.3	+27.7	+1.2	+1.2	+0.0	19.8	25.0	-5.2	None
92216.917 M	19.1	-29.4	+27.7	+1.2	+1.2	$+0.0$	19.8	25.0	-5.2	None
$10 \quad 2199.139 \mathrm{M}$	18.9	-29.3	+27.7	+1.2	+1.2	+0.0	19.7	25.0	-5.3	None

112293.952 M	19.1	-29.8	+28.0	+1.2	+1.2	+0.0	19.7	25.0	-5.3	None
122177.978 M	18.8	-29.2	+27.6	+1.2	+1.2	+0.0	19.6	25.0	-5.4	None
132187.457 M	18.8	-29.2	+27.6	+1.2	+1.2	+0.0	19.6	25.0	-5.4	None
142193.934 M	18.9	-29.3	+27.6	+1.2	+1.2	+0.0	19.6	25.0	-5.4	None
152277.917 M	19.0	-29.7	+27.9	+1.2	+1.2	+0.0	19.6	25.0	-5.4	None
162284.565 M	18.9	-29.7	+28.0	+1.2	+1.2	+0.0	19.6	25.0	-5.4	None
172173.784 M	18.6	-29.1	+27.6	+1.2	+1.2	+0.0	19.5	25.0	-5.5	None
182199.329 M	18.7	-29.3	+27.7	+1.2	+1.2	+0.0	19.5	25.0	-5.5	None
192201.191 M	18.7	-29.3	+27.7	+1.2	+1.2	+0.0	19.5	25.0	-5.5	None
202281.341 M	18.8	-29.7	+28.0	+1.2	+1.2	+0.0	19.5	25.0	-5.5	None
212289.740 M	18.8	-29.7	+28.0	+1.2	+1.2	+0.0	19.5	25.0	-5.5	None
222044.855 M	18.9	-28.9	+27.1	+1.1	+1.2	+0.0	19.4	25.0	-5.6	None
232128.628 M	18.5	-28.9	+27.4	+1.2	+1.2	+0.0	19.4	25.0	-5.6	None
242211.491 M	18.7	-29.4	+27.7	+1.2	+1.2	+0.0	19.4	25.0	-5.6	None
252226.236 M	18.6	-29.4	+27.8	+1.2	+1.2	+0.0	19.4	25.0	-5.6	None
262287.137 M	18.7	-29.7	+28.0	+1.2	+1.2	+0.0	19.4	25.0	-5.6	None
272299.782 M	18.8	-29.8	+28.0	+1.2	+1.2	+0.0	19.4	25.0	-5.6	None
282279.859 M	18.6	-29.7	+28.0	+1.2	+1.2	+0.0	19.3	25.0	-5.7	None

Page 99 of 224
Report No.: MIL05-015

29	2293.004 M	18.7	-29.8	+28.0	+1.2	+1.2	+0.0	19.3	25.0	-5.7	None
30	$2294.189 M$	18.7	-29.8	+28.0	+1.2	+1.2	+0.0	19.3	25.0	-5.7	None

CKC Laboratories, Inc. Date: 2/23/2005 Time: 4:50:09 PM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: None Sequence\#: 0

—— Sweep Data ———RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Stanford Linear Accelerator Center
RE102 10KHz-18GHz
82840
Radiated Scan

Date: 2/23/2005
Time: 4:54:25 PM
Sequence\#: 0
Tested By: A. Brar

S/N:
Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 1000MHz. 109 (spec limit) - 6dB - 45.2 (Antenna Factor) $=-49.2 \mathrm{dBm}$ signal level.
Transducer Legend:

T1 =AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:	Reading listed by margin.				Test Distance: None					
\#Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
117999.310 M	78.9	-29.6	+45.2	+3.6	+4.2	+0.0	102.3	109.0	-6.7	None
210295.990 M	40.3	-27.3	+39.4	+2.6	+3.0	+0.0	58.0	103.8	-45.8	None
313392.080 M	40.4	-30.2	+42.9	+3.0	+3.4	+0.0	59.5	106.3	-46.8	None
410317.010 M	39.0	-27.3	+39.4	+2.6	+3.0	+0.0	56.7	103.9	-47.2	None
513838.530 M	40.0	-30.6	+43.4	+3.1	+3.4	+0.0	59.3	106.6	-47.3	None
612777.470 M	40.0	-29.2	+41.3	+2.9	+3.2	+0.0	58.2	105.8	-47.6	None
714454.140 M	40.1	-30.8	+43.4	+3.2	+3.5	+0.0	59.4	107.0	-47.6	None
8 3240.940M	40.7	-29.1	+30.7	+1.4	+1.5	+0.0	45.2	93.2	-48.0	None
$9 \quad 3902.601 \mathrm{M}$	41.0	-29.5	+32.3	+1.5	+1.6	+0.0	46.9	94.9	-48.0	None
$10 \quad 5480.177 \mathrm{M}$	39.5	-28.3	+35.0	+1.8	+2.0	+0.0	50.0	98.0	-48.0	None

11	12212.900 M	39.3	-28.8	+40.9	+2.8	+3.2	+0.0	57.4	105.4	-48.0	None
12	8654.348 M	37.8	-26.8	+38.3	+2.3	+2.5	+0.0	54.1	102.2	-48.1	None
13	4213.912 M	40.4	-29.7	+32.6	+1.7	+1.7	+0.0	46.7	95.6	-48.9	None
14	5254.952 M	38.7	-28.4	+34.3	+1.8	+2.0	+0.0	48.4	97.6	-49.2	None
15	7199.895 M	38.2	-27.0	+34.8	+2.2	+2.3	+0.0	50.5	100.5	-50.0	None
16	7465.160 M	37.5	-27.1	+35.6	+2.2	+2.4	+0.0	50.6	100.9	-50.3	None
17	17166.850 M	39.0	-29.5	+41.0	+3.5	+4.0	+0.0	58.0	108.6	-50.6	None
18	15453.140 M	40.3	-30.7	+38.6	+3.3	+3.6	+0.0	55.1	107.6	-52.5	None
19	16755.440 M	38.9	-30.1	+38.7	+3.4	+3.9	+0.0	54.8	108.3	-53.5	None
20	16546.230 M	40.2	-30.4	+37.5	+3.3	+3.8	+0.0	54.4	108.2	-53.8	None

CKC Laboratories, Inc. Date: 2/23/2005 Time: 4:54:25 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: None Sequence\#: 0

Page 102 of 224
Report No.: MIL05-015

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170
Customer: Stanford Linear Accelerator Center
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

RE102 10KHz-18GHz
82840
Radiated Scan

Date: 2/23/2005
Time: 4:12:55 PM
Sequence\#: 0
Tested By: A. Brar

S/N:
Equipment Under $\boldsymbol{\text { Test }}$ (* $=$ UUT):

Function	Manufacturer	Model \#	S/N
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Path Check Sweep. Signal at 1000MHz. 109 (spec limit) - 6dB - 45.2 (Antenna Factor) $=-49.2 \mathrm{dBm}$ signal level.
Transducer Legend:

T1 =AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 $1-40 \mathrm{GHz}$	T4 $=$ ANP5201 $1-40 \mathrm{GHz}$

Measurement Data:	Reading listed by margin.				Test Distance: None					
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
11587.698 M	20.8	-30.3	+25.5	+1.0	+1.0	+0.0	18.0	14.0	+4.0	None
21552.753 M	20.7	-30.3	+25.4	+1.0	+1.0	+0.0	17.8	14.0	+3.8	None
31554.354 M	20.5	-30.3	+25.4	+1.0	+1.0	+0.0	17.6	14.0	+3.6	None
4 1597.102M	20.3	-30.3	+25.6	+1.0	+1.0	+0.0	17.6	14.0	+3.6	None
51577.528 M	20.3	-30.3	+25.5	+1.0	+1.0	+0.0	17.5	14.0	+3.5	None
61550.080 M	20.1	-30.3	+25.4	+1.0	+1.0	+0.0	17.2	14.0	+3.2	None
7 1556.657M	19.9	-30.3	+25.4	+1.0	+1.0	+0.0	17.0	14.0	+3.0	None
81562.653 M	19.9	-30.3	+25.4	+1.0	+1.0	+0.0	17.0	14.0	+3.0	None
91557.007 M	19.8	-30.3	+25.4	+1.0	+1.0	$+0.0$	16.9	14.0	+2.9	None
$10 \quad 1568.899 \mathrm{M}$	19.7	-30.3	+25.5	+1.0	+1.0	+0.0	16.9	14.0	+2.9	None

11	1553.724 M	19.7	-30.3	+25.4	+1.0	+1.0	+0.0	16.8	14.0	+2.8	None
121564.464 M	19.7	-30.3	+25.4	+1.0	+1.0	+0.0	16.8	14.0	+2.8	None	
131569.369 M	19.6	-30.3	+25.5	+1.0	+1.0	+0.0	16.8	14.0	+2.8	None	
141562.022 M	19.6	-30.3	+25.4	+1.0	+1.0	+0.0	16.7	14.0	+2.7	None	
151562.112 M	19.4	-30.3	+25.4	+1.0	+1.0	+0.0	16.5	14.0	+2.5	None	
162280.390 M	25.3	-29.7	+28.0	+1.2	+1.2	+0.0	26.0	25.0	+1.0	None	
172188.198 M	24.9	-29.2	+27.6	+1.2	+1.2	+0.0	25.7	25.0	+0.7	None	
182296.395 M	24.9	-29.8	+28.0	+1.2	+1.2	+0.0	25.5	25.0	+0.5	None	
192297.661 M	24.6	-29.8	+28.0	+1.2	+1.2	+0.0	25.2	25.0	+0.2	None	
202281.232 M	24.0	-29.7	+28.0	+1.2	+1.2	+0.0	24.7	25.0	-0.3	None	
212288.170 M	24.0	-29.7	+28.0	+1.2	+1.2	+0.0	24.7	25.0	-0.3	None	
222291.678 M	24.1	-29.8	+28.0	+1.2	+1.2	+0.0	24.7	25.0	-0.3	None	
232016.366 M	24.1	-28.9	+27.0	+1.1	+1.2	+0.0	24.5	25.0	-0.5	None	
242188.018 M	23.7	-29.2	+27.6	+1.2	+1.2	+0.0	24.5	25.0	-0.5	None	
252224.865 M	23.7	-29.4	+27.8	+1.2	+1.2	+0.0	24.5	25.0	-0.5	None	
262232.612 M	23.8	-29.5	+27.8	+1.2	+1.2	+0.0	24.5	25.0	-0.5	None	
272290.606 M	23.9	-29.8	+28.0	+1.2	+1.2	+0.0	24.5	25.0	-0.5	None	
282293.549 M	23.9	-29.8	+28.0	+1.2	+1.2	+0.0	24.5	25.0	-0.5	None	

Page 104 of 224
Report No.: MIL05-015

29	2269.820 M	23.8	-29.7	+27.9	+1.2	+1.2	+0.0	24.4	25.0	-0.6	None
30	2297.252 M	23.8	-29.8	+28.0	+1.2	+1.2	+0.0	24.4	25.0	-0.6	None

CKC Laboratories, Inc. Date: 2/23/2005 Time: 4:12:55 PM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: None Sequence\#t: 0

—— Sweep Data —— $1-$ RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/23/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 1:43:32 PM	
Test Type:	Radiated Scan	Sequence\#: 9	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$.

Transducer Legend:

T1 $=20^{\prime}$ Cable Male N to Male N AN None	T2 $=$ Cable 2410
T3=Bicon503	T4 $=2^{\prime}$ Cable Male BNC to Male N AN None
T5=AN 0567 SN 1937A03055	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	T3 dB	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
1	199.988M	56.4	$\begin{array}{r} +0.6 \\ -27.6 \\ \hline \end{array}$	+1.0	+16.9	+0.1	+0.0	47.4	70.1	-22.7	Vert
2	199.811M	53.1	$\begin{array}{r} +0.6 \\ -27.6 \end{array}$	+1.0	+16.9	+0.1	+0.0	44.1	70.1	-26.0	Vert
3	180.004M	44.3	$\begin{array}{r} +0.6 \\ -27.3 \end{array}$	+1.0	+16.3	+0.2	+0.0	35.1	69.1	-34.0	Vert
4	100.000 M	45.0	$\begin{array}{r} \hline+0.4 \\ -27.3 \end{array}$	+0.8	+10.1	+0.1	$+0.0$	29.1	64.0	-34.9	Vert
5	99.956 M	44.9	$\begin{gathered} +0.4 \\ -27.3 \end{gathered}$	+0.8	+10.1	+0.1	$+0.0$	29.0	64.0	-35.0	Vert
6	160.069M	42.6	$\begin{gathered} +0.5 \\ -27.3 \end{gathered}$	+0.8	+15.6	+0.1	+0.0	32.3	68.1	-35.8	Vert

7	140.046M	41.5	$\begin{array}{r} +0.5 \\ -27.2 \end{array}$	$+0.8$	+14.5	+0.1	$+0.0$	30.2	66.9	-36.7	Vert
8	49.951M	41.3	$\begin{array}{r} +0.2 \\ -27.5 \end{array}$	$+0.5$	+11.6	+0.0	$+0.0$	26.1	64.0	-37.9	Vert
9	120.023 M	39.7	$\begin{gathered} +0.4 \\ -27.4 \end{gathered}$	+0.8	+12.7	+0.1	+0.0	26.3	65.6	-39.3	Vert
10	196.793M	39.3	$\begin{array}{r} +0.6 \\ -27.6 \\ \hline \end{array}$	+1.0	+16.8	+0.1	+0.0	30.2	69.9	-39.7	Vert
11	47.146M	37.7	$\begin{array}{r} +0.2 \\ -27.6 \end{array}$	$+0.5$	+13.3	+0.0	+0.0	24.1	64.0	-39.9	Vert
12	45.373 M	36.1	$\begin{array}{r} +0.2 \\ -27.6 \end{array}$	$+0.5$	+14.4	+0.0	+0.0	23.6	64.0	-40.4	Vert
13	46.220 M	36.4	$\begin{array}{r} +0.2 \\ -27.6 \end{array}$	$+0.5$	+13.8	+0.0	+0.0	23.3	64.0	-40.7	Vert
14	158.129 M	37.2	$\begin{array}{r} +0.5 \\ -27.3 \end{array}$	$+0.8$	+15.5	+0.1	$+0.0$	26.8	68.0	-41.2	Vert
15	47.278 M	35.4	$\begin{array}{r} +0.2 \\ -27.6 \\ \hline \end{array}$	$+0.5$	+13.2	+0.0	$+0.0$	21.7	64.0	-42.3	Vert
16	44.394M	33.9	$\begin{array}{r} +0.2 \\ -27.6 \\ \hline \end{array}$	$+0.5$	+14.5	+0.0	$+0.0$	21.5	64.0	-42.5	Vert
17	186.884M	35.6	$\begin{array}{r} +0.6 \\ -27.4 \end{array}$	+1.1	+16.5	+0.2	$+0.0$	26.6	69.5	-42.9	Vert
18	188.208M	35.3	$\begin{array}{r} +0.6 \\ -27.5 \\ \hline \end{array}$	+1.1	+16.5	+0.1	+0.0	26.1	69.5	-43.4	Vert

19	32.223 M	32.0	+0.2	+0.3	+15.1	+0.0	+0.0	20.1	64.0	-43.9	Vert
		-27.5									
20	75.792 M	39.8	+0.3	+0.5	+6.4	+0.1	+0.0	19.6	64.0	-44.4	Vert
		-27.5									

CKC Laboratories, Inc. Date: 2/23/2005 Time: 1:43:32 PM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#t: 9

—— Sweep Data —— 1 -RE102 10KHz-18GHz

Page 108 of 224

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1 $=20^{\prime}$ Cable Male N to Male N AN None	T2 $=$ Cable 2410
T3=Bicon503	T4 $=2^{\prime}$ Cable Male BNC to Male N AN None
T5 $=$ AN 0567 SN 1937A03055	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	T2 dB	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	199.953M	54.5	$\begin{array}{r} +0.6 \\ -27.6 \end{array}$	+1.0	+16.9	+0.1	+0.0	45.5	70.1	-24.6	Horiz
2	80.015 M	56.4	$\begin{array}{r} +0.3 \\ -27.5 \end{array}$	+0.6	+6.3	+0.1	+0.0	36.2	64.0	-27.8	Horiz
3	120.023 M	48.6	$\begin{array}{r} \hline+0.4 \\ -27.4 \end{array}$	+0.8	+12.7	+0.1	+0.0	35.2	65.6	-30.4	Horiz
4	45.558 M	44.1	$\begin{array}{r} \hline+0.2 \\ -27.6 \end{array}$	+0.5	+14.2	+0.0	+0.0	31.4	64.0	-32.6	Horiz
5	180.004M	45.7	$\begin{gathered} +0.6 \\ -27.3 \end{gathered}$	+1.0	+16.3	+0.2	+0.0	36.5	69.1	-32.6	Horiz

6	48.363 M	40.1	$\begin{array}{r} +0.2 \\ -27.5 \end{array}$	+0.5	+12.5	+0.0	+0.0	25.8	64.0	-38.2	Horiz
7	46.564 M	39.0	$\begin{array}{r} +0.2 \\ -27.6 \end{array}$	$+0.5$	+13.6	+0.0	+0.0	25.7	64.0	-38.3	Horiz
8	64.733 M	43.5	$\begin{array}{r} +0.3 \\ -27.5 \end{array}$	+0.5	+7.6	+0.1	$+0.0$	24.5	64.0	-39.5	Horiz
9	100.000 M	40.1	$\begin{array}{r} +0.4 \\ -27.3 \\ \hline \end{array}$	+0.8	+10.1	+0.1	+0.0	24.2	64.0	-39.8	Horiz
10	99.956 M	39.8	$\begin{array}{r} +0.4 \\ -27.3 \end{array}$	+0.8	+10.1	+0.1	+0.0	23.9	64.0	-40.1	Horiz
11	159.981 M	37.1	$\begin{array}{r} +0.5 \\ -27.3 \end{array}$	+0.8	+15.6	+0.1	$+0.0$	26.8	68.1	-41.3	Horiz
12	51.089 M	37.9	$\begin{array}{r} +0.2 \\ -27.5 \end{array}$	$+0.5$	+11.2	+0.0	$+0.0$	22.3	64.0	-41.7	Horiz
13	139.958 M	36.5	$\begin{array}{r} +0.5 \\ -27.2 \end{array}$	+0.8	+14.5	+0.1	$+0.0$	25.2	66.9	-41.7	Horiz
14	59.987 M	39.8	$\begin{array}{r} +0.3 \\ -27.3 \\ \hline \end{array}$	$+0.5$	+8.6	+0.1	+0.0	22.0	64.0	-42.0	Horiz
15	40.002 M	34.3	$\begin{array}{r} +0.3 \\ -27.5 \end{array}$	+0.5	+13.9	+0.0	+0.0	21.5	64.0	-42.5	Horiz
16	63.992 M	40.3	$\begin{array}{r} +0.3 \\ -27.5 \end{array}$	$+0.5$	+7.7	+0.1	$+0.0$	21.4	64.0	-42.6	Horiz
17	195.791M	35.9	$\begin{array}{r} +0.6 \\ -27.6 \\ \hline \end{array}$	+1.0	+16.8	+0.1	$+0.0$	26.8	69.9	-43.1	Horiz
18	62.512 M	39.2	$\begin{array}{r} +0.3 \\ -27.4 \end{array}$	$+0.5$	+8.0	+0.1	+0.0	20.7	64.0	-43.3	Horiz

