ELECTROMAGNETIC INTERFERENCE TEST REPORT
FOR THE STANFORD LINEAR ACCELERATOR CENTER (SLAC)
TOWER EQUIPMENT MODULE/TOWER POWER SUPPLY, TEM/TPS

MIL-STD-461E (1999), SECTIONS CE102, RE101, RE102, RS101 AND RS103
MIL-STD-462 SECTIONS: CS102 (NOTICE 5 1986) AND CS06 (NOTICE 3 1971)
TESTING IN ACCORDANCE WITH TEST PLAN TP05-82840-1

DATE OF ISSUE: MARCH 18, 2005

PREPARED FOR:
Stanford Linear Accelerator Center (SLAC)
P.O. Box 20450
Stanford, CA 94309

P.O. No.: 0000053584
W.O. No.: 82840

PREPARED BY:
Valerie Honsinger
CKC Laboratories, Inc.
5473A Clouds Rest
Mariposa, CA 95338

Date of test: February 21 - March 4, 2005

Report No.: MIL05-015

This report contains a total of 224 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.
TABLE OF CONTENTS

Administrative Information ..3
Approvals...4
Unit Under Test (UUT) Description ...5
Unit Under Test ...5
Peripheral Devices ...5
Summary of Results ..6
Report of Measurements ...8
 CE102 - Conducted Emissions, Power Leads, 10kHz to 10MHz ..8
 CECM – Conducted Emissions, Common Mode, DC to 150MHz31
 RE101 - Radiated Emissions, Magnetic Field, 30Hz to 100kHz39
 RE102 - Radiated Emissions, Electric Field, 10kHz to 18GHz60
 CS06 - Conducted Susceptibility, Spikes on Power Leads186
 CS102 - Conducted Susceptibility, Powert Leads, 10kHz to 10MHz189
 CSCM - Conducted Susceptibility, Common Mode, 30Hz to 150MHz197
 RS101 - Radiated Susceptibility, Magnetic Field, 30Hz to 100kHz202
 RS103 - Radiated Susceptibility, Electric Field, 10kHz to 18GHz205
Test Log ..213
ADMINISTRATIVE INFORMATION

SCOPE:
To demonstrate testing of the Tower Equipment Module/Tower Power Supply, TEM/TPS with the requirements for MIL-STD-461E in accordance with test plan TP05-82840-1.

CONTRACT NUMBERS:
NA

APPLICABLE DOCUMENTS:
1. MIL-STD-461E - Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference
2. MIL-STD-462E - Measurements of Electromagnetic Interference Characteristics
5. LAT-MD-00408 - “LAT Instrument Performance Verification Plan”, SLAC
6. CKC Test Procedure: TP05-82840-1.

MANUFACTURER:
Stanford Linear Accelerator Center (SLAC)
P.O. Box 20450
Stanford, CA 94309

REPRESENTATIVE:
Dave Nelson

TEST LOCATION:
CKC Laboratories, Inc.
1120 Fulton Place
Fremont, CA 94539
FREMONT, CA MILITARY CHAMBER #2
The CKC Laboratories, Inc. Fremont EMI Chamber used for the testing was a 32' x 21'9" x 10'
high shielded enclosure designed to attenuate radio frequency noise over 80 dB up to 1 GHz, and
over 60 dB at 18 GHz. The enclosure uses ferrite tiles on all six internal faces with foam
anechoic material in key areas to achieve uniform testing from 1 MHz to 40GHz. Power brought
into the room is filtered over 100 dB for frequencies over 14 kHz. All emissions measurement
equipment is operated from isolation transformers, which help eliminate the possibility of
ground loops. All lighting in the laboratory is filtered to reduce electrical noise. In addition,
incandescent lights are used during emissions testing to further reduce the potential for electrical
noise.

The ground plane in the chamber consists of a 3' x 10'6" x 0.020" thick copper sheet bonded to
the shield room wall with 0.1 mΩ of bonding resistance.

APPROVALS

QUALITY ASSURANCE: TEST PERSONNEL:

[Signatures]

Steve Behm, Director of Engineering Services Christine Nicklas, Project Manager &
Principal Consultant

Joyce Walker, Quality Assurance Administrative Amrinder Brar, EMC Test Engineer
Manager
UNIT UNDER TEST (UUT) DESCRIPTION

UNIT UNDER TEST

TEM/TPS
Manuf: Stanford Linear Accelerator Center (SLAC)
Model: TEM/TPS
Serial: GLA1754

PERIPHERAL DEVICES

The UUT was tested with the following peripheral device(s):

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Manuf</th>
<th>Model</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>NA</td>
<td>GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT6D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232071616041R0B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
<tr>
<td>1 MHz Filter (7 each)</td>
<td>SLAC</td>
<td>LAT-DS-04767</td>
<td>GLAT1962, GLAT1958, GLAT1963, GLAT1504, GLAT1501 & GLAT1500</td>
</tr>
<tr>
<td>Voltmeter (7 each)</td>
<td>HP</td>
<td>3400A</td>
<td>1218A26780, 2415A33270, 1218A19573, 2415A37548, 1218A27552, 2225A28975 & 14-006698</td>
</tr>
</tbody>
</table>
SUMMARY OF RESULTS
As received, the Stanford Linear Accelerator Center Tower Equipment Module (TEM)/Tower Power Supply (TPS) was tested to following standards and specifications:

The following table summarizes the results of this testing.