19	194.765 M	35.3	+0.6	+1.1	+16.7	+0.1	+0.0	26.3	69.8	-43.5	Horiz
			-27.5								
20	89.986 M	38.3	+0.4	+0.7	+8.0	+0.1	+0.0	19.9	64.0	-44.1	Horiz
		-27.6									

CKC Laboratories, Inc. Date: 2/23/2005 Time: 1:47:45 PM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 10

—— Sweep Data —— $1-$ RE102 10KHz-18GHz

Page 111 of 224

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/23/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 1:58:33 PM	
Test Type:	Radiated Scan	Sequence\#: 11	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1 $=20^{\prime}$ Cable Male N to Male N AN None	T2=Cable 2410
T3 $=2^{\prime}$ Cable Male BNC to Male N AN None	T4=AN 0567 SN 1937A03055

6	400.200 M	60.0	+1.0 +13.3	+1.7	+0.3	-27.6	+0.0	48.7	76.1	-27.4	Horiz
7	500.000 M	58.3	+1.1 +16.9	+1.8	+0.3	-27.7	+0.0	50.7	78.1	-27.4	Horiz
8	580.080 M	58.4	+1.1 +17.4	+2.0	+0.3	-27.7	+0.0	51.5	79.4	-27.9	Horiz
9	720.020 M	58.1	+1.4 +18.2	+2.4	+0.4	-27.3	+0.0	53.2	81.3	-28.1	Horiz
10	960.081 M	56.3	+1.6 +22.0	+2.9	+0.5	-27.6	+0.0	55.7	83.8	-28.1	Horiz
11	679.980 M	57.8	+1.3 +18.1	+2.3	+0.5	-27.4	+0.0	52.6	80.8	-28.2	Horiz
12	640.040 M	57.3	+1.3 +17.7	+2.2	+0.4	-27.6	+0.0	51.3	80.3	-29.0	Horiz
13	660.060 M	56.9	+1.3 +17.9	+2.2	+0.4	-27.4	+0.0	51.3	80.5	-29.2	Horiz
14	999.901 M	53.8	+1.7 +22.7	+2.9	+0.6	-27.4	+0.0	54.3	84.2	-29.9	Horiz
15	700.500 M	55.8	+1.4 +18.1	+2.3	+0.4	-27.3	+0.0	50.7	81.0	-30.3	Horiz
16	779.979 M	55.6	+1.5 +19.0	+2.5	+0.5	-27.4	+0.0	51.7	82.0	-30.3	Horiz
17	759.959 M	56.1	+1.4 +18.3	+2.5	+0.4	-27.4	+0.0	51.3	81.8	-30.5	Horiz
18	379.980 M	56.7	+0.9 +13.2	+1.6	+0.3	-27.9	+0.0	44.8	75.7	-30.9	Horiz

19	500.300 M	54.2	+1.1 +16.9	+1.8	+0.3	-27.7	+0.0	46.6	78.1	-31.5	Horiz
20	839.939 M	53.9	+1.5 +19.7	+2.6	+0.6	-27.4	+0.0	50.9	82.6	-31.7	Horiz

CKC Laboratories, Inc. Date: 2/23/2005 Time: 1:58:33 PM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 11

—— Sweep Data —— $1-$ RE102 10KHz-18GHz

Page 114 of 224

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1 $=20^{\prime}$ Cable Male N to Male N AN None	T2=Cable 2410
T3 $=2^{\prime}$ Cable Male BNC to Male N AN None	T4=AN 0567 SN 1937A03055
T5=SAS-570	

6	440.040 M	62.3	+1.0 +14.7	+1.8	+0.3	-27.8	+0.0	52.3	77.0	-24.7	Vert
7	520.020 M	60.7	+1.1 +16.9	+1.9	+0.3	-27.8	+0.0	53.1	78.4	-25.3	Vert
8	379.980 M	61.7	+0.9 +13.2	+1.6	+0.3	-27.9	+0.0	49.8	75.7	-25.9	Vert
9	500.000 M	59.3	+1.1 +16.9	+1.8	+0.3	-27.7	+0.0	51.7	78.1	-26.4	Vert
10	359.960 M	59.6	+0.8 +13.5	+1.6	+0.2	-27.3	+0.0	48.4	75.2	-26.8	Vert
11	419.920 M	60.8	+1.1 +13.7	+1.7	+0.4	-27.9	+0.0	49.8	76.6	-26.8	Vert
12	840.039 M	58.7	+1.5 +19.7	+2.6	+0.6	-27.4	+0.0	55.7	82.6	-26.9	Vert
13	479.980 M	57.5	+1.0 +17.0	+1.8	+0.3	-27.9	+0.0	49.7	77.7	-28.0	Vert
14	660.060 M	57.0	+1.3 +17.9	+2.2	+0.4	-27.4	+0.0	51.4	80.5	-29.1	Vert
15	500.300 M	56.4	+1.1 +16.9	+1.8	+0.3	-27.7	+0.0	48.8	78.1	-29.3	Vert
16	700.000 M	55.6	+1.4 +18.1	+2.3	+0.4	-27.3	+0.0	50.5	81.0	-30.5	Vert
17	779.979 M	54.7	+1.5 +19.0	+2.5	+0.5	-27.4	+0.0	50.8	82.0	-31.2	Vert
18	540.140 M	55.5	+1.1 +16.3	+2.0	+0.3	-27.8	+0.0	47.4	78.8	-31.4	Vert

19	320.020 M	54.3	+0.9 +13.2	+1.4	+0.3	-27.6	+0.0	42.5	74.2	-31.7	Vert
20	639.940 M	53.8	+1.3	+2.2	+0.4	-27.6	+0.0	47.8	80.3	-32.5	Vert

CKC Laboratories, Inc. Date: 2/23/2005 Time: 2:05:59 PM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 12

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/23/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 5:03:38 PM	
Test Type:	Radiated Scan	Sequence\#: 13	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:
$\#$ Freq MHz Rdng $\mathrm{dB} \mu \mathrm{V}$ T 1 dB T 2 dB T 3 dB T 4 dB Dist Table Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ Margin dB Polar Ant 1 1179.867 M 56.9 -29.7 +24.4 +0.9 +0.9 +0.0 53.4 85.6 -32.2 Horiz 2 1000.000 M 55.8 -29.7 +23.8 +0.8 +0.8 +0.0 51.5 84.2 -32.7 Horiz 3 1119.859 M 53.4 -29.7 +24.2 +0.9 +0.8 +0.0 49.6 85.2 -35.6 Horiz 4 1300.375 M 53.9 -29.7 +24.7 +1.0 +0.9 +0.0 50.8 86.5 -35.7 Horiz 5 1159.661 M 53.2 -29.7 +24.3 +0.9 +0.9 +0.0 49.6 85.5 -35.9 Horiz 6 $1339.963 M$ 53.7 -29.7 +24.8 +1.0 +0.9 +0.0 50.7 86.7 -36.0 Horiz

7	1339.149M	53.4	-29.7	+24.8	+1.0	+0.9	+0.0	50.4	86.7	-36.3	Horiz
8	1080.063 M	51.3	-29.7	+24.1	+0.9	+0.8	+0.0	47.4	84.8	-37.4	Horiz
9	1199.527 M	51.9	-29.7	+24.4	+0.9	+0.9	+0.0	48.4	85.8	-37.4	Horiz
10	1020.291M	50.7	-29.7	+23.9	+0.8	+0.8	+0.0	46.5	84.3	-37.8	Horiz
11	1320.035 M	51.0	-29.7	+24.8	+1.0	+0.9	+0.0	48.0	86.6	-38.6	Horiz
12	1039.796M	48.5	-29.7	+23.9	+0.9	+0.9	+0.0	44.5	84.5	-40.0	Horiz
13	1219.551 M	48.6	-29.7	+24.5	+0.9	+0.9	+0.0	45.2	85.9	-40.7	Horiz
14	1500.071 M	49.8	-30.3	+25.2	+1.0	+1.0	$+0.0$	46.7	87.7	-41.0	Horiz
15	1520.296M	49.8	-30.3	+25.3	+1.0	+1.0	+0.0	46.8	87.8	-41.0	Horiz
16	1359.766M	48.7	-29.7	+24.9	+1.0	+0.9	+0.0	45.8	86.9	-41.1	Horiz
17	1420.017M	48.9	-30.0	+25.0	+1.0	+1.0	+0.0	45.9	87.2	-41.3	Horiz
18	1100.511M	47.3	-29.7	+24.1	+0.9	+0.8	+0.0	43.4	85.0	-41.6	Horiz
19	1259.599M	47.9	-29.7	+24.6	+0.9	+0.9	+0.0	44.6	86.2	-41.6	Horiz
20	1480.268M	48.8	-30.3	+25.2	+1.0	+1.0	+0.0	45.7	87.6	-41.9	Horiz
21	1140.150M	46.8	-29.7	+24.3	+0.9	+0.9	+0.0	43.2	85.3	-42.1	Horiz
22	1379.990M	46.3	-29.8	+24.9	+1.0	+1.0	+0.0	43.4	87.0	-43.6	Horiz
23	1459.623M	47.0	-30.2	+25.1	+1.0	+1.0	$+0.0$	43.9	87.5	-43.6	Horiz
24	1399.793M	46.2	-29.8	+25.0	+1.0	+1.0	+0.0	43.4	87.1	-43.7	Horiz
25	1240.485M	45.4	-29.7	+24.5	+0.9	+0.9	+0.0	42.0	86.0	-44.0	Horiz

Page 119 of 224
Report No.: MIL05-015

26	1533.146 M	43.5	-30.3	+25.3	+1.0	+1.0	+0.0	40.5	87.9	-47.4	Horiz
27	1539.677 M	43.2	-30.3	+25.4	+1.0	+1.0	+0.0	40.3	87.9	-47.6	Horiz

CKC Laboratories, Inc. Date: 2/23/2005 Time: 5:03:38 PM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 13

—— Sweep Data —— 1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/23/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 5:05:29 PM	
Test Type:	Radiated Scan	Sequence\#: 14	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	S/N

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	$1901 F P$	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:
$\#$ Freq MHz Rdng $\mathrm{dB} \mu \mathrm{V}$ T 1 dB T 2 dB T 3 dB T 4 dB Dist Table Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ Margin dB Polar Ant 1 1599.930 M 31.6 -30.3 +25.6 +1.0 +1.0 +0.0 28.9 14.0 +14.9 Horiz 2 1559.874 M 30.7 -30.3 +25.4 +1.0 +1.0 +0.0 27.8 14.0 +13.8 Horiz 3 1559.913 M 30.5 -30.3 +25.4 +1.0 +1.0 +0.0 27.6 14.0 +13.6 Horiz 4 1559.964 M 30.4 -30.3 +25.4 +1.0 +1.0 +0.0 27.5 14.0 +13.5 Horiz 5 1559.997 M 30.4 -30.3 +25.4 +1.0 +1.0 +0.0 27.5 14.0 +13.5 Horiz 6 1560.078 M 30.3 -30.3 +25.4 +1.0 +1.0 +0.0 27.4 14.0 +13.4 Horiz

| 7 | 1560.132 M | 30.2 | -30.3 | +25.4 | +1.0 | +1.0 | +0.0 | 27.3 | 14.0 | +13.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Horiz

Page 122 of 224
Report No.: MIL05-015

29	1579.833M	19.2	-30.3	+25.5	+1.0	+1.0	$+0.0$	16.4	14.0	+2.4	Horiz
30	1597.442M	18.8	-30.3	+25.6	+1.0	+1.0	$+0.0$	16.1	14.0	+2.1	Horiz
31	1598.880M	18.8	-30.3	+25.6	+1.0	+1.0	$+0.0$	16.1	14.0	+2.1	Horiz
32	1598.823M	18.7	-30.3	+25.6	+1.0	+1.0	$+0.0$	16.0	14.0	+2.0	Horiz
33	1580.382M	18.6	-30.3	+25.5	+1.0	+1.0	$+0.0$	15.8	14.0	+1.8	Horiz
34	1558.994M	18.6	-30.3	+25.4	+1.0	+1.0	$+0.0$	15.7	14.0	+1.7	Horiz
35	1580.421M	18.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	15.2	14.0	+1.2	Horiz
36	1580.571M	17.7	-30.3	+25.5	+1.0	+1.0	$+0.0$	14.9	14.0	+0.9	Horiz
37	1558.568M	17.1	-30.3	+25.4	+1.0	+1.0	$+0.0$	14.2	14.0	$+0.2$	Horiz
38	1558.541M	16.9	-30.3	+25.4	+1.0	+1.0	$+0.0$	14.0	14.0	$+0.0$	Horiz
39	1581.043M	16.8	-30.3	+25.5	+1.0	+1.0	$+0.0$	14.0	14.0	$+0.0$	Horiz
40	1597.391M	16.6	-30.3	+25.6	+1.0	+1.0	$+0.0$	13.9	14.0	-0.1	Horiz
41	1558.670M	16.6	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.7	14.0	-0.3	Horiz
42	1558.610M	16.5	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.6	14.0	-0.4	Horiz
43	1598.232M	16.3	-30.3	+25.6	+1.0	+1.0	$+0.0$	13.6	14.0	-0.4	Horiz
44	1598.267M	16.3	-30.3	+25.6	+1.0	+1.0	$+0.0$	13.6	14.0	-0.4	Horiz
45	1558.408M	16.4	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.5	14.0	-0.5	Horiz
46	1561.574M	16.3	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.4	14.0	-0.6	Horiz
47	1558.360M	16.2	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.3	14.0	-0.7	Horiz
48	1596.598M	16.0	-30.3	+25.6	+1.0	+1.0	$+0.0$	13.3	14.0	-0.7	Horiz
49	1558.580M	16.1	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.2	14.0	-0.8	Horiz
50	1561.865M	16.1	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.2	14.0	-0.8	Horiz

Page 123 of 224
Report No.: MIL05-015

51	1579.403M	16.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	13.2	14.0	-0.8	Horiz
52	1551.835M	16.0	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.1	14.0	-0.9	Horiz
53	1561.429M	15.9	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.0	14.0	-1.0	Horiz
54	1598.010M	15.7	-30.3	+25.6	+1.0	+1.0	$+0.0$	13.0	14.0	-1.0	Horiz
55	1562.072M	15.8	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.9	14.0	-1.1	Horiz
56	1598.137M	15.6	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.9	14.0	-1.1	Horiz
57	1557.670M	15.7	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.8	14.0	-1.2	Horiz
58	1575.060M	15.6	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.8	14.0	-1.2	Horiz
59	1558.192M	15.6	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.7	14.0	-1.3	Horiz
60	1557.505M	15.5	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.6	14.0	-1.4	Horiz
61	1557.868M	15.5	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.6	14.0	-1.4	Horiz
62	1594.523M	15.3	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.6	14.0	-1.4	Horiz
63	1565.610M	15.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.5	14.0	-1.5	Horiz
64	1579.328M	15.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.5	14.0	-1.5	Horiz
65	1591.157M	15.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.5	14.0	-1.5	Horiz
66	1597.629M	15.2	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.5	14.0	-1.5	Horiz
67	1597.767M	15.2	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.5	14.0	-1.5	Horiz
68	1555.246M	15.3	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.4	14.0	-1.6	Horiz
69	1558.063M	15.3	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.4	14.0	-1.6	Horiz
70	1579.157M	15.2	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.4	14.0	-1.6	Horiz
71	1591.547M	15.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.4	14.0	-1.6	Horiz
72	1597.571M	15.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.4	14.0	-1.6	Horiz

Page 124 of 224
Report No.: MIL05-015

| 73 | 1597.785 M | 15.1 | -30.3 | +25.6 | +1.0 | +1.0 | +0.0 | 12.4 | 14.0 | -1.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Horiz

Page 125 of 224
Report No.: MIL05-015

96	1565.087 M	14.6	-30.3	+25.5	+1.0	+1.0	+0.0	11.8	14.0	-2.2	Horiz
97	1578.923 M	14.6	-30.3	+25.5	+1.0	+1.0	+0.0	11.8	14.0	-2.2	Horiz
98	1581.325 M	14.6	-30.3	+25.5	+1.0	+1.0	+0.0	11.8	14.0	-2.2	Horiz
99	1573.808 M	14.5	-30.3	+25.5	+1.0	+1.0	+0.0	11.7	14.0	-2.3	Horiz
100	1576.457 M	14.5	-30.3	+25.5	+1.0	+1.0	+0.0	11.7	14.0	-2.3	Horiz

CKC Laboratories, Inc. Date: 2/23/2005 Time: 5:05:29 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 14

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/23/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 5:12:48 PM	
Test Type:	Radiated Scan	Sequence\#: 15	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Casurement Dat			Reading listed by margin.			Test Distance: 1 Meter					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\mathrm{T} 2$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\mathrm{T} 4$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	1600.383M	50.1	-30.3	+25.6	+1.0	+1.0	+0.0	47.4	88.0	-40.6	Horiz
2	1619.991M	45.3	-30.3	+25.7	+1.0	+1.0	+0.0	42.7	88.1	-45.4	Horiz
3	1654.827M	44.2	-30.3	+25.8	+1.0	+1.0	+0.0	41.7	88.3	-46.6	Horiz
4	1616.431M	43.8	-30.3	+25.6	+1.0	+1.0	+0.0	41.1	88.1	-47.0	Horiz
5	1640.475M	43.6	-30.3	+25.7	+1.0	+1.0	+0.0	41.0	88.2	-47.2	Horiz
6	1739.653M	43.1	-30.0	+26.1	+1.1	+1.1	+0.0	41.4	88.8	-47.4	Horiz

7	$1659.755 M$	42.5	-30.2	+25.8	+1.0	+1.0	+0.0	40.1	88.4	-48.3	Horiz
8	1690.004 M	42.3	-30.1	+25.9	+1.1	+1.0	+0.0	40.2	88.5	-48.3	Horiz
9	1679.638 M	42.2	-30.1	+25.9	+1.1	+1.0	+0.0	40.1	88.5	-48.4	Horiz

CKC Laboratories, Inc. Date: 2/23/2005 Time: 5:12:48 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 15

- Sweep Data

1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/23/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 5:14:57 PM	
Test Type:	Radiated Scan	Sequence\#: 16	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:	Reading listed by margin.				Test Distance: 1 Meter					
\# \quadFreq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$1 \quad 1797.117 \mathrm{M}$	28.3	-30.2	+26.3	+1.1	+1.1	+0.0	26.6	25.0	+1.6	Horiz
22100.000 M	25.1	-28.7	+27.3	+1.2	+1.2	+0.0	26.1	25.0	+1.1	Horiz
3 2196.486M	25.2	-29.3	+27.7	+1.2	+1.2	+0.0	26.0	25.0	+1.0	Horiz
4 2019.880M	25.1	-28.9	+27.0	+1.1	+1.2	+0.0	25.5	25.0	+0.5	Horiz
52239.749 M	24.3	-29.5	+27.8	+1.2	+1.2	+0.0	25.0	25.0	+0.0	Horiz
62239.769 M	24.3	-29.5	+27.8	+1.2	+1.2	+0.0	25.0	25.0	+0.0	Horiz

72100.300 M	23.8	-28.7	+27.3	+1.2	+1.2	+0.0	24.8	25.0	-0.2	Horiz
82240.200 M	24.0	-29.5	+27.8	+1.2	+1.2	+0.0	24.7	25.0	-0.3	Horiz
92100.140 M	23.4	-28.7	+27.3	+1.2	+1.2	+0.0	24.4	25.0	-0.6	Horiz
101797.147 M	25.7	-30.2	+26.3	+1.1	+1.1	+0.0	24.0	25.0	-1.0	Horiz
112099.820 M	23.0	-28.7	+27.3	+1.2	+1.2	+0.0	24.0	25.0	-1.0	Horiz
122239.959 M	23.2	-29.5	+27.8	+1.2	+1.2	+0.0	23.9	25.0	-1.1	Horiz
132240.500 M	23.0	-29.5	+27.8	+1.2	+1.2	+0.0	23.7	25.0	-1.3	Horiz
142020.080 M	23.2	-28.9	+27.0	+1.1	+1.2	+0.0	23.6	25.0	-1.4	Horiz
152020.320 M	23.1	-28.9	+27.0	+1.1	+1.2	+0.0	23.5	25.0	-1.5	Horiz
162020.020 M	23.0	-28.9	+27.0	+1.1	+1.2	+0.0	23.4	25.0	-1.6	Horiz
172020.250 M	23.0	-28.9	+27.0	+1.1	+1.2	+0.0	23.4	25.0	-1.6	Horiz
182240.350 M	22.7	-29.5	+27.8	+1.2	+1.2	+0.0	23.4	25.0	-1.6	Horiz
192280.480 M	22.5	-29.7	+28.0	+1.2	+1.2	+0.0	23.2	25.0	-1.8	Horiz
202280.330 M	22.2	-29.7	+28.0	+1.2	+1.2	+0.0	22.9	25.0	-2.1	Horiz
212100.380 M	21.7	-28.7	+27.3	+1.2	+1.2	+0.0	22.7	25.0	-2.3	Horiz
222280.000 M	22.0	-29.7	+28.0	+1.2	+1.2	+0.0	22.7	25.0	-2.3	Horiz
231819.870 M	24.1	-30.0	+26.3	+1.1	+1.1	+0.0	22.6	25.0	-2.4	Horiz
241996.807 M	22.4	-29.0	+26.9	+1.1	+1.2	+0.0	22.6	25.0	-2.4	Horiz
252119.699 M	21.5	-28.8	+27.4	+1.2	+1.2	+0.0	22.5	25.0	-2.5	Horiz
222239.449 M	21.8	-29.5	+27.8	+1.2	+1.2	+0.0	22.5	25.0	-2.5	Horiz
27	21.8	-29.5	+27.8	+1.2	+1.2	+0.0	22.5	25.0	-2.5	Horiz

Page 130 of 224
Report No.: MIL05-015

28	2239.419 M	21.7	-29.5	+27.8	+1.2	+1.2	+0.0	22.4	25.0	-2.6	Horiz
29	2259.990 M	21.6	-29.6	+27.9	+1.2	+1.2	+0.0	22.3	25.0	-2.7	Horiz
30	2280.220 M	21.6	-29.7	+28.0	+1.2	+1.2	+0.0	22.3	25.0	-2.7	Horiz

CKC Laboratories, Inc. Date: 2/23/2005 Time: 5:14:57 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 16

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1 =AMP AN00941A 50GHz	T2 $=$ Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4 $=$ ANP5201 1-40GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant	
1	2600.300 M	42.8	-29.3	+29.0	+1.3	+1.3	+0.0	45.1	91.1	-46.0	Horiz
2	10127.820 M	39.0	-27.2	+39.7	+2.6	+3.0	+0.0	57.1	103.7	-46.6	Horiz
3	10317.010 M	39.2	-27.3	+39.4	+2.6	+3.0	+0.0	56.9	103.9	-47.0	Horiz
4	13939.630 M	40.4	-30.7	+43.4	+3.1	+3.4	+0.0	59.6	106.6	-47.0	Horiz
5	14393.080 M	40.6	-30.8	+43.4	+3.2	+3.5	+0.0	59.9	106.9	-47.0	Horiz
6	5269.967 M	40.1	-28.4	+34.4	+1.8	+2.0	+0.0	49.9	97.7	-47.8	Horiz

7	$13297.990 M$	39.7	-30.1	+42.5	+3.0	+3.3	+0.0	58.4	106.2	-47.8	Horiz
8	3720.419 M	41.1	-29.5	+31.8	+1.5	+1.6	+0.0	46.5	94.4	-47.9	Horiz
9	9656.349 M	37.5	-26.8	+39.2	+2.5	+2.8	+0.0	55.2	103.2	-48.0	Horiz
10	17905.470 M	38.0	-29.5	+44.7	+3.6	+4.2	+0.0	61.0	109.0	-48.0	Horiz
11	3248.948 M	40.3	-29.1	+30.7	+1.4	+1.5	+0.0	44.8	93.2	-48.4	Horiz
12	12042.730 M	39.0	-28.7	+40.6	+2.8	+3.2	+0.0	56.9	105.3	-48.4	Horiz
13	8760.454 M	37.1	-26.7	+38.4	+2.4	+2.6	+0.0	53.8	102.3	-48.5	Horiz
14	10685.380 M	37.5	-27.3	+39.2	+2.7	+3.1	+0.0	55.2	104.2	-49.0	Horiz
15	$11132.820 M$	38.3	-28.0	+39.5	+2.7	+3.1	+0.0	55.6	104.6	-49.0	Horiz
16	$6194.891 M$	38.7	-27.8	+34.9	+1.9	+2.1	+0.0	49.8	99.1	-49.3	Horiz
17	$17276.960 M$	38.6	-29.4	+41.6	+3.5	+4.0	+0.0	58.3	108.6	-50.3	Horiz
18	$7187.883 M$	37.7	-27.0	+34.7	+2.2	+2.3	+0.0	49.9	100.5	-50.6	Horiz
19	$8228.923 M$	36.5	-26.7	+36.0	+2.3	+2.5	+0.0	50.6	101.8	-51.2	Horiz
20	$15368.050 M$	40.3	-30.8	+39.3	+3.3	+3.6	+0.0	55.7	107.5	-51.8	Horiz

21	16952.640 M	39.1	-29.8	+39.9	+3.4	+4.0	+0.0	56.6	108.4	-51.8	Horiz
2216171.860 M	39.4	-30.3	+37.9	+3.3	+3.7	+0.0	54.0	108.0	-54.0	Horiz	
23	16322.010 M	38.5	-30.4	+37.6	+3.3	+3.8	+0.0	52.8	108.1	-55.3	Horiz

CKC Laboratories, Inc. Date: 2/23/2005 Time: 5:18:02 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 17

1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 9:50:47 AM	
Test Type:	Radiated Scan	Sequence\#: 18	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:			Reading listed by margin.			Test Distance: 1 Meter					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \hline \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	1797.121M	27.1	-30.2	+26.3	+1.1	+1.1	$+0.0$	25.4	25.0	$+0.4$	Horiz
2	1825.761M	20.7	-30.0	+26.4	+1.1	+1.1	$+0.0$	19.3	25.0	-5.7	Horiz
3	1803.280M	20.8	-30.2	+26.3	+1.1	+1.1	+0.0	19.1	25.0	-5.9	Horiz
4	1819.998M	19.4	-30.0	+26.3	+1.1	+1.1	$+0.0$	17.9	25.0	-7.1	Horiz
5	1819.794M	18.8	-30.0	+26.3	+1.1	+1.1	$+0.0$	17.3	25.0	-7.7	Horiz
6	1819.968M	18.4	-30.0	+26.3	+1.1	+1.1	$+0.0$	16.9	25.0	-8.1	Horiz

7	1899.931M	17.2	-29.3	+26.6	+1.1	+1.1	$+0.0$	16.7	25.0	-8.3	Horiz
8	1819.637M	17.9	-30.0	+26.3	+1.1	+1.1	$+0.0$	16.4	25.0	-8.6	Horiz
9	1899.986M	16.8	-29.3	+26.6	+1.1	+1.1	$+0.0$	16.3	25.0	-8.7	Horiz
10	1819.686M	17.7	-30.0	+26.3	+1.1	+1.1	$+0.0$	16.2	25.0	-8.8	Horiz
11	1819.665M	17.6	-30.0	+26.3	+1.1	+1.1	$+0.0$	16.1	25.0	-8.9	Horiz
12	1899.968M	16.6	-29.3	+26.6	+1.1	+1.1	$+0.0$	16.1	25.0	-8.9	Horiz
13	1819.589M	17.5	-30.0	+26.3	+1.1	+1.1	$+0.0$	16.0	25.0	-9.0	Horiz
14	1825.782M	17.2	-30.0	+26.4	+1.1	+1.1	$+0.0$	15.8	25.0	-9.2	Horiz
15	1899.859M	16.2	-29.3	+26.6	+1.1	+1.1	$+0.0$	15.7	25.0	-9.3	Horiz
16	1899.739M	16.0	-29.3	+26.6	+1.1	+1.1	$+0.0$	15.5	25.0	-9.5	Horiz
17	1899.806M	16.0	-29.3	+26.6	+1.1	+1.1	+0.0	15.5	25.0	-9.5	Horiz
18	1797.003M	17.1	-30.2	+26.3	+1.1	+1.1	$+0.0$	15.4	25.0	-9.6	Horiz
19	1899.706M	15.9	-29.3	+26.6	+1.1	+1.1	$+0.0$	15.4	25.0	-9.6	Horiz
20	1899.956M	15.8	-29.3	+26.6	+1.1	+1.1	$+0.0$	15.3	25.0	-9.7	Horiz
21	1899.888M	15.7	-29.3	+26.6	+1.1	+1.1	$+0.0$	15.2	25.0	-9.8	Horiz
22	1820.557M	16.6	-30.0	+26.3	+1.1	+1.1	$+0.0$	15.1	25.0	-9.9	Horiz
23	1899.913M	15.6	-29.3	+26.6	+1.1	+1.1	$+0.0$	15.1	25.0	-9.9	Horiz
24	1899.905M	15.5	-29.3	+26.6	+1.1	+1.1	$+0.0$	15.0	25.0	-10.0	Horiz
25	1859.948M	15.9	-29.7	+26.5	+1.1	+1.1	$+0.0$	14.9	25.0	-10.1	Horiz
26	1899.678M	15.4	-29.3	+26.6	+1.1	+1.1	$+0.0$	14.9	25.0	-10.1	Horiz
27	1899.622M	15.2	-29.3	+26.6	+1.1	+1.1	$+0.0$	14.7	25.0	-10.3	Horiz

Page 136 of 224
Report No.: MIL05-015

28	1819.442 M	16.1	-30.0	+26.3	+1.1	+1.1	+0.0	14.6	25.0	-10.4	Horiz
29	1889.647 M	15.1	-29.4	+26.6	+1.1	+1.1	+0.0	14.5	25.0	-10.5	Horiz
30	1899.462 M	15.0	-29.3	+26.6	+1.1	+1.1	+0.0	14.5	25.0	-10.5	Horiz

CKC Laboratories, Inc. Date: 2/24/2005 Time: 9:50:47 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 18

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 10:10:15 AM	
Test Type:	Radiated Scan	Sequence\#: 19	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measu	urement Data:		ding li	d by m	gin.			st Distanc	: 1 Meter		
\#	$\begin{array}{r} \text { Freq } \\ \mathrm{MHz} \\ \hline \end{array}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\underset{\mathrm{dB}}{\mathrm{Margin}}$	Polar Ant
1	2020.173M	22.0	-28.9	+27.0	+1.1	+1.2	$+0.0$	22.4	25.0	-2.6	Horiz
2	2020.011M	20.8	-28.9	+27.0	+1.1	+1.2	+0.0	21.2	25.0	-3.8	Horiz
3	1996.800M	18.9	-29.0	+26.9	+1.1	+1.2	$+0.0$	19.1	25.0	-5.9	Horiz
4	2020.654M	17.7	-28.9	+27.0	+1.1	+1.2	$+0.0$	18.1	25.0	-6.9	Horiz
5	1991.740M	17.0	-29.0	+26.9	+1.1	+1.2	+0.0	17.2	25.0	-7.8	Horiz
6	2019.104M	16.8	-28.9	+27.0	+1.1	+1.2	+0.0	17.2	25.0	-7.8	Horiz

72000.257 M	16.0	-29.0	+26.9	+1.1	+1.2	+0.0	16.2	25.0	-8.8	Horiz
8	1999.882 M	15.9	-29.0	+26.9	+1.1	+1.2	+0.0	16.1	25.0	-8.9

Page 139 of 224
Report No.: MIL05-015

28	1998.182 M	14.5	-29.0	+26.9	+1.1	+1.2	+0.0	14.7	25.0	-10.3	Horiz
29	1998.329 M	14.3	-29.0	+26.9	+1.1	+1.2	+0.0	14.5	25.0	-10.5	Horiz
30	2028.834 M	14.1	-28.9	+27.0	+1.1	+1.2	+0.0	14.5	25.0	-10.5	Horiz

CKC Laboratories, Inc. Date: 2/24/2005 Time: 10:10:15 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 19

Sweep Data
1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 10:29:00 AM	
Test Type:	Radiated Scan	Sequence\#: 20	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:	Reading listed by margin.				Test Distance: 1 Meter					
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{array}{r} \mathrm{T} 1 \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
12100.002 M	19.7	-28.7	+27.3	+1.2	+1.2	+0.0	20.7	25.0	-4.3	Horiz
22100.047 M	19.7	-28.7	+27.3	+1.2	+1.2	+0.0	20.7	25.0	-4.3	Horiz
3 2099.846M	19.6	-28.7	+27.3	+1.2	+1.2	+0.0	20.6	25.0	-4.4	Horiz
42099.903 M	19.2	-28.7	+27.3	+1.2	+1.2	+0.0	20.2	25.0	-4.8	Horiz
5 2099.771M	19.1	-28.7	+27.3	+1.2	+1.2	+0.0	20.1	25.0	-4.9	Horiz
62103.840 M	19.1	-28.7	+27.3	+1.2	+1.2	+0.0	20.1	25.0	-4.9	Horiz

72099.924 M	18.9	-28.7	+27.3	+1.2	+1.2	+0.0	19.9	25.0	-5.1	Horiz
82099.963 M	18.8	-28.7	+27.3	+1.2	+1.2	+0.0	19.8	25.0	-5.2	Horiz
92100.675 M	17.4	-28.7	+27.3	+1.2	+1.2	+0.0	18.4	25.0	-6.6	Horiz
102119.912 M	16.9	-28.8	+27.4	+1.2	+1.2	+0.0	17.9	25.0	-7.1	Horiz
112120.092 M	16.9	-28.8	+27.4	+1.2	+1.2	+0.0	17.9	25.0	-7.1	Horiz
122100.648 M	16.7	-28.7	+27.3	+1.2	+1.2	+0.0	17.7	25.0	-7.3	Horiz
132099.323 M	16.6	-28.7	+27.3	+1.2	+1.2	+0.0	17.6	25.0	-7.4	Horiz
142039.970 M	17.0	-28.9	+27.1	+1.1	+1.2	+0.0	17.5	25.0	-7.5	Horiz
152060.556 M	16.8	-28.8	+27.1	+1.2	+1.2	+0.0	17.5	25.0	-7.5	Horiz
162060.096 M	16.7	-28.8	+27.1	+1.2	+1.2	+0.0	17.4	25.0	-7.6	Horiz
172120.674 M	16.3	-28.8	+27.4	+1.2	+1.2	+0.0	17.3	25.0	-7.7	Horiz
182099.375 M	16.1	-28.7	+27.3	+1.2	+1.2	+0.0	17.1	25.0	-7.9	Horiz
192159.508 M	16.3	-29.1	+27.5	+1.2	+1.2	+0.0	17.1	25.0	-7.9	Horiz
202039.898 M	16.5	-28.9	+27.1	+1.1	+1.2	+0.0	17.0	25.0	-8.0	Horiz
212040.216 M	16.4	-28.9	+27.1	+1.1	+1.2	+0.0	16.9	25.0	-8.1	Horiz
222159.999 M	16.1	-29.1	+27.5	+1.2	+1.2	+0.0	16.9	25.0	-8.1	Horiz
232059.937 M	16.1	-28.8	+27.1	+1.2	+1.2	+0.0	16.8	25.0	-8.2	Horiz
242099.401 M	15.8	-28.7	+27.3	+1.2	+1.2	+0.0	16.8	25.0	-8.2	Horiz
252159.992 M	16.0	-29.1	+27.5	+1.2	+1.2	+0.0	16.8	25.0	-8.2	Horiz
262040.333 M	16.2	-28.9	+27.1	+1.1	+1.2	+0.0	16.7	25.0	-8.3	Horiz
27245 M	15.6	-28.7	+27.3	+1.2	+1.2	+0.0	16.6	25.0	-8.4	Horiz

Page 142 of 224
Report No.: MIL05-015

28	$2159.803 M$	15.8	-29.1	+27.5	+1.2	+1.2	+0.0	16.6	25.0	-8.4	Horiz
29	$2159.929 M$	15.7	-29.1	+27.5	+1.2	+1.2	+0.0	16.5	25.0	-8.5	Horiz
30	$2100.867 M$	15.4	-28.7	+27.3	+1.2	+1.2	+0.0	16.4	25.0	-8.6	Horiz

CKC Laboratories, Inc. Date: 2/24/2005 Time: 10:29:00 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 20

-_ Sweep Data
1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 10:46:00 AM	
Test Type:	Radiated Scan	Sequence\#: 21	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measu	rement Data:		ding li	d by m	gin.			st Distanc	: 1 Meter		
\#	$\begin{array}{r} \text { Freq } \\ \mathrm{MHz} \\ \hline \end{array}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\underset{\mathrm{dB}}{\mathrm{Margin}}$	Polar Ant
1	2239.995 M	19.8	-29.5	+27.8	+1.2	+1.2	$+0.0$	20.5	25.0	-4.5	Horiz
2	2239.878 M	19.6	-29.5	+27.8	+1.2	+1.2	+0.0	20.3	25.0	-4.7	Horiz
3	2196.483M	19.2	-29.3	+27.7	+1.2	+1.2	$+0.0$	20.0	25.0	-5.0	Horiz
4	2280.156M	19.2	-29.7	+28.0	+1.2	+1.2	$+0.0$	19.9	25.0	-5.1	Horiz
5	2239.812M	19.0	-29.5	+27.8	+1.2	+1.2	+0.0	19.7	25.0	-5.3	Horiz
6	2279.817M	18.7	-29.7	+28.0	+1.2	+1.2	$+0.0$	19.4	25.0	-5.6	Horiz

72260.007 M	18.1	-29.6	+27.9	+1.2	+1.2	+0.0	18.8	25.0	-6.2	Horiz
82259.926 M	17.1	-29.6	+27.9	+1.2	+1.2	+0.0	17.8	25.0	-7.2	Horiz
92260.400 M	17.1	-29.6	+27.9	+1.2	+1.2	+0.0	17.8	25.0	-7.2	Horiz
102208.290 M	16.9	-29.3	+27.7	+1.2	+1.2	+0.0	17.7	25.0	-7.3	Horiz
112260.121 M	17.0	-29.6	+27.9	+1.2	+1.2	+0.0	17.7	25.0	-7.3	Horiz
122279.462 M	17.0	-29.7	+28.0	+1.2	+1.2	+0.0	17.7	25.0	-7.3	Horiz
132199.630 M	16.8	-29.3	+27.7	+1.2	+1.2	+0.0	17.6	25.0	-7.4	Horiz
142200.098 M	16.8	-29.3	+27.7	+1.2	+1.2	+0.0	17.6	25.0	-7.4	Horiz
152259.802 M	16.9	-29.6	+27.9	+1.2	+1.2	+0.0	17.6	25.0	-7.4	Horiz
162280.529 M	16.9	-29.7	+28.0	+1.2	+1.2	+0.0	17.6	25.0	-7.4	Horiz
172160.000 M	16.7	-29.1	+27.5	+1.2	+1.2	+0.0	17.5	25.0	-7.5	Horiz
182259.727 M	16.7	-29.6	+27.9	+1.2	+1.2	+0.0	17.4	25.0	-7.6	Horiz
192199.870 M	16.5	-29.3	+27.7	+1.2	+1.2	+0.0	17.3	25.0	-7.7	Horiz
202279.420 M	16.6	-29.7	+28.0	+1.2	+1.2	+0.0	17.3	25.0	-7.7	Horiz
212260.139 M	16.5	-29.6	+27.9	+1.2	+1.2	+0.0	17.2	25.0	-7.8	Horiz
222299.922 M	16.5	-29.8	+28.0	+1.2	+1.2	+0.0	17.1	25.0	-7.9	Horiz
232239.241 M	16.2	-29.5	+27.8	+1.2	+1.2	+0.0	16.9	25.0	-8.1	Horiz
242280.616 M	16.2	-29.7	+28.0	+1.2	+1.2	+0.0	16.9	25.0	-8.1	Horiz
252199.708 M	16.0	-29.3	+27.7	+1.2	+1.2	+0.0	16.8	25.0	-8.2	Horiz
262260.421 M	16.1	-29.6	+27.9	+1.2	+1.2	+0.0	16.8	25.0	-8.2	Horiz
270.577 M	16.0	-29.6	+27.9	+1.2	+1.2	+0.0	16.7	25.0	-8.3	Horiz

Page 145 of 224
Report No.: MIL05-015

282260.622 M	15.8	-29.6	+27.9	+1.2	+1.2	+0.0	16.5	25.0	-8.5	Horiz
292280.754 M	15.8	-29.7	+28.0	+1.2	+1.2	+0.0	16.5	25.0	-8.5	Horiz
302280.937 M	15.7	-29.7	+28.0	+1.2	+1.2	+0.0	16.4	25.0	-8.6	Horiz

CKC Laboratories, Inc. Date: 2/24/2005 Time: 10:46:00 AM Stanford Linear Accelerator Center MO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 21

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 11:21:20 AM	
Test Type:	Radiated Scan	Sequence\#: 22	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:	Reading listed by margin.					Test Distance: 1 Meter				
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \end{array}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
11060.244 M	56.2	-29.7	+24.0	+0.9	+0.9	+0.0	52.3	84.7	-32.4	Vert
21179.867 M	55.8	-29.7	+24.4	+0.9	+0.9	+0.0	52.3	85.6	-33.3	Vert
31000.000 M	53.3	-29.7	+23.8	+0.8	+0.8	+0.0	49.0	84.2	-35.2	Vert
41139.835 M	53.2	-29.7	+24.3	+0.9	+0.9	+0.0	49.6	85.3	-35.7	Vert
51099.253 M	51.9	-29.7	+24.1	+0.9	+0.8	+0.0	48.0	85.0	-37.0	Vert
6 1079.749M	51.5	-29.7	+24.1	+0.9	+0.8	+0.0	47.6	84.8	-37.2	Vert
7 1019.819M	49.8	-29.7	+23.9	+0.8	+0.8	+0.0	45.6	84.3	-38.7	Vert

8	1119.859 M	49.7	-29.7	+24.2	+0.9	+0.8	+0.0	45.9	85.2	-39.3	Vert
9	1219.733 M	49.9	-29.7	+24.5	+0.9	+0.9	+0.0	46.5	85.9	-39.4	Vert
10	1199.345 M	48.7	-29.7	+24.4	+0.9	+0.9	+0.0	45.2	85.8	-40.6	Vert
11	1260.145 M	46.1	-29.7	+24.6	+0.9	+0.9	+0.0	42.8	86.2	-43.4	Vert
12	1159.661 M	45.6	-29.7	+24.3	+0.9	+0.9	+0.0	42.0	85.5	-43.5	Vert
13	1339.963 M	46.1	-29.7	+24.8	+1.0	+0.9	+0.0	43.1	86.7	-43.6	Vert
14	1300.193 M	45.9	-29.7	+24.7	+1.0	+0.9	+0.0	42.8	86.5	-43.7	Vert
15	1039.953 M	44.4	-29.7	+23.9	+0.9	+0.9	+0.0	40.4	84.5	-44.1	Vert
16	1133.386 M	44.7	-29.7	+24.2	+0.9	+0.9	+0.0	41.0	85.3	-44.3	Vert
$17 \quad 1240.303 \mathrm{M}$	44.3	-29.7	+24.5	+0.9	+0.9	+0.0	40.9	86.0	-45.1	Vert	
18	1500.071 M	45.6	-30.3	+25.2	+1.0	+1.0	+0.0	42.5	87.7	-45.2	Vert
19	1339.149 M	44.4	-29.7	+24.8	+1.0	+0.9	+0.0	41.4	86.7	-45.3	Vert
20	1279.805 M	43.9	-29.7	+24.7	+1.0	+0.9	+0.0	40.8	86.3	-45.5	Vert
21	1440.241 M	44.9	-30.1	+25.1	+1.0	+1.0	+0.0	41.9	87.4	-45.5	Vert
22	1380.411 M	43.2	-29.8	+24.9	+1.0	+1.0	+0.0	40.3	87.0	-46.7	Vert
23	1419.385 M	43.5	-30.0	+25.0	+1.0	+1.0	+0.0	40.5	87.2	-46.7	Vert
24	1460.255 M	43.6	-30.2	+25.1	+1.0	+1.0	+0.0	40.5	87.5	-47.0	Vert
25	1328.045 M	42.3	-29.7	+24.8	+1.0	+0.9	+0.0	39.3	86.6	-47.3	Vert

Page 148 of 224
Report No.: MIL05-015

26	$1397.686 M$	42.5	-29.8	+25.0	+1.0	+1.0	+0.0	39.7	87.1	-47.4	Vert
27	$1359.976 M$	42.3	-29.7	+24.9	+1.0	+0.9	+0.0	39.4	86.9	-47.5	Vert
28	$1320.581 M$	41.8	-29.7	+24.8	+1.0	+0.9	+0.0	38.8	86.6	-47.8	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 11:21:20 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 22

- Sweep Data

1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 11:23:25 AM	
Test Type:	Radiated Scan	Sequence\#: 23	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data:	Reading listed by margin.					Test Distance: 1 Meter				
\# \quadFreq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1 1599.990M	26.8	-30.3	+25.6	+1.0	+1.0	+0.0	24.1	14.0	+10.1	Vert
21599.703 M	24.7	-30.3	+25.6	+1.0	+1.0	+0.0	22.0	14.0	+8.0	Vert
3 1560.000M	22.3	-30.3	+25.4	+1.0	+1.0	+0.0	19.4	14.0	+5.4	Vert
4 1599.461M	22.1	-30.3	+25.6	+1.0	+1.0	+0.0	19.4	14.0	+5.4	Vert
51599.409 M	20.7	-30.3	+25.6	+1.0	+1.0	+0.0	18.0	14.0	+4.0	Vert
61580.025 M	19.3	-30.3	+25.5	+1.0	+1.0	+0.0	16.5	14.0	+2.5	Vert

7	1579.842 M	18.9	-30.3	+25.5	+1.0	+1.0	+0.0	16.1	14.0	+2.1
8	1579.932 M	18.9	-30.3	+25.5	+1.0	+1.0	+0.0	16.1	14.0	+2.1
9	1580.223 M	18.4	-30.3	+25.5	+1.0	+1.0	+0.0	15.6	14.0	+1.6
10	1580.036 M	18.3	-30.3	+25.5	+1.0	+1.0	+0.0	15.5	14.0	+1.5
11	1580.082 M	17.8	-30.3	+25.5	+1.0	+1.0	+0.0	15.0	14.0	+1.0
121580.118 M	17.8	-30.3	+25.5	+1.0	+1.0	+0.0	15.0	14.0	+1.0	Vert
13	1597.439 M	17.2	-30.3	+25.6	+1.0	+1.0	+0.0	14.5	14.0	+0.5
14	1579.493 M	17.2	-30.3	+25.5	+1.0	+1.0	+0.0	14.4	14.0	+0.4
15	1598.857 M	16.8	-30.3	+25.6	+1.0	+1.0	+0.0	14.1	14.0	+0.1
16	1598.937 M	16.8	-30.3	+25.6	+1.0	+1.0	+0.0	14.1	14.0	+0.1
17	1599.063 M	16.6	-30.3	+25.6	+1.0	+1.0	+0.0	13.9	14.0	-0.1
18	1598.997 M	16.4	-30.3	+25.6	+1.0	+1.0	+0.0	13.7	14.0	-0.3
19	1598.979 M	16.3	-30.3	+25.6	+1.0	+1.0	+0.0	13.6	14.0	-0.4
20	1598.866 M	16.2	-30.3	+25.6	+1.0	+1.0	+0.0	13.5	14.0	-0.5
21	1579.418 M	16.1	-30.3	+25.5	+1.0	+1.0	+0.0	13.3	14.0	-0.7
22	1596.848 M	16.0	-30.3	+25.6	+1.0	+1.0	+0.0	13.3	14.0	-0.7
23	1598.976 M	16.0	-30.3	+25.6	+1.0	+1.0	+0.0	13.3	14.0	-0.7
24	1579.517 M	15.8	-30.3	+25.5	+1.0	+1.0	+0.0	13.0	14.0	-1.0
25	1597.893 M	15.7	-30.3	+25.6	+1.0	+1.0	+0.0	13.0	14.0	-1.0
26	1561.697 M	15.8	-30.3	+25.4	+1.0	+1.0	+0.0	12.9	14.0	-1.1
27	1594.061 M	15.6	-30.3	+25.6	+1.0	+1.0	+0.0	12.9	14.0	-1.1
	Vert									
	Vert									
	Vert									

Page 151 of 224
Report No.: MIL05-015

28	1579.199 M	15.6	-30.3	+25.5	+1.0	+1.0	+0.0	12.8	14.0	-1.2	Vert
29	1587.854 M	15.5	-30.3	+25.5	+1.0	+1.0	+0.0	12.7	14.0	-1.3	Vert
30	1595.478 M	15.4	-30.3	+25.6	+1.0	+1.0	+0.0	12.7	14.0	-1.3	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 11:23:25 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 23

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 11:30:49 AM	
Test Type:	Radiated Scan	Sequence\#: 24	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

6	$1740.063 M$	42.7	-30.0	+26.1	+1.1	+1.1	+0.0	41.0	88.8	-47.8	Vert
7	$1758.693 M$	42.2	-30.0	+26.1	+1.1	+1.1	+0.0	40.5	88.9	-48.4	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 11:30:49 AM Stanford Linear Accelerator Center MO\#: 82840 RE102 $10 \mathrm{KHz}-18 \mathrm{GHz}$ Test Distance: 1 Meter Sequence\#: 24

—— Sweep Data —— 1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		
Work Order \#:	82840	Date	2/24/2005
Test Type:	Radiated Scan	Time	11:33:01 AM
Equipment:	TEM/TPS	Sequence\#	25
Manufacturer:	Stanford Linear Accelerator Center	Tested By	A. Brar
Model:	TEM/TPS		
S / N :	GLA1754		
Equipment Under Test (* = UUT):			
Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

7	1799.970M	24.7	-30.2	+26.3	+1.1	+1.1	$+0.0$	23.0	25.0	-2.0	Vert
8	1800.020M	24.7	-30.2	+26.3	+1.1	+1.1	$+0.0$	23.0	25.0	-2.0	Vert
9	1825.756M	24.4	-30.0	+26.4	+1.1	+1.1	$+0.0$	23.0	25.0	-2.0	Vert
10	1780.030M	24.3	-30.1	+26.2	+1.1	+1.1	$+0.0$	22.6	25.0	-2.4	Vert
11	1900.270M	23.0	-29.3	+26.6	+1.1	+1.1	$+0.0$	22.5	25.0	-2.5	Vert
12	1779.710M	23.9	-30.1	+26.2	+1.1	+1.1	$+0.0$	22.2	25.0	-2.8	Vert
13	2179.729M	21.4	-29.2	+27.6	+1.2	+1.2	$+0.0$	22.2	25.0	-2.8	Vert
14	2180.531M	21.4	-29.2	+27.6	+1.2	+1.2	$+0.0$	22.2	25.0	-2.8	Vert
15	1899.419M	22.5	-29.3	+26.6	+1.1	+1.1	$+0.0$	22.0	25.0	-3.0	Vert
16	1940.130M	22.3	-29.2	+26.7	+1.1	+1.1	$+0.0$	22.0	25.0	-3.0	Vert
17	2179.829M	21.2	-29.2	+27.6	+1.2	+1.2	$+0.0$	22.0	25.0	-3.0	Vert
18	2299.517M	21.4	-29.8	+28.0	+1.2	+1.2	$+0.0$	22.0	25.0	-3.0	Vert
19	1797.127M	23.6	-30.2	+26.3	+1.1	+1.1	$+0.0$	21.9	25.0	-3.1	Vert
20	2260.581M	21.2	-29.6	+27.9	+1.2	+1.2	$+0.0$	21.9	25.0	-3.1	Vert
21	2180.040M	21.0	-29.2	+27.6	+1.2	+1.2	$+0.0$	21.8	25.0	-3.2	Vert
22	1799.530M	23.4	-30.2	+26.3	+1.1	+1.1	$+0.0$	21.7	25.0	-3.3	Vert
23	2299.697M	21.0	-29.8	+28.0	+1.2	+1.2	$+0.0$	21.6	25.0	-3.4	Vert
24	1799.620M	23.1	-30.2	+26.3	+1.1	+1.1	$+0.0$	21.4	25.0	-3.6	Vert
25	2180.090M	20.6	-29.2	+27.6	+1.2	+1.2	$+0.0$	21.4	25.0	-3.6	Vert
26	1840.010M	22.5	-29.9	+26.4	+1.1	+1.1	$+0.0$	21.2	25.0	-3.8	Vert
27	2179.589M	20.4	-29.2	+27.6	+1.2	+1.2	$+0.0$	21.2	25.0	-3.8	Vert

Page 156 of 224
Report No.: MIL05-015

282099.719 M	20.1	-28.7	+27.3	+1.2	+1.2	+0.0	21.1	25.0	-3.9	Vert
292100.110 M	20.1	-28.7	+27.3	+1.2	+1.2	+0.0	21.1	25.0	-3.9	Vert
302180.460 M	20.3	-29.2	+27.6	+1.2	+1.2	+0.0	21.1	25.0	-3.9	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 11:33:01 AM Stanford Linear Accelerator Center MO\#: 82840 RE102 10kHz-18GHz Test Distance: 1 Meter Sequence\#: 25

Sweep Data
1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 11:36:14 AM	
Test Type:	Radiated Scan	Sequence\#: 26	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$.

Transducer Legend:

T1=AMP AN00941A 50GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data	Reading listed by margin.				Test Distance: 1 Meter					
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
114070.760 M	41.0	-30.7	+43.4	+3.1	+3.4	+0.0	60.2	106.7	-46.5	Vert
213563.250 M	40.3	-30.4	+43.4	+3.0	+3.4	+0.0	59.7	106.4	-46.7	Vert
$3 \quad 8736.430 \mathrm{M}$	38.9	-26.7	+38.3	+2.4	+2.6	+0.0	55.5	102.3	-46.8	Vert
410270.960 M	39.2	-27.3	+39.5	+2.6	+3.0	+0.0	57.0	103.8	-46.8	Vert
514562.250 M	40.6	-30.8	+43.2	+3.2	+3.5	+0.0	59.7	107.0	-47.3	Vert
610320.010 M	38.8	-27.3	+39.4	+2.6	+3.0	+0.0	56.5	103.9	-47.4	Vert

7	3069.769 M	40.9	-29.0	+30.3	+1.4	+1.5	+0.0	45.1	92.7	-47.6	Vert
8	9775.468 M	37.3	-26.8	+39.5	+2.6	+2.9	+0.0	55.5	103.4	-47.9	Vert
9	12053.740 M	39.4	-28.7	+40.6	+2.8	+3.2	+0.0	57.3	105.3	-48.0	Vert
10	13237.930 M	39.2	-30.0	+42.3	+3.0	+3.3	+0.0	57.8	106.2	-48.4	Vert
11	17986.300 M	37.3	-29.6	+45.1	+3.6	+4.2	+0.0	60.6	109.0	-48.4	Vert
12	5255.953 M	39.2	-28.4	+34.3	+1.8	+2.0	+0.0	48.9	97.6	-48.7	Vert
13	11169.860 M	38.5	-28.0	+39.5	+2.7	+3.1	+0.0	55.8	104.6	-48.8	Vert
14	4282.981 M	39.9	-29.4	+32.7	+1.7	+1.8	+0.0	46.7	95.7	-49.0	Vert
15	6196.893 M	39.0	-27.8	+34.9	+1.9	+2.1	+0.0	50.1	99.2	-49.1	Vert
16	6337.033 M	38.6	-27.6	+35.0	+2.0	+2.2	+0.0	50.2	99.4	-49.2	Vert
17	17308.990 M	38.3	-29.3	+41.8	+3.5	+4.0	+0.0	58.3	108.6	-50.3	Vert

18	15245.930 M	41.0	-30.9	+40.2	+3.2	+3.5	+0.0	57.0	107.5	-50.5	Vert
19	8214.909 M	37.2	-26.7	+35.8	+2.3	+2.5	+0.0	51.1	101.8	-50.7	Vert
20	15351.040 M	39.4	-30.8	+39.4	+3.3	+3.6	+0.0	54.9	107.5	-52.6	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 11:36:14 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 26

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 1:11:08 PM	
Test Type:	Radiated Scan	Sequence\#: 27	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model \#	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$. Placed foil around JS1 connector slot. Refer to photos.

Transducer Legend:

T1 =AMP AN00941A 50 GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	1559.928 M	26.0	-30.3	+25.4	+1.0	+1.0	+0.0	23.1	14.0	+9.1	Vert
2	1560.234 M	23.0	-30.3	+25.4	+1.0	+1.0	+0.0	20.1	14.0	+6.1	Vert
3	1559.544 M	21.9	-30.3	+25.4	+1.0	+1.0	+0.0	19.0	14.0	+5.0	Vert
4	$1559.523 M$	21.0	-30.3	+25.4	+1.0	+1.0	+0.0	18.1	14.0	+4.1	Vert
5	1579.941 M	19.3	-30.3	+25.5	+1.0	+1.0	+0.0	16.5	14.0	+2.5	Vert

6	1580.112M	18.7	-30.3	+25.5	+1.0	+1.0	+0.0	15.9	14.0	+1.9	Vert
7	1599.957M	18.4	-30.3	+25.6	+1.0	+1.0	+0.0	15.7	14.0	+1.7	Vert
8	1597.442M	18.3	-30.3	+25.6	+1.0	+1.0	+0.0	15.6	14.0	+1.6	Vert
9	1560.742M	17.5	-30.3	+25.4	+1.0	+1.0	+0.0	14.6	14.0	+0.6	Vert
10	1599.733M	17.2	-30.3	+25.6	+1.0	+1.0	+0.0	14.5	14.0	+0.5	Vert
11	1559.249M	17.1	-30.3	+25.4	+1.0	+1.0	+0.0	14.2	14.0	+0.2	Vert
12	1580.262M	16.9	-30.3	+25.5	+1.0	+1.0	+0.0	14.1	14.0	+0.1	Vert
13	1580.409M	16.9	-30.3	+25.5	+1.0	+1.0	+0.0	14.1	14.0	+0.1	Vert
14	1560.907M	16.8	-30.3	+25.4	+1.0	+1.0	+0.0	13.9	14.0	-0.1	Vert
15	1579.511M	16.4	-30.3	+25.5	+1.0	+1.0	+0.0	13.6	14.0	-0.4	Vert
16	1580.364M	16.3	-30.3	+25.5	+1.0	+1.0	+0.0	13.5	14.0	-0.5	Vert
17	1558.799M	16.2	-30.3	+25.4	+1.0	+1.0	+0.0	13.3	14.0	-0.7	Vert
18	1560.766M	16.1	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.2	14.0	-0.8	Vert
19	1568.622M	15.9	-30.3	+25.5	+1.0	+1.0	$+0.0$	13.1	14.0	-0.9	Vert
20	1555.883M	15.7	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.8	14.0	-1.2	Vert
21	1565.574M	15.6	-30.3	+25.5	+1.0	+1.0	+0.0	12.8	14.0	-1.2	Vert
22	1599.331M	15.5	-30.3	+25.6	+1.0	+1.0	+0.0	12.8	14.0	-1.2	Vert
23	1578.340M	15.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.7	14.0	-1.3	Vert
24	1587.256M	15.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.7	14.0	-1.3	Vert
25	1558.934M	15.5	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.6	14.0	-1.4	Vert
26	1561.748M	15.5	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.6	14.0	-1.4	Vert
27	1579.535M	15.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.5	14.0	-1.5	Vert

Page 162 of 224
Report No.: MIL05-015

28	1585.067 M	15.2	-30.3	+25.5	+1.0	+1.0	+0.0	12.4	14.0	-1.6	Vert
29	1592.124 M	15.1	-30.3	+25.6	+1.0	+1.0	+0.0	12.4	14.0	-1.6	Vert
30	1594.686 M	15.1	-30.3	+25.6	+1.0	+1.0	+0.0	12.4	14.0	-1.6	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 1:11:08 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10kHz-18GHz Test Distance: 1 Meter Sequence\#: 27

Sweep Data
1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 2:12:22 PM	
Test Type:	Radiated Scan	Sequence\#: 28	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56{ }^{\prime \prime}$. UUT and support equipment shut off.

Transducer Legend:

T1 =AMP AN00941A 50 GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	1560.000 M	21.3	-30.3	+25.4	+1.0	+1.0	+0.0	18.4	14.0	+4.4	Vert
2	1599.959 M	17.5	-30.3	+25.6	+1.0	+1.0	+0.0	14.8	14.0	+0.8	Vert
3	1584.208 M	16.7	-30.3	+25.5	+1.0	+1.0	+0.0	13.9	14.0	-0.1	Vert
4	1575.000 M	15.8	-30.3	+25.5	+1.0	+1.0	+0.0	13.0	14.0	-1.0	Vert
5	1559.976 M	15.8	-30.3	+25.4	+1.0	+1.0	+0.0	12.9	14.0	-1.1	Vert

6	1592.676M	15.6	-30.3	+25.6	+1.0	+1.0	+0.0	12.9	14.0	-1.1	Vert
7	1570.664M	15.6	-30.3	+25.5	+1.0	+1.0	+0.0	12.8	14.0	-1.2	Vert
8	1591.704M	15.4	-30.3	+25.6	+1.0	+1.0	+0.0	12.7	14.0	-1.3	Vert
9	1566.084M	15.4	-30.3	+25.5	+1.0	+1.0	+0.0	12.6	14.0	-1.4	Vert
10	1591.845M	15.3	-30.3	+25.6	+1.0	+1.0	+0.0	12.6	14.0	-1.4	Vert
11	1597.442M	15.3	-30.3	+25.6	+1.0	+1.0	+0.0	12.6	14.0	-1.4	Vert
12	1591.406M	15.2	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.4	14.0	-1.6	Vert
13	1593.665M	15.1	-30.3	+25.6	+1.0	+1.0	+0.0	12.4	14.0	-1.6	Vert
14	1562.886M	15.2	-30.3	+25.4	+1.0	+1.0	+0.0	12.3	14.0	-1.7	Vert
15	1589.253M	15.1	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.3	14.0	-1.7	Vert
16	1596.403M	15.0	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.3	14.0	-1.7	Vert
17	1554.384M	15.0	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.1	14.0	-1.9	Vert
18	1555.501M	15.0	-30.3	+25.4	+1.0	+1.0	+0.0	12.1	14.0	-1.9	Vert
19	1564.640M	15.0	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.1	14.0	-1.9	Vert
20	1592.064M	14.8	-30.3	+25.6	+1.0	+1.0	+0.0	12.1	14.0	-1.9	Vert
21	1594.136M	14.8	-30.3	+25.6	+1.0	+1.0	+0.0	12.1	14.0	-1.9	Vert
22	1596.040M	14.8	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.1	14.0	-1.9	Vert
23	1599.684M	14.8	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.1	14.0	-1.9	Vert
24	1550.874M	14.9	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	Vert
25	1554.700M	14.9	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	Vert
26	1573.150M	14.8	-30.3	+25.5	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	Vert
27	1598.537M	14.7	-30.3	+25.6	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	Vert

Page 165 of 224
Report No.: MIL05-015

281592.034 M	14.6	-30.3	+25.6	+1.0	+1.0	+0.0	11.9	14.0	-2.1	Vert	
291598.781 M	14.6	-30.3	+25.6	+1.0	+1.0	+0.0	11.9	14.0	-2.1	Vert	
30	1599.938 M	14.6	-30.3	+25.6	+1.0	+1.0	+0.0	11.9	14.0	-2.1	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 2:12:22 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 28

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 2:44:33 PM	
Test Type:	Radiated Scan	Sequence\#: 29	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:

T1 =AMP AN00941A 50 GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	1559.955 M	27.4	-30.3	+25.4	+1.0	+1.0	+0.0	24.5	14.0	+10.5	Vert
2	1560.000 M	27.4	-30.3	+25.4	+1.0	+1.0	+0.0	24.5	14.0	+10.5	Vert
3	1559.910 M	26.0	-30.3	+25.4	+1.0	+1.0	+0.0	23.1	14.0	+9.1	Vert
4	1560.357 M	23.9	-30.3	+25.4	+1.0	+1.0	+0.0	21.0	14.0	+7.0	Vert
5	1579.998 M	20.9	-30.3	+25.5	+1.0	+1.0	+0.0	18.1	14.0	+4.1	Vert

6	1560.526M	20.7	-30.3	+25.4	+1.0	+1.0	+0.0	17.8	14.0	+3.8	Vert
7	1580.127M	20.2	-30.3	+25.5	+1.0	+1.0	+0.0	17.4	14.0	+3.4	Vert
8	1579.938M	19.6	-30.3	+25.5	+1.0	+1.0	+0.0	16.8	14.0	+2.8	Vert
9	1599.957M	19.1	-30.3	+25.6	+1.0	+1.0	+0.0	16.4	14.0	+2.4	Vert
10	1580.076M	19.0	-30.3	+25.5	+1.0	+1.0	+0.0	16.2	14.0	+2.2	Vert
11	1580.277M	18.7	-30.3	+25.5	+1.0	+1.0	+0.0	15.9	14.0	+1.9	Vert
12	1560.760M	18.6	-30.3	+25.4	+1.0	+1.0	+0.0	15.7	14.0	+1.7	Vert
13	1592.133M	17.3	-30.3	+25.6	+1.0	+1.0	+0.0	14.6	14.0	+0.6	Vert
14	1560.886M	17.3	-30.3	+25.4	+1.0	+1.0	+0.0	14.4	14.0	+0.4	Vert
15	1580.496M	16.6	-30.3	+25.5	+1.0	+1.0	+0.0	13.8	14.0	-0.2	Vert
16	1584.205M	16.4	-30.3	+25.5	+1.0	+1.0	+0.0	13.6	14.0	-0.4	Vert
17	1559.174M	16.4	-30.3	+25.4	+1.0	+1.0	+0.0	13.5	14.0	-0.5	Vert
18	1599.510M	16.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	13.4	14.0	-0.6	Vert
19	1558.925M	16.2	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.3	14.0	-0.7	Vert
20	1558.982M	16.1	-30.3	+25.4	+1.0	+1.0	$+0.0$	13.2	14.0	-0.8	Vert
21	1558.024M	16.0	-30.3	+25.4	+1.0	+1.0	+0.0	13.1	14.0	-0.9	Vert
22	1579.361M	15.9	-30.3	+25.5	+1.0	+1.0	+0.0	13.1	14.0	-0.9	Vert
23	1579.475M	15.9	-30.3	+25.5	+1.0	+1.0	$+0.0$	13.1	14.0	-0.9	Vert
24	1580.535M	15.9	-30.3	+25.5	+1.0	+1.0	$+0.0$	13.1	14.0	-0.9	Vert
25	1594.695M	15.7	-30.3	+25.6	+1.0	+1.0	$+0.0$	13.0	14.0	-1.0	Vert
26	1559.042M	15.8	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.9	14.0	-1.1	Vert
27	1562.108M	15.4	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.5	14.0	-1.5	Vert

Page 168 of 224
Report No.: MIL05-015

28	1585.905 M	15.3	-30.3	+25.5	+1.0	+1.0	+0.0	12.5	14.0	-1.5	Vert
29	1597.442 M	15.2	-30.3	+25.6	+1.0	+1.0	+0.0	12.5	14.0	-1.5	Vert
30	1597.635 M	15.2	-30.3	+25.6	+1.0	+1.0	+0.0	12.5	14.0	-1.5	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 2:44:33 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 29
Copper tape on top, right and left side of the JS1 connector.

-_ Sweep Data
1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 3:05:47 PM	
Test Type:	Radiated Scan	Sequence\#: 30	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:

T1 =AMP AN00941A 50 GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	1560.115 M	17.1	-30.3	+25.4	+1.0	+1.0	+0.0	14.2	14.0	+0.2	Vert
2	1560.000 M	17.0	-30.3	+25.4	+1.0	+1.0	+0.0	14.1	14.0	+0.1	Vert
3	1560.146 M	16.4	-30.3	+25.4	+1.0	+1.0	+0.0	13.5	14.0	-0.5	Vert
4	1559.929 M	16.2	-30.3	+25.4	+1.0	+1.0	+0.0	13.3	14.0	-0.7	Vert
5	1560.129 M	16.2	-30.3	+25.4	+1.0	+1.0	+0.0	13.3	14.0	-0.7	Vert

6	1559.992M	15.9	-30.3	+25.4	+1.0	+1.0	+0.0	13.0	14.0	-1.0	Vert
7	1559.917M	15.7	-30.3	+25.4	+1.0	+1.0	+0.0	12.8	14.0	-1.2	Vert
8	1559.997M	15.6	-30.3	+25.4	+1.0	+1.0	+0.0	12.7	14.0	-1.3	Vert
9	1559.906M	15.4	-30.3	+25.4	+1.0	+1.0	+0.0	12.5	14.0	-1.5	Vert
10	1559.977M	15.3	-30.3	+25.4	+1.0	+1.0	+0.0	12.4	14.0	-1.6	Vert
11	1560.035M	15.3	-30.3	+25.4	+1.0	+1.0	+0.0	12.4	14.0	-1.6	Vert
12	1559.986M	15.2	-30.3	+25.4	+1.0	+1.0	+0.0	12.3	14.0	-1.7	Vert
13	1560.134M	15.2	-30.3	+25.4	+1.0	+1.0	+0.0	12.3	14.0	-1.7	Vert
14	1560.139M	15.1	-30.3	+25.4	+1.0	+1.0	+0.0	12.2	14.0	-1.8	Vert
15	1559.783M	14.9	-30.3	+25.4	+1.0	+1.0	+0.0	12.0	14.0	-2.0	Vert
16	1559.872M	14.9	-30.3	+25.4	+1.0	+1.0	+0.0	12.0	14.0	-2.0	Vert
17	1559.940M	14.9	-30.3	+25.4	+1.0	+1.0	+0.0	12.0	14.0	-2.0	Vert
18	1560.077M	14.9	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	Vert
19	1560.163M	14.9	-30.3	+25.4	+1.0	+1.0	$+0.0$	12.0	14.0	-2.0	Vert
20	1559.868M	14.8	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.9	14.0	-2.1	Vert
21	1559.926M	14.8	-30.3	+25.4	+1.0	+1.0	+0.0	11.9	14.0	-2.1	Vert
22	1560.057M	14.8	-30.3	+25.4	+1.0	+1.0	+0.0	11.9	14.0	-2.1	Vert
23	1560.093M	14.8	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.9	14.0	-2.1	Vert
24	1560.227M	14.8	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.9	14.0	-2.1	Vert
25	1559.812M	14.7	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.8	14.0	-2.2	Vert
26	1560.217M	14.7	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.8	14.0	-2.2	Vert
27	1559.846M	14.6	-30.3	+25.4	+1.0	+1.0	$+0.0$	11.7	14.0	-2.3	Vert

Page 171 of 224
Report No.: MIL05-015

28	1559.989 M	14.6	-30.3	+25.4	+1.0	+1.0	+0.0	11.7	14.0	-2.3	Vert
29	1560.106 M	14.6	-30.3	+25.4	+1.0	+1.0	+0.0	11.7	14.0	-2.3	Vert
30	1560.169 M	14.6	-30.3	+25.4	+1.0	+1.0	+0.0	11.7	14.0	-2.3	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 3:05:47 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 30
Copper tape on top, right and left side of the JS1 connector.

- Sweep Data

1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:

T1 =AMP AN00941A 50 GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	1575.000 M	7.9	-30.3	+25.5	+1.0	+1.0	+0.0	5.1	14.0	-8.9	Vert
2	1574.943 M	5.9	-30.3	+25.5	+1.0	+1.0	+0.0	3.1	14.0	-10.9	Vert
3	1565.073 M	5.8	-30.3	+25.5	+1.0	+1.0	+0.0	3.0	14.0	-11.0	Vert
4	1573.150 M	5.5	-30.3	+25.5	+1.0	+1.0	+0.0	2.7	14.0	-11.3	Vert
5	1570.682 M	5.3	-30.3	+25.5	+1.0	+1.0	+0.0	2.5	14.0	-11.5	Vert

6	1565.250M	5.1	-30.3	+25.5	+1.0	+1.0	+0.0	2.3	14.0	-11.7	Vert
7	1566.067M	5.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	2.2	14.0	-11.8	Vert
8	1564.672M	5.0	-30.3	+25.4	+1.0	+1.0	+0.0	2.1	14.0	-11.9	Vert
9	1565.588M	4.9	-30.3	+25.5	+1.0	+1.0	+0.0	2.1	14.0	-11.9	Vert
10	1567.736M	4.7	-30.3	+25.5	+1.0	+1.0	+0.0	1.9	14.0	-12.1	Vert
11	1563.440M	4.7	-30.3	+25.4	+1.0	+1.0	+0.0	1.8	14.0	-12.2	Vert
12	1564.451M	4.6	-30.3	+25.4	+1.0	+1.0	+0.0	1.7	14.0	-12.3	Vert
13	1566.060M	4.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.7	14.0	-12.3	Vert
14	1575.644M	4.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.7	14.0	-12.3	Vert
15	1567.167M	4.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.6	14.0	-12.4	Vert
16	1567.400M	4.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.6	14.0	-12.4	Vert
17	1567.919 M	4.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.6	14.0	-12.4	Vert
18	1570.269M	4.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.6	14.0	-12.4	Vert
19	1571.141M	4.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.6	14.0	-12.4	Vert
20	1571.861M	4.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.6	14.0	-12.4	Vert
21	1572.144M	4.4	-30.3	+25.5	+1.0	+1.0	+0.0	1.6	14.0	-12.4	Vert
22	1565.132M	4.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.5	14.0	-12.5	Vert
23	1566.644M	4.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.5	14.0	-12.5	Vert
24	1566.764M	4.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.5	14.0	-12.5	Vert
25	1570.290M	4.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.5	14.0	-12.5	Vert
26	1571.511M	4.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.5	14.0	-12.5	Vert
27	1565.890M	4.2	-30.3	+25.5	+1.0	+1.0	$+0.0$	1.4	14.0	-12.6	Vert

Page 174 of 224
Report No.: MIL05-015

28	1566.180 M	4.2	-30.3	+25.5	+1.0	+1.0	+0.0	1.4	14.0	-12.6	Vert
29	1573.286 M	4.2	-30.3	+25.5	+1.0	+1.0	+0.0	1.4	14.0	-12.6	Vert
30	1574.194 M	4.2	-30.3	+25.5	+1.0	+1.0	+0.0	1.4	14.0	-12.6	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 3:23:53 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 31
Copper tape on top, right and left side of the JS1 connector.

- Sweep Data

1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 3:41:11 PM	
Test Type:	Radiated Scan	Sequence\#:	32
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:

T1 =AMP AN00941A 50 GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	1579.982 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	Vert
2	1580.051 M	13.0	-30.3	+25.5	+1.0	+1.0	+0.0	10.2	14.0	-3.8	Vert
3	1584.208 M	12.9	-30.3	+25.5	+1.0	+1.0	+0.0	10.1	14.0	-3.9	Vert
4	1580.102 M	12.8	-30.3	+25.5	+1.0	+1.0	+0.0	10.0	14.0	-4.0	Vert
5	1579.929 M	12.7	-30.3	+25.5	+1.0	+1.0	+0.0	9.9	14.0	-4.1	Vert

6	1580.046M	12.6	-30.3	+25.5	+1.0	+1.0	+0.0	9.8	14.0	-4.2	Vert
7	1579.964M	12.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	9.7	14.0	-4.3	Vert
8	1579.933M	12.4	-30.3	+25.5	+1.0	+1.0	+0.0	9.6	14.0	-4.4	Vert
9	1579.891M	12.3	-30.3	+25.5	+1.0	+1.0	$+0.0$	9.5	14.0	-4.5	Vert
10	1579.968M	12.2	-30.3	+25.5	+1.0	+1.0	+0.0	9.4	14.0	-4.6	Vert
11	1580.017M	12.2	-30.3	+25.5	+1.0	+1.0	+0.0	9.4	14.0	-4.6	Vert
12	1580.181M	12.2	-30.3	+25.5	+1.0	+1.0	$+0.0$	9.4	14.0	-4.6	Vert
13	1579.957M	12.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	9.2	14.0	-4.8	Vert
14	1580.095M	11.9	-30.3	+25.5	+1.0	+1.0	$+0.0$	9.1	14.0	-4.9	Vert
15	1579.791M	11.8	-30.3	+25.5	+1.0	+1.0	$+0.0$	9.0	14.0	-5.0	Vert
16	1579.975M	11.7	-30.3	+25.5	+1.0	+1.0	+0.0	8.9	14.0	-5.1	Vert
17	1580.018M	11.7	-30.3	+25.5	+1.0	+1.0	+0.0	8.9	14.0	-5.1	Vert
18	1579.747M	11.6	-30.3	+25.5	+1.0	+1.0	+0.0	8.8	14.0	-5.2	Vert
19	1579.810M	11.6	-30.3	+25.5	+1.0	+1.0	$+0.0$	8.8	14.0	-5.2	Vert
20	1579.846M	11.6	-30.3	+25.5	+1.0	+1.0	$+0.0$	8.8	14.0	-5.2	Vert
21	1579.940M	11.6	-30.3	+25.5	+1.0	+1.0	+0.0	8.8	14.0	-5.2	Vert
22	1580.052M	11.6	-30.3	+25.5	+1.0	+1.0	+0.0	8.8	14.0	-5.2	Vert
23	1579.945M	11.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	8.7	14.0	-5.3	Vert
24	1579.988M	11.5	-30.3	+25.5	+1.0	+1.0	$+0.0$	8.7	14.0	-5.3	Vert
25	1579.946M	11.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	8.6	14.0	-5.4	Vert
26	1580.035M	11.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	8.6	14.0	-5.4	Vert
27	1580.106M	11.4	-30.3	+25.5	+1.0	+1.0	$+0.0$	8.6	14.0	-5.4	Vert

Page 177 of 224
Report No.: MIL05-015

28	1580.121 M	11.4	-30.3	+25.5	+1.0	+1.0	+0.0	8.6	14.0	-5.4	Vert
29	1580.179 M	11.4	-30.3	+25.5	+1.0	+1.0	+0.0	8.6	14.0	-5.4	Vert
30	1580.236 M	11.4	-30.3	+25.5	+1.0	+1.0	+0.0	8.6	14.0	-5.4	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 3:41:11 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 32
Copper tape on top, right and left side of the JS1 connector.

- Sweep Data

1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/24/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time:	3:57:54 PM
Test Type:	Radiated Scan	Sequence\#:	33
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:

T1 =AMP AN00941A 50 GHz	T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz	T4=ANP5201 1-40GHz

Measurement Data: Reading listed by margin. Test Distance: 1 Meter

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	1600.000 M	14.1	-30.3	+25.6	+1.0	+1.0	+0.0	11.4	14.0	-2.6	Vert
2	1597.442 M	11.4	-30.3	+25.6	+1.0	+1.0	+0.0	8.7	14.0	-5.3	Vert
3	1599.957 M	8.8	-30.3	+25.6	+1.0	+1.0	+0.0	6.1	14.0	-7.9	Vert
4	1599.813 M	8.2	-30.3	+25.6	+1.0	+1.0	+0.0	5.5	14.0	-8.5	Vert
5	1599.919 M	7.4	-30.3	+25.6	+1.0	+1.0	+0.0	4.7	14.0	-9.3	Vert

6	1599.951M	7.4	-30.3	+25.6	+1.0	+1.0	+0.0	4.7	14.0	-9.3	Vert
7	1599.869M	7.3	-30.3	+25.6	+1.0	+1.0	+0.0	4.6	14.0	-9.4	Vert
8	1599.944M	7.2	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.5	14.0	-9.5	Vert
9	1599.883M	7.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.4	14.0	-9.6	Vert
10	1599.883M	7.0	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.3	14.0	-9.7	Vert
11	1599.914M	7.0	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.3	14.0	-9.7	Vert
12	1589.261M	7.0	-30.3	+25.5	+1.0	+1.0	$+0.0$	4.2	14.0	-9.8	Vert
13	1599.937M	6.9	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.2	14.0	-9.8	Vert
14	1599.832M	6.8	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.1	14.0	-9.9	Vert
15	1599.969M	6.8	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.1	14.0	-9.9	Vert
16	1599.976M	6.8	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.1	14.0	-9.9	Vert
17	1599.666M	6.7	-30.3	+25.6	+1.0	+1.0	$+0.0$	4.0	14.0	-10.0	Vert
18	1599.923M	6.5	-30.3	+25.6	+1.0	+1.0	$+0.0$	3.8	14.0	-10.2	Vert
19	1599.860M	6.4	-30.3	+25.6	+1.0	+1.0	$+0.0$	3.7	14.0	-10.3	Vert
20	1599.897M	6.3	-30.3	+25.6	+1.0	+1.0	$+0.0$	3.6	14.0	-10.4	Vert
21	1599.972M	6.3	-30.3	+25.6	+1.0	+1.0	+0.0	3.6	14.0	-10.4	Vert
22	1599.857M	6.2	-30.3	+25.6	+1.0	+1.0	$+0.0$	3.5	14.0	-10.5	Vert
23	1599.769M	6.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	3.4	14.0	-10.6	Vert
24	1599.901M	6.1	-30.3	+25.6	+1.0	+1.0	+0.0	3.4	14.0	-10.6	Vert
25	1599.905M	6.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	3.4	14.0	-10.6	Vert
26	1599.945M	6.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	3.4	14.0	-10.6	Vert
27	1599.947M	6.1	-30.3	+25.6	+1.0	+1.0	$+0.0$	3.4	14.0	-10.6	Vert

Page 180 of 224
Report No.: MIL05-015

28	1599.998 M	6.0	-30.3	+25.6	+1.0	+1.0	+0.0	3.3	14.0	-10.7	Vert
29	1599.949 M	5.9	-30.3	+25.6	+1.0	+1.0	+0.0	3.2	14.0	-10.8	Vert
30	1599.968 M	5.9	-30.3	+25.6	+1.0	+1.0	+0.0	3.2	14.0	-10.8	Vert

CKC Laboratories, Inc. Date: 2/24/2005 Time: 3:57:54 PM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 33
Copper tape on top, right and left side of the JS1 connector.

- Sweep Data

1 -RE102 10KHz-18GHz

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Stanford Linear Accelerator Center		
Specification:	RE102 10KHz-18GHz		Date: 2/25/2005
Work Order \#:	$\mathbf{8 2 8 4 0}$	Time: 9:49:15 AM	
Test Type:	Radiated Scan	Sequence\#: 34	
Equipment:	TEM/TPS	Tested By: A. Brar	
Manufacturer:	Stanford Linear Accelerator Center		
Model:	TEM/TPS		
S/N:	GLA1754		

Equipment Under Test (* = UUT):

Function	Manufacturer	Model \#	S/N
TEM/TPS*	Stanford Linear Accelerator Center	TEM/TPS	GLA1754

Support Devices:

Function	Manufacturer	Model $\#$	S/N
VME Processor	DAWN VME	Not Listed	Property Tag: GLAT0404
Mouse	Dell	P/N X09-13962	69557-492-6014557-20350
Keyboard	Dell	RT7D20	TH-04N454-37171-399-5494
Monitor	Dell	1901FP	CN-05Y232-71616-41R-B363
PC	Dell	DHM	HXNLB41
Power Supply	BK Precision	1697	S240500299

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10 uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2 cms from the power cable. Exposed cable lengths on the test table at $56^{\prime \prime}$. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:

$\mathrm{T} 1=$ AN 01579 Rod Antenna	$\mathrm{T} 2=20^{\prime}$ Cable Male N to Male N AN None
$\mathrm{T} 3=$ Cable 2410	

Measurement Data: \quad Reading listed by margin. Test Distance: 1 Meter

| $\#$ | $\begin{array}{c}\text { Freq } \\ \mathrm{MHz}\end{array}$ | $\begin{array}{c}\text { Rdng } \\ \mathrm{dB} \mu \mathrm{V}\end{array}$ | $\begin{array}{c}\mathrm{T} 1 \\ \mathrm{~dB}\end{array}$ | $\begin{array}{c}\mathrm{T} 2 \\ \mathrm{~dB}\end{array}$ | $\begin{array}{c}\mathrm{T} 3 \\ \mathrm{~dB}\end{array}$ | dB | | | $\begin{array}{c}\text { Dist } \\ \text { Table }\end{array}$ | $\begin{array}{c}\text { Corr } \\ \mathrm{dB} \mu \mathrm{V} / \mathrm{m}\end{array}$ | $\begin{array}{c}\text { Spec } \\ \mathrm{dB} \mu / \mathrm{V} / \mathrm{m}\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Margin

\mathrm{dB}\end{array} $$
\begin{array}{c}\text { Polar } \\
\text { Ant }\end{array}
$$\right]\)

6	29.138M	15.6	+10.6	+0.2	+0.3	+0.0	26.7	64.0	-37.3	Rod A
7	29.968M	15.3	+10.9	+0.2	$+0.3$	$+0.0$	26.7	64.0	-37.3	Rod A
8	27.023M	15.6	+10.1	${ }^{+0.2}$	+0.3	+0.0	26.2	64.0	-37.8	Rod A
9	29.864M	14.6	+10.9	+0.2	+0.3	+0.0	26.0	64.0	-38.0	Rod A
10	29.912M	14.4	+10.9	+0.2	$+0.3$	+0.0	25.8	64.0	-38.2	Rod A
11	28.149M	14.9	+10.3	+0.2	$+0.3$	+0.0	25.7	64.0	-38.3	Rod A
12	29.441M	14.5	+10.7	+0.2	$+0.3$	+0.0	25.7	64.0	-38.3	Rod A
13	29.808M	14.4	+10.8	+0.2	+0.3	+0.0	25.7	64.0	-38.3	Rod A
14	27.893M	14.8	+10.3	+0.2	$+0.3$	+0.0	25.6	64.0	-38.4	Rod A
15	29.505M	14.3	+10.8	+0.2	${ }_{+0.3}$	+0.0	25.6	64.0	-38.4	Rod A
16	29.657M	14.2	+10.8	+0.2	+0.3	+0.0	25.5	64.0	-38.5	Rod A
17	27.271M	14.7	+10.2	$+0.2$	+0.3	+0.0	25.4	64.0	-38.6	Rod A
18	28.771M	14.4	+10.5	$+0.2$	$+0.3$	+0.0	25.4	64.0	-38.6	Rod A
19	29.601M	13.9	+10.8	$+0.2$	+0.3	+0.0	25.2	64.0	-38.8	Rod A
20	29.705M	13.9	+10.8	$+0.2$	+0.3	+0.0	25.2	64.0	-38.8	Rod A
21	28.412M	14.1	+10.4	$+0.2$	$+0.3$	+0.0	25.0	64.0	-39.0	Rod A
22	28.205M	13.8	+10.4	$+0.2$	+0.3	+0.0	24.7	64.0	-39.3	Rod A
23	29.402M	13.5	+10.7	$+0.2$	+0.3	+0.0	24.7	64.0	-39.3	Rod A
24	29.553M	13.4	+10.8	$+0.2$	+0.3	+0.0	24.7	64.0	-39.3	Rod A
25	28.260M	13.7	+10.4	$+0.2$	$+0.3$	+0.0	24.6	64.0	-39.4	Rod A
26	28.827M	13.6	+10.5	$+0.2$	+0.3	+0.0	24.6	64.0	-39.4	Rod A
27	28.875M	13.5	+10.6	$+0.2$	${ }^{+0.3}$	${ }^{+0.0}$	24.6	64.0	-39.4	Rod A

Page 183 of 224
Report No.: MIL05-015

28	27.845 M	13.6	+10.3	+0.2	+0.3	+0.0	24.4	64.0	-39.6	Rod A
29	27.949 M	13.6	+10.3	+0.2	+0.3	+0.0	24.4	64.0	-39.6	Rod A
30	28.300 M	13.5	+10.4	+0.2	+0.3	+0.0	24.4	64.0	-39.6	Rod A
31	28.356 M	13.5	+10.4	+0.2	+0.3	+0.0	24.4	64.0	-39.6	Rod A
32	28.572 M	13.3	+10.5	+0.2	+0.3	+0.0	24.3	64.0	-39.7	Rod A
33	28.619 M	13.3	+10.5	+0.2	+0.3	+0.0	24.3	64.0	-39.7	Rod A
34	28.667 M	13.3	+10.5	+0.2	+0.3	+0.0	24.3	64.0	-39.7	Rod A
35	28.987 M	13.2	+10.6	+0.2	+0.3	+0.0	24.3	64.0	-39.7	Rod A
36	29.242 M	13.1	+10.7	+0.2	+0.3	+0.0	24.3	64.0	-39.7	Rod A
37	29.186 M	13.0	+10.7	+0.2	+0.3	+0.0	24.2	64.0	-39.8	Rod A
38	20.168 M	15.4	+8.2	+0.2	+0.3	+0.0	24.1	64.0	-39.9	Rod A
39	27.582 M	13.4	+10.2	+0.2	+0.3	+0.0	24.1	64.0	-39.9	Rod A
40	29.338 M	12.9	+10.7	+0.2	+0.3	+0.0	24.1	64.0	-39.9	Rod A
41	28.931 M	12.9	+10.6	+0.2	+0.3	+0.0	24.0	64.0	-40.0	Rod A
42	29.026 M	12.9	+10.6	+0.2	+0.3	+0.0	24.0	64.0	-40.0	Rod A
43	28.468 M	13.0	+10.4	+0.2	+0.3	+0.0	23.9	64.0	-40.1	Rod A
44	27.151 M	13.2	+10.1	+0.2	+0.3	+0.0	23.8	64.0	-40.2	Rod A
45	27.638 M	13.1	+10.2	+0.2	+0.3	+0.0	23.8	64.0	-40.2	Rod A
46	27.686 M	13.1	+10.2	+0.2	+0.3	+0.0	23.8	64.0	-40.2	Rod A
47	27.734 M	13.1	+10.2	+0.2	+0.3	+0.0	23.8	64.0	-40.2	Rod A

Page 184 of 224
Report No.: MIL05-015

48	27.790 M	13.0	+10.3	+0.2	+0.3	+0.0	23.8	64.0	-40.2	Rod A
49	29.090 M	12.7	+10.6	+0.2	+0.3	+0.0	23.8	64.0	-40.2	Rod A
50	29.298 M	12.5	+10.7	+0.2	+0.3	+0.0	23.7	64.0	-40.3	Rod A

CKC Laboratories, Inc. Date: 2/25/2005 Time: 9:49:15 AM Stanford Linear Accelerator Center WO\#: 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence\#: 34

—— Sweep Data —— $1-\mathrm{RE} 102$ 10KHz-18GHz

CS06- Conducted Susceptibility, Spikes on Power Leads

Test Equipment

Equipment	Manufacturer	Model \#	Serial \#	Asset \#	Cal Date	Cal Due
Transient Pulse Generator	Solar	$8282-1$	881811	00366	CNR	
Oscilloscope	HP	$54615 B$	US354208 29	00697	$8 / 29 / 03$	$8 / 29 / 05$
5 Ohms Resistor	Solar	TYPE 7144-5.0	CKC\#1	00141	CNR	
10uF Capacitor	Solar	$6512-106 R$	01739	01739	$6 / 2 / 03$	$6 / 2 / 05$
10uF Capacitor	Solar	$6512-106 R$	01737	01737	$6 / 2 / 03$	$6 / 2 / 05$

CNR = Calibration not required.

Test Procedure

Calibration: The test Engineer connected the source's output across a 5 ohm load and connected an oscilloscope across the load. The output level was increased until 12 V p was displayed on the Oscilloscope and the output level was recorded. Plots were captured to show the pulse time and amplitude.

Test: Test Engineer connected the output of the source to the 28VDC Line and 28VDC Return within 5 cm of the UUT. The Oscilloscope was also connected across the 28VDC Line and 28V DC Return. The source was powered on with the output set to calibration level and spikes were injected into the power line of the UUT. The test was performed for 5 minutes in positive polarity and then for 5 minutes in negative polarity.

10pps

Negative Pulse

Page 187 of 224

1 ! 1.00 V 25M言/s $542.4 \mathrm{U} \quad 20.0 \mathrm{E} /$ 20.0岂 f1 RUN

Positive Pulse

Time duration and Amplitude

CS102 - Conducted Susceptibility, Power Leads, 10 kHz to 10 MHz

Test Equipment

Equipment	Manufacturer	Model \#	Serial \#	Asset \#	Cal Date	Cal Due
Oscillator	General Radio	1310-B	4004	01730	CNR	
Power Amplifier	Techron	7570	$\begin{aligned} & \hline 8059 \\ & 054333 \end{aligned}$	02546	CNR	
Oscilloscope	HP	54615B	$\begin{aligned} & \text { US354208 } \\ & 28 \\ & \hline \end{aligned}$	00697	8/29/03	8/29/05
Transformer	Solar Electronics	6220-1A	00481	---	CNR	
AMP	Techron	757012	054333	2546	4/7/03	4/7/05
Coupling Transformer	Solar	6220-1A	None	481	CNR	
RF Coupler	Solar	7415-3	925134	00620	1/27/03	1/24/05
Oscillator	General Radio	1310-B	None	1703	CNR	
50 ohms Load Resistor	Bird Electronics	8134	01453	25632	CNR	
Resistor	NTE	.50hm	None	None	Measured before use	
DC	Werlatone	C2630	3804	0744	10/16/03	10/16/05
Signal Generator	Marconi	2022D	$\begin{gathered} 119229 / 01 \\ 6 \end{gathered}$	00687	9/16/03	9/16/05
AMP	AR	150A100A	18240	1211	CNR	

$\mathrm{CNR}=$ Calibration not required.

Test Procedure

$10-150 \mathrm{kHz}$: Calibration: The Oscillator's output was connected to input of the Techron DC amplifier. The amplifier's output was connected to the primary side of the Audio Isolation Transformer. A .5 ohm resistor was connected across the secondary side of the Audio Isolation Transformer. The Oscillator was set to 10 kHz and the amplitude was brought up until the spectrum analyzer showed voltage corresponding to the calibration limit. Then Test Engineer swept though the range of $10-150 \mathrm{kHz}$ and recorded the necessary output levels to obtain the power limit.
$10-150 \mathrm{kHz}$ test: The Audio Isolation Transformer was connected in series with the DC power line. A 10 uF capacitor was connected across 28VDC Line and 28VDC Return. The Current measurement probe was clamped over the 28VDC Line between the UUT and the Audio Isolation Transformer. The current measurement probe was connected to the Spectrum Analyzer. The test Engineer set the frequency to 10 kHz and increased the levels until the required voltage or the power limit was reached and swept though the frequency range of 10 150 kHz .
$150 \mathrm{kHz}-10 \mathrm{MHz}$ Calibration: The Signal Generator's output was connected to the input of the amplifier. The amplifier's output was connected to a RF coupler, which had 50 ohms load across the output. A current measurement probe was clamped around the lead going from the output of the RF coupler to the 50 ohms load. The Signal Generator was set to 150 kHz and the amplitude was brought up until the spectrum analyzer indicated the voltage corresponding to the calibration limit. The test Engineer swept though the range of $10-150 \mathrm{kHz}$ and recorded the necessary output levels to obtain the power limit.
$150 \mathrm{kHz}-10 \mathrm{MHz}$ test: The RF coupler's output was connected to 28 VDC power Line, 5 cm from the UUT. The Current measurement probe was clamped over the 28VDC Line between the UUT and the RF coupler. The current measurement probe was connected to the Spectrum Analyzer. The test Engineer set the frequency to 150 kHz increasing the levels until the required voltage on the Spectrum Analyzer was indicated or the power limit was reached. Then the entire frequency range of $150 \mathrm{kHz}-10 \mathrm{MHz}$ was swept.

CS02 Calibration

CS02 Closeup

CS02 Test Equipment

CS102 Pre-Cal 10-150kHz

CS102 Pre-Cal 10-150kHz Closeup

CS102 Calibration

CS102 Calibration

CS102 Overall View of Test Setup

CS102 10-150kHz Test Setup

CS102 Closeup

Page 195 of 224

CS102 Test Equipment Closeup

CSCM- Conducted Susceptibility, Common Mode, $\mathbf{3 0 H z}$ to 150 MHz

Test Equipment

Equipment	Manufacturer	Model \#	Serial \#	Asset \#	Cal Date	Cal Due
Oscilloscope	HP	54615B	$\begin{aligned} & \text { US354208 } \\ & 29 \end{aligned}$	697	8/29/03	8/29/05
10uF Capacitor	Solar	6512-106R	None	01740	6/2/03	6/2/05
AMP	Techron	757012	054333	2546	4/7/03	4/7/05
Coupling Transformer	Solar	6220-1A	None	481	CNR	
RF Coupler	Solar	7415-3	925134	00620	1/27/03	1/24/05
Oscillator	General Radio	1310-B	None	1703	NR	NR
Arbitrary Waveform Generator	HP	33120 A	$\begin{aligned} & \text { US360377 } \\ & 46 \end{aligned}$	02561	10/16/04	10/16/06
50 ohms Load Resistor	Bird Electronics	8134	01453	25632	CNR	
Resistor	NTE	. 50 Ohm	None	None	Measured before use	
Signal Generator	Marconi	2022D	$\begin{gathered} 119229 / 01 \\ 6 \end{gathered}$	00687	9/16/03	9/16/05
AMP	AR	150A100A	18240	1211	CNR	

$\mathrm{CNR}=$ Calibration not required.

Test Procedure 30 Hz to 150 kHz

A 0.5Ω load was placed across the secondary windings of the audio isolation transformer. The function generator was connected to the amplifier and the output of the sweep generator was connected across the primary of the audio isolation transformer. The generator's output was increased until 80Watts were obtained. The test engineer recorded the drive levels while manually sweeping through the frequency range. The generator output was adjusted as necessary to maintain the required power level into the 0.5Ω load.

The Input Power was connected from a $10 \mu \mathrm{~F}$ RF capacitor mounted on the EMI ground plane to one side of the secondary winding of the audio isolation transformer. The other side of the secondary winding was connected to the UUT. A 500 MHz digital oscilloscope was connected across the +28 VDC Return Lead referenced to the ground plane and configured for AC coupling. The generator's output was increased until the necessary voltage level as specified in MIL-STD 461E Figure CS101-1 was achieved, while ensuring the 80 Watt calibration drive levels were not exceeded. The test engineer manually swept through the frequency range from 30 Hz to 150 kHz adjusting the output voltage as necessary to maintain the test levels. The functionality of the unit was monitored throughout the sweep.

Test Procedure $150 \mathrm{kHz}-150 \mathrm{MHz}$
Calibration Signal Generator's output was connected to input of the amplifier. The amplifier's output was connected to RF coupler, which had 50 ohms load across the output. The Oscilloscope was connected across the 50 ohms load to measure the voltage to obtain the 1 watt power limit. The Signal Generator was set to 150 kHz and the amplitude was brought up until the Oscilloscope indicated the necessary voltage to obtain 1 watt. The test Engineer swept though the range of 150 kHz to 150 MHz and recorded the necessary output levels to obtain the power limit.

Test The RF coupler's output was connected to 28VDC Power Line, within 5 cm from the UUT. The Oscilloscope was connected from 28VDC line to Ground between the UUT and the RF coupler. The test Engineer set the frequency to 150 KHz and increased the output level until 400 mVpp was reached or the power limit was reached and swept though the range of 150 kHz to 150 MHz .

[^1]

CSCM Calibration Equipment

CSCM Calibration Closeup

CSCM Calibration Closeup \#2

CSCM Test Equipment

CSCM Test Setup

CSCM Test Setup Closeup

Page 201 of 224
Report No.: MIL05-015

RS101 - Radiated Susceptibility, Magnetic Field, 30Hz to 100kHz

Test Equipment

Equipment	Manufacturer	Model \#	Serial \#	Asset \#	Cal Date	Cal Due
RF Probe	Fischer	F-304	19	01573	$8 / 20 / 03$	$8 / 20 / 05$
RF Probe	Fischer	F-305	19	01574	$8 / 20 / 03$	$8 / 20 / 05$
SA - Display	HP	8568 A	2237 A 0435	00446	$10 / 25 / 04$	$10 / 25 / 06$
SA - RF	HP	8568 A	2235 A 0239 1	00447	$10 / 25 / 04$	$10 / 25 / 06$
SA	Agilent	E4446A	US443004 08	02668	$1 / 13 / 05$	$1 / 13 / 07$
Arbitrary Waveform Generator	HP	33120 A	US360377 46	02561	$10 / 16 / 04$	$10 / 16 / 06$
Power Amplifier	Techron	7570	8059 054333	02546	CNR	
Current Probe	Fischer	F-10	37	02142	$4 / 23 / 03$	$4 / 23 / 05$

Calibration not required.

Test Procedure

A calibration of the test setup was performed per the method specified in MIL-STD 461E Paragraph 5.18.3.4.

The function generator was connected to the amplifier and the output of the amplifier was connected to the transmit loop. A digital multimeter was placed in line between the amplifier and the transmit loop to monitor the current applied to the loop. For testing from 30 Hz to 200 Hz , the input to the transmit loop was set at 15 Amps . The transmit loop was placed 5 cm from the front face of the UUT. The test engineer manually increased the frequency from 30 Hz to 200 Hz while he maintained the 15 Amp input current. Testing was repeated on the back, right side, left side, bottom and top faces of the UUT.

At 100 Hz , the transmit loop was placed 5 cm from the reference loop antenna. The reference loop was connected to the spectrum analyzer. The current applied to the transmitting loop was increased until the resulting magnetic field was 6 dB above the required level. The test levels and corresponding input currents were verified throughout the frequency range from 100 Hz to 100 kHz . The transmit loop was then placed 5 cm from the front of the UUT and the input currents obtained during the calibration were applied to the loop. A full sweep was performed from 200 Hz to 100 kHz . Testing was repeated on the remaining faces of the UUT. The functionality of the UUT was monitored throughout the testing.

Radiated Susceptibility Calibration

Radiated Susceptibility Test Setup

Radiated Susceptibility Test Equipment

RS103 - Radiated Susceptibility, Electric Field, 10 kHz to 18 GHz

Test Equipment

Equipment	Manufacturer	Model \#	Serial \#	Asset \#	Cal Date	Cal Due
Signal Generator	Marconi	2022D	$\begin{gathered} 119229 / 01 \\ 6 \end{gathered}$	00687	9/16/03	9/16/05
Signal Generator	HP	8673C	$\begin{aligned} & \text { 2447A0019 } \\ & 8 \end{aligned}$	02547	8/8/04	8/8/06
Function Generator	BK Precision	4011	99020294	02237	4/8/03	4/8/05
Amplifier	AR	30W1000M7	18691	01209	CNR	
Amplifier	AR	10S1G4A	24375	02160	CNR	
TWT Amplifier	Hughes	1277H002F000	177	01461	CNR	
TWT Amplifier	Hughes	8010 H	150	---	CNR	
Oscilloscope	HP	54615B	$\begin{aligned} & \text { US354208 } \\ & 29 \\ & \hline \end{aligned}$	00697	8/29/03	8/29/05
Biconical Antenna	Ailtech	94455-1	0968	00382	1/5/05	1/5/07
DRG Antenna	A.H. Systems	SAS-570	155	02525	6/4/03	6/4/05
DRG Antenna	EMCO	3115	9602-4660	02113	2/24/03	2/24/05
Standard Gain Horn	None	$\begin{aligned} & 900 \mathrm{MHz}- \\ & 2 \mathrm{GHz} \end{aligned}$	19	02632	CNR	
Field Monitor	AR	FM 2000	18327	00951A	CNR	
Field Probe	AR	FP 2000	18676	01207	11/12/03	11/12/05
Field Probe	AR	FP 2080	24792	00870	6/25/04	6/25/06

Calibration not required.

Test Procedure

RS103 Test Levels and polarities:

30 MHz to $18 \mathrm{GHz}-1 \mathrm{~V} / \mathrm{M}$ vertical and horizontal polarities.

The output of the signal generator was connected to the amplifier. The amplifier was connected to the E/H Field antenna. The antenna was brought in and placed in front of the UUT in vertical polarization. The field probe was placed next to the UUT 30 cm above the ground plane.

RS103 Test Sweep:

The field probe was located in front of the Tx antenna, 1 kHz squarewave modulation was applied to the threat signal with a 40 dB On/Off ratio and a sweep was performed. The field strength values were recorded at each frequency in the sweep from 30 MHz to 18 GHz at $1 \mathrm{~V} / \mathrm{m}$ The functionality of the UUT was monitored throughout the sweep.

Antenna Polarities:

For all testing, two transmit antenna polarities were used, Vertical and Horizontal. The antenna was set to horizontal polarity and the test was performed, and then the antenna was set to vertical polarity and the test was performed. There were 4 antennas used; $30-200 \mathrm{MHz}, 200-1000 \mathrm{MHz}$, $1-2 \mathrm{GHz}$ and $2-18 \mathrm{GHz}$.

30 to 200MHz Testing:

The bi-conical antenna was brought in and placed 1. meter from the UUT. The sweep was performed using a 1 kHz squarewave modulation. The field probe was used to measure the field strength. The UUT was monitored throughout the testing for any signs of degradation. The antenna was rotated to the vertical polarization and the sweep was repeated.

200 to 1000 MHz Testing:

The DRG antenna was brought in and placed 1 meter away from the UUT. The sweep was performed using a 1 kHz squarewave modulation. The field probe was used to measure the field strength. The UUT was monitored throughout the testing for any signs of degradation. The antenna was rotated to the vertical polarization and the sweep was repeated.

1 to 2GHz Testing:

The high frequency amplifier and signal generator were then added to the test setup. The horn antenna was placed 1 meter from the UUT in horizontal polarization. The field probe was placed in front of the antenna. The sweep was performed using a 1 kHz squarewave modulation. The field probe was used to measure the field strength. The UUT was monitored throughout the testing for any signs of degradation. The antenna was rotated to the vertical polarization and the sweep was repeated.

2 to 18GHz Testing:

The DRG antenna was brought in and placed 1 meter from the UUT in horizontal polarization. The field probe was placed in front of the antenna. The sweep was performed using a 1 kHz squarewave modulation. The field probe was used to measure the field strength. The UUT was monitored throughout the testing for any signs of degradation. The antenna was rotated to the vertical polarization and the sweep was repeated.

Bicon Antenna, 30-200MHz Horizontal Polarization Test Setup

Bicon Antenna, 30-200MHz Vertical Polarization Test Setup

Horn Antenna, 200-1000MHz Horizontal Polarization Test Setup

Horn Antenna, 200-1000MHz Vertical Polarization Test Setup

Horn Antenna, 1-2GHz Horizontal Polarization Test Setup

Horn Antenna, 1-18GHz Vertical Polarization Test Setup

Page 210 of 224
Report No.: MIL05-015

RS103 Measured Field Strength
Horizontal Polarity, 1 -4GHz

Page 211 of 224
Report No.: MIL05-015

RS103 Measured Field Strength Horizontal Polarity, 4-18GHz

Page 212 of 224
Report No.: MIL05-015

TEST LOG

Date	Name	Time	Event
$02 / 21 / 2005$	C. Nicklas	0800	Dave Nelson of SLAC arrives with the support equipment and a "Golden" unit to verify operation. The UUT was delivered Friday afternoon.
		0900	Dave is setting up the "Golden" unit with the test cables and support equipment to ensure the support equipment and test cables are working properly. The power from the test cables is not yet connected through the 10uF capacitors to be used for testing. Once the support equipment and test cables have been verified, the power will be routed through the 10uF capacitors and using the "Golden" unit, the cables and support will be verified again.
		0950	Support equipment is having software problems. Going to get the UUT properly set-up while Dave is waiting for a call-back from SLAC on the software. The software is needed for emissions testing as well as immunity testing.
		1020	The longest cable length in the platform is 51 inches, so we will expose 51 inches along the front edge of the table. The remainder will be serpentined along the back edge of the table.
Setup complete except for serpentine of excess cable. Puts			
too much stress on the power connections so going to wait			
until Dave is complete with his discussions on the software			
issues.			

	1305	Dave is re-powering up the "Golden" unit and verifying the software and support is working properly and verifying the voltages for all the voltage outputs are correct. Once that is done, Dave can remove the "Golden" unit and put the test article (UUT) in its place. We also need to strip the nylon covering from the shielded cables to ground the shields as they go through the access panel and shield over the access panel with aluminum foil.
	1325	There are problems with the system again. Dave is calling back to SLAC to discuss and troubleshoot the issue. The software program he is running spits out errors. The error count is too high to even tell is the system is running. The other program he could run sends resets to the power supply and keeps turning the system off. Somebody from SLAC is working on fixing this problem and hopefully will have it working for tomorrow.
	1345	As the software is down, we are finishing the cables and room shield by removing the plastic mesh that is on top of the braid so we can ground it to the chamber wall and also cover the access panel opening with aluminum foil to shield the aperture.
	1430	The shields of the cables have been grounded to the chamber wall with copper tape and the aperture has been shielded over with aluminum foil. Now waiting on the software engineer to arrive. He is slated to arrive between 1530 and 1600 . While waiting for the software, we are continuing to go over the Red-lines to the document. All red-lines are complete except for the paragraph in each susceptibility test about testing each of the 7 voltage outputs separately. As doing this would add 24+ days to the testing, SLAC personnel are attempting to obtain more voltage meters to monitor either all 7 at once (preferred) or monitor 4 at one time and only have to do the testing twice. Will modify these sections once it is known exactly is to be done.
	1600	The software has emailed a new software program. Dave has installed this new software and the errors are gone. He has verified the "Golden" system is correct and now is going to switch in the test article (UUT).

		1620	When getting out the UUT, there were no connector protectors installed. These are needed before EMI testing can be started. The purpose of these connector protectors is to limit the connections to the connector on the UUT and to instead to connect to the connector protector which is "disposable" at its end of life. We will continue tomorrow morning once Dave arrives with the connector protectors.
		1700	Testing complete.
02/22/2005	A. Brar	800	Waiting for customer to arrive.
		830	Christine mentions that he will arrive sometime this morning.
		1010	Customer arrives from SLAC. We are continuing with CE102 pre-cal. All testing is to be per test procedure prepared by Chuck Kendall. TP\# TP05-82840-0 under WO\# 82840
		1210	Fred arrives from SLAC. The procedure isn't very accurate for CE102 pre-cal we will need to alter it. Measurement made with milliohm meter came out to be less than $1 / 0^{\text {th }}$ of a milliohm from the UUT to copper table and from the copper table to the chamber wall.
		1223	Lunch.
		1310	Back from lunch. Continuing with pre-cal sweeps. CE102 PRE-CAL SWEEP 10kHz SEQ 0 CE102 PRE-CAL SWEEP 2MHz SEQ 0 CE102 PRE-CAL SWEEP 10MHz SEQ 0
		1343	Pre-cal sweeps complete. PASS Unit isn't ready yet.
		1420	Unit is ready. Taking down UUT and support equipment information and putting it into emissions sheet. 0.1m ohm is the resistance from UUT to copper table and it is the same from the copper table to the chamber wall.
		1438	Begin testing to CE102. CE102 SEQ 1 POSITIVE LEAD PASS CE102 SEQ 2 NEGATIVE LEAD PASS
		1455	Sweeps complete.
		1504	Moving onto CECM test per test plan.
		1545	Begin testing to CECM.
		1634	Test complete. PASS.
		1637	Setting up to perform RE101.
		1655	Shutting down.
		1700	Log off.

Page 215 of 224
Report No.: MIL05-015

02/23/2005	A. Brar	800	Setting up for RE101 pre-cal and setting up limits per customer's spec.
		820	Begin RE101 path check sweep.
		830	Sweep is too far above the limit at 20 Hz , I will have to swap the SA with E4446A.
		845	E4446A is sweeping too fast working on Greg Johnson to resolve this problem.
		850	I let the customer know of the situation.
		930	I'm discussing this issue with Fred (the witness).
		935	Fred mentions that use the SA with faster sweep rates (E4446A) as long as the plot is well under the spec limit and he is aware that the sweep times are far off (too fast) with this SA.
		940	Repeating the path check sweep. RE101 Path Check Seq 0
		945	Complete. PASS.
		955	Ready to test. Customer is on the phone.
		1000	Begin Re101 sweeps. SA Sweeps times and settings are listed below and are to be included in the report for RE101. $1^{\text {st }}$ Band Start: 20 Hz Stop: 272 Hz Sweep Time: 183.8ms RBW: 10Hz VBW: 30 Hz $2^{\text {nd }}$ Band Start: 270 Hz Stop: 1kHz Sweep Time: 185.8 ms RBW: 10Hz VBW: 30 Hz $3^{\text {rd }}$ Band Start: 1 kHz Stop: 9 kHz Sweep Time: 110.5 ms


			```RBW: 100Hz VBW: 300 Hz \(4^{\text {th }}\) Band Start: 9 kHz Stop: 10 kHz Sweep Time: 18.6ms RBW: 100Hz VBW: 300 Hz \(5^{\text {th }}\) Band Start: 10 kHz Stop: 50 kHz Sweep Time: 1s RBW: 1 kHz VBW: 3 kHz RE101 SEQ 3 - JT1, JT2 \& JC1 Side PASS RE101 SEQ 4 - JT3, JS1, JT4, J2 \& JC2 Side PASS RE101 SEQ 5 - JS1 \& J2 parallel to cables PASS RE101 SEQ 6 - JT7, JC4 \& JT8 PASS RE101 SEQ 7 - JT5, JC3 \& JT6 side PASS RE101 SEQ 8 - Top side PASS```
		1110	RE101 complete.   Setting up the unit to perform RE102, and then we will do the path check.
		1200	Setup almost ready, but we will continue from 30 MHz and above.
		1235	Begin path check sweep at 200 MHz . RE102 Path Check at 200MHz Seq 0 PASS
		1245	Lunch break.
		1255	Continuing with path checks.
		1301	Begin path check sweep at 1000 MHz . RE102 Path Check at 1000MHz Seq 0 PASS
		1338	Path check sweeps complete. Setting up to test from 30200 MHz .
		1342	Begin RE102 sweeps.   RE102 Seq 9 - 30-200MHz - Vertical PASS   RE102 Seq 10-30-200MHz - Horizontal PASS


		1351	Complete. Pass. Setting up to test form 200-1000MHz.
		1358	Begin testing from $200-1000 \mathrm{MHz}$.   RE102 Seq 11-200-1000MHz - Horizontal PASS   RE102 Seq 12-200-1000MHz - Vertical PASS
		1411	Sweeps complete. Now setting up to perform RE102 from $1-18 \mathrm{GHz}$. PC and all of the test equipment has to be moved into the chamber.
		1512	All of the equipment is inside the chamber. Setting up to perform path check at 18 GHz .
		1530	Due to the restriction bands, we need to setup the RBW very low, Fred approved 10 kHz in the first band and 30 kHz in the second band. Now we are also creating the spec to take the least amount of time when we perform runs, otherwise it comes out to be 92 increments and that will take over 30 minutes per sweep.
		1610	Begin RE102 path check at 18 GHz .
		1655	Path check complete. PASS
		1705	Begin testing to RE102 above 1 GHz , in 5 segments. RE102 Seq $13-1-1.55 \mathrm{GHz}$ - Horizontal PASS RE102 Seq 14-1.55-1.6GHz - Horizontal FAIL RE102 Seq 15-1.6-1.77GHz - Horizontal PASS RE102 Seq $16-1.77-2.3 \mathrm{GHz}$ - Horizontal FAIL RE102 Seq $17-2.3-18 \mathrm{GHz}$ - Horizontal PASS
		1723	Sweep complete. Shutting down for the day.
		1730	Log off.
02/24/2005	A. Brar	800	Booting up system.
		810	Discussing some of the failing data with customer.
		815	Customer mentions that Fred would like us to try the failing range with lower RBW. seq 16 will be repeated and named as seq 18-21. This sweep will take 45 minutes due to low RBW of 3 kHz per customer.
		830	Limit calculated. Begin sweep.
		930	Sweep complete. calculating.
		940	Freezes up, too much data for software to handle. We will repeat the sweep, and break it up into 4 segments.
		945	Repeating sweep.   RE102 Seq $18-1.77-1.9 \mathrm{GHz}$ - Horizontal FAIL   RE102 Seq 19 - 1.9-2.03GHz - Horizontal PASS   RE102 Seq $20-2.03-2.16 \mathrm{GHz}$ - Horizontal PASS   RE102 Seq $21-2.16-2.3 \mathrm{GHz}$ - Horizontal PASS


		1108	$1.77-2.3 \mathrm{GHz}$ sweep complete. Now moving onto Vertical from $1-18 \mathrm{GHz}$, using original RBW settings.
		1115	Begin testing to RE102 from 1-18GHz using original RBW settings.   RE102 Seq $22-1-1.55 \mathrm{GHz}$ - Vertical PASS   RE102 Seq $23-1.55-1.6 \mathrm{GHz}$ - Vertical FAIL   RE102 Seq $24-1.6-1.77 \mathrm{GHz}$ - Vertical PASS   RE102 Seq 25 - $1.77-2.3 \mathrm{GHz}$ - Vertical FAIL   RE102 Seq $26-2.3-18 \mathrm{GHz}$ - Vertical PASS
		1140	Complete. Troubleshooting at 1599.99 MHz vertically.
		1230	Lunch.
		1300	Back from lunch.
		1305	Begin scan with modification to JS1 connector. RE102 Seq 27 - $1.55-1.6 \mathrm{GHz}$ - Vertical FAIL
		1315	Complete. Waiting for Fred to arrive.
		1400	Fred arrives. Continuing with troubleshooting.
		1411	Realized that the SA being inside the chamber is causing one of the spikes in the spectrum.
		1412	Repeating seq 28 with UUT and support equipment shut off. RE102 Seq $28-1.55-1.6 \mathrm{GHz}$ - Vertical FAIL
		1420	Complete.
		1447	Begin scan from $1.55-1.6 \mathrm{GHz}$.   RE102 Seq 29 - $1.55-1.6 \mathrm{GHz}$ - Vertical FAIL
		1455	Complete.
		1505	Begin sweep from $1.55-1.6 \mathrm{GHz}$ with 300 Hz RBW.   RE102 Seq $30-1.55-1.563 \mathrm{GHz}$ - Vertical-PASS seq 28 is ambient sweep   RE102 Seq $31-1.563-1.576 \mathrm{GHz}$ - Vertical PASS   RE102 Seq $32-1.576-1.589 \mathrm{GHz}$ - Vertical PASS   RE102 Seq $33-1.589-1.6 \mathrm{GHz}$ - Vertical PASS
		1617	Sweeps complete. 1-18GHz radiated emissions testing complete. With the support of the ambient sweeps, customer would like a report. Moving test equipment out of the chamber.
		1630	Log off.
02/25/2005	A. Brar	800	Continuing with setup outside of the chamber.
		815	Setup complete. Now setting up the rod antenna inside the chamber to make path check measurements.
		845	Downloading photos.


		900	Calculating the signal to be injected into rod antenna at .01,   15.005 and 30MHz.
		910	Begin RE102 .01-30MHz path check sweeps.   RE102 PATH CHECK AT 10kHz SEQ 0 PASS   RE102 PATH CHECK AT 15.005MHz SEQ 0 PASS   RE102 PATH CHECK AT 30MHz SEQ 0 PASS
		930	Path check sweeps complete. Setting up to perform testing.
		945	Begin scans to RE102 from .01-30MHz.   RE102 Rod Antenna Seq 34 - .01-30MHz PASS
		1200	Sweep complete. now looking into susceptibility testing.   Customer has 4 monitoring meters at this time and prefers   to perform the test that takes least amount of time.
		Create a cal file to perform this cal in accordance to   customer's spec and diagram using immunity software.	
		1220	Running CS102 .150-10MHz cal file.   From .150-1.69447MHz we are using the AR amp and   40dB Directional Coupler.
		1520	From 1.71141-10MHz, the AR amp wasn't used, went   directly from signal generator with a T junction at the signal   generator, one side going to RF coupler's input and other   side connecting directly to SA (Directional Coupler and AR   Amp were not Used).
		1356	The levels are so low that the SA is having difficulty   sampling readings, causing the cal to take lot longer.
		1405	Cal complete.
Unit isn't functioning, drawing too much current, this			
happened once we connected the cable that we need for			
CS102 direct injection.			


02/28/2005	A. Brar	800	Determining which test to run next.
		810	We will run CS102 from $10-150 \mathrm{kHz}$. Setting up for cal. Calculating the voltage into .5 ohm resistor for cal and sweep rate for the test.
		845	Begin CS102 calibration.
		0945	Cal complete.   CS102 PRE-CAL . $01-150 \mathrm{kHz}$ SEQ 0 PASS   Cal took longer than expected due to the cal method. Setting up to perform testing.
		1000	Begin testing to CS102 from $10-150 \mathrm{kHz}$. Scans will be done twice; we only have 4 meters to monitor the 7 ports. SA and current measurement probe will be used to monitor the current.
		1028	CS102 complete. PASS
		1030	Setting up to perform CSCM.
		1045	Begin pre-cal for CSCM from 30 Hz to 150 kHz .
		1120	Pre-cal complete. Setting up to perform testing.
		1138	Begin testing to CSCM from 30 Hz to 150 kHz , using voltage limit and not exceeding power limit.
		1217	Lunch.
		1243	Back from lunch. Continuing with CSCM setup from 150 kHz to 150 MHz .
		1430	SA method for this testing is not working out. Moving equipment into chamber.
		1530	Cal complete.
		1555	Begin testing to CSCM from . $150-150 \mathrm{MHz}$ on DC line and DC Return.
		1655	Complete. PASS
		1700	Log off.
03/01/05	A. Brar	810	Arrive, looking into test plan to continue with the next test.
		820	Tearing down yesterday's setup, moving amps and all other unnecessary equipment into storage room.
		835	Begin setting up to perform CS02 pre-cal.
		850	Setup complete.
		900	Begin CS02 pre-cal. Calibrated into 5 ohms and got 12 Vpeak amplitude with 10 us pulse, 10 pps .
		930	Begin testing to CS02.
		942	CS02 complete. PASS
		943	Tearing down CS02 setup and setting up to perform RS101.


		1005	RS101 pre-cal setup complete. generating files to perform testing.
		1156	Cal complete. Ready to test.
		1205	Lunch.
		1222	Back from lunch.
		1234	Begin testing to RS101.   Testing, top, front, back, left and right side. Side with cables is tested twice; once with the Tx loop facing the UUT and once with it facing the cables.
		1402	RS101 complete. PASS
		1455	RS103 setup complete. Generating test file for $1 \mathrm{~V} / \mathrm{m}$ and taking setup photos.
		1525	Ready to test. Booting up system.
		1534	Begin testing to RS103 from $\mathbf{3 0 - 2 0 0 M H z}$ Vertically. Customer is inside the chamber monitoring the unit, filed level is $1 \mathrm{~V} / \mathrm{m} .1 \mathrm{kHz} \mathrm{PM}, 50 \%$ duty cycle.
		1538	Meters are susceptible to the field. Covering up the meter leads in foil.
		1605	Stopped testing at 39.469 MHz . Having problems with the meters.
		1608	Log off. We took 30 minute lunch yesterday and today, that gives the customer 16 hours in the two days therefore we can call it a day now.
3/2/05	C. Nicklas	0800	Dave arrives and is building a cage for the meters out of aluminum foil and a cardboard box. I am setting the field at $1 \mathrm{~V} / \mathrm{m}$ at 39.469 MHz where the meters started having problems yesterday. The power cords are all in the box and connected to a power strip in the box. The power cable of the power strip exits the back of the box and drops down behind the test table to power routed under the table. Windows are cut out to allow viewing of the meters and one hole is cut out to allow the coax's out to connect to the UUT. The coax cables are laid along the copper table and additionally shielded with aluminum foil over them which is grounded to the table and the exit point of the box.   When tested at the original problem frequency, this entire package seems to fix the problems.
		0930	Continue with RS103 at 39.469 MHz . Running Vertical polarization.

Page 222 of 224

		1010	Complete 30-200MHz Vertical. Pass. Switch to Horizontal
		1110	Complete $30-200 \mathrm{MHz}$ Horizontal. Pass. Setup for 2001000 MHz frequency range.
		1120	Start RS103, 200-1000MHz Horizontal.
		1145	Complete $200-1000 \mathrm{MHz}$ Horizontal. Pass. Switch to Vertical
		1215	Complete 200-1000MHz Vertical. Pass.
		1215	Break for lunch.
		1315	Back from lunch. Start setting up for the $1-18 \mathrm{GHz}$ testing. The $1-18 \mathrm{GHz}$ antennas are in Hollister for calibration. I have a 1-2ish GHz horn that I will use today to start testing. Will get the antenna from Hollister for the remainder of the testing tomorrow.
		1430	Start 1-4 GHz testing Vertical polarity.
		1520	Restarted 1-4 GHz Vertical. Removed a piece of copper tape that had been installed during radiated emissions to fix a leak from $1.55-1.6 \mathrm{GHz}$.
		1715	Completed $1-4 \mathrm{GHz}$ Vertical using the $900 \mathrm{MHz}-2 \mathrm{GHz}$ Standard Gain Horn Antenna.
			Amrinder,   I am going to pick up one of the DRG's tomorrow from Hollister to continue the $4-18 \mathrm{GHz}$ immunity. You will need to run the $1-4 \mathrm{GHz}$ Horizontal immunity with the standard gain horn. The file is already set-up. In a few places, the sig gen could not level to get the $1 \mathrm{~V} / \mathrm{m}$ level with the setting of $90 \%$ in the sig gen column. When that happened I would change the setting to $6 \mid \mathrm{DB}$ and run 10-15 frequency places and then change it back to 90 . I will see you around 9-9:30 AM with the 1-18GHz DRG. Thanks.   Christine
03/03/2005	A. Brar	800	Arrive, we will continue from where Christine left off yesterday.
		830	Begin testing from 1-4GHz in Horizontal polarity.
		920	Dave is checking his e-mail. Testing stopped.
		925	Continuing with testing.
		1027	Complete $1-4 \mathrm{GHz}$ in horizontal polarity. Customer is taking a break, I will create the files to go up to 18 GHz .
		1105	Begin testing from 4-8GHz in horizontal polarity.


	1203	4-8GHz horizontal testing complete.
	1210	Lunch. Customer prefers 30 minute lunch.
	1235	Back from lunch. Waiting for customer to get back, he is on the phone with Fred.
	1300	Fred mentions to make the step sizes twice as much and only dwell for 1 sec at each frequency. This is not per Table 3-3 in the test procedure.   From $4-8 \mathrm{GHz}$ Vertically we will step through at $.002 \mathrm{f}_{\mathrm{o}}$ and dwell for 1 sec at each step.   From $8-18 \mathrm{GHz}$ Vertically we will step through at $.001 \mathrm{f}_{\mathrm{o}}$ and dwell for 1 sec at each step.   From $8-18 \mathrm{GHz}$ Horizontally we will step through at $.001 \mathrm{f}_{\mathrm{o}}$ and dwell for 1 sec at each step.
	1325	Customer is working on paperwork discussing issues with the upcoming project.
	1400	Begin testing vertically from 4-8GHz.
	1419	Testing stopped per customer, he is on the phone.
	1431	Continuing with testing.
	1434	$4-8 \mathrm{GHz}$ complete vertically. Continuing with next setup.
	1450	Begin testing from $8-18 \mathrm{GHz}$ vertically.
	1550	Having difficulties obtaining $1 \mathrm{~V} / \mathrm{m}$ at 14.63096 GHz . Troubleshooting.
	1614	Replaced the connectors and it is fine now. Continuing with testing.
	1630	Scan complete. We are done from $8-18 \mathrm{GHz}$ Vertically. We will continue with testing tomorrow.
03/04/05	0800	Booting up equipment.
	812	Waiting for customer, he is on the phone.
	819	Begin testing from 8-18GHz horizontally.
	930	1-18 GHz testing completed in Horizontal and Vertical polarities at $1 \mathrm{~V} / \mathrm{m}$ with 1 kHz PM. PASS
	935	Tearing down.
	1000	Paperwork and procedures.
	1100	Paperwork and procedures complete.
	1330	Arranging data to be uploaded.
	1427	Upload complete. log off.


[^0]:    —— Sweep Data ——— 1-RE101 Test Lirint

[^1]:    CSCM Calibration