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Results</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE102 - Conducted Emissions, Power Leads, 10kHz to 10MHz</td>
<td>No emissions exceeding the limit were observed from 10kHz to 10MHz on the 28VDC Input Power Lead and on the 28VDC Return Lead with input power set to 28VDC and 33VDC.</td>
<td>PASS</td>
</tr>
<tr>
<td>CECM - Conducted Emissions, Common Mode, DC to 150 MHz</td>
<td>No emissions exceeding the limit were observed on the 28VDC Input Power Lead and on the 28VDC Return Lead to 150MHz.</td>
<td>PASS</td>
</tr>
<tr>
<td>RE101 – Radiated Emissions, 20Hz to 50kHz</td>
<td>No out of spec emissions were observed exceeding the 7cm and 50cm limits from 30Hz to 100kHz on all six faces of the UUT.</td>
<td>PASS</td>
</tr>
<tr>
<td>RE102 - Radiated Emissions, 10kHz to 18GHz</td>
<td>The UUT exhibited no out of spec emissions from 10kHz to 30MHz in Vertical polarization and from 30MHz to 1GHz in Vertical and Horizontal antenna polarizations. From 2.3 – 18GHz no out of spec emissions were observed. Emissions exceeding the limit were observed from 1.55 – 2.3GHz in both Vertical and Horizontal Polarizations.</td>
<td>FAIL</td>
</tr>
<tr>
<td>CS06 – Conducted Susceptibility, Spikes on Power Leads</td>
<td>The UUT exhibited no signs of susceptibility during the extent of the testing on the 28VDC Input Power Line, the 28VDC Return Line.</td>
<td>PASS</td>
</tr>
<tr>
<td>CS102 – Conducted Susceptibility, Power Leads, 10kHz to 10MHz</td>
<td>The UUT exhibited no signs of susceptibility during the extent of the testing from 10kHz to 10MHz on the 28VDC Power and 28VDC Return Lines.</td>
<td>PASS</td>
</tr>
<tr>
<td>Test Category</td>
<td>Description</td>
<td>Result</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>CSCM – Conducted Susceptibility, Common Mode, 30Hz to 150MHz</td>
<td>The UUT exhibited no signs of susceptibility during the extent of the testing from 30Hz to 150MHz on the 28VDC Input Power Line, the 28VDC Return Line.</td>
<td>PASS</td>
</tr>
<tr>
<td>RS101 - Radiated Susceptibility, Magnetic Field, 20Hz to 50kHz</td>
<td>The UUT showed no signs of susceptibility during the extent of the testing from 30Hz to 50kHz on the front, back, right side, left side and top faces of the UUT at test levels exceeding the levels specified in Figure RS101-2.</td>
<td>PASS</td>
</tr>
<tr>
<td>RS103 – Radiated Susceptibility, Electric Field, 30MHz to 18GHz</td>
<td>The UUT showed no signs of susceptibility during the extent of the testing at 1V/m from 30MHz to 18GHz in horizontal and vertical antenna polarizations.</td>
<td>PASS</td>
</tr>
</tbody>
</table>
REPORT OF MEASUREMENTS

CE102 - Conducted Emissions, Power Leads, 10kHz to 10MHz

Test Equipment

<table>
<thead>
<tr>
<th>Function</th>
<th>Asset #</th>
<th>S/N</th>
<th>Calibration Date</th>
<th>Cal Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable RG214/U</td>
<td>02410</td>
<td>None</td>
<td>06/07/2004</td>
<td>06/07/2005</td>
</tr>
<tr>
<td>Current Probe F-35</td>
<td>00731</td>
<td>296</td>
<td>05/07/2003</td>
<td>05/07/2005</td>
</tr>
<tr>
<td>Cable RG214/U</td>
<td>02410</td>
<td>None</td>
<td>06/07/2004</td>
<td>06/07/2005</td>
</tr>
<tr>
<td>Cable E24304</td>
<td>None</td>
<td>None</td>
<td>04/12/2004</td>
<td>04/12/2005</td>
</tr>
<tr>
<td>10uF FeedThrough Cap - 6512-106R</td>
<td>01737</td>
<td>None</td>
<td>06/02/2003</td>
<td>06/02/2005</td>
</tr>
<tr>
<td>10uF FeedThrough Cap - 6512-106R</td>
<td>01739</td>
<td>None</td>
<td>06/02/2003</td>
<td>06/02/2005</td>
</tr>
</tbody>
</table>

Calibration Procedure

The output of the signal generator was connected to a 50 ohms load. An Oscilloscope was connected across the 50 ohms load and the measurement probe was clamped over the lead connecting the signal generator to the 50 ohms load. A signal was injected 6dB below the limit at .01, 2, and 10MHz. A sweep was performed at each frequency and we ensured the reading on the Spectrum Analyzer was within +/-3dB of the expected levels.

Test Procedure

The UUT power was connected to the power source with (2) 10uF feed through capacitors in series with the DC power line. The measurement probe was clamped over the 28VDC Power Lead and a sweep was performed. The measurement probe was switched over to 28VDC Return Lead and a sweep was performed. During the sweeps, the UUT was running FuncTest.py.

<table>
<thead>
<tr>
<th>Seq. #</th>
<th>Test Description</th>
<th>Test Lead/ Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CE102 Pre- Calibration Sweep / 10kHz inj. 2.86m Vpp</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>CE102 Pre- Calibration Sweep / 10MHz inj. 14.3m Vpp</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>CE102 Pre- Calibration Sweep / 2MHz inj. 113.7m Vpp</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CE102</td>
<td>28VDC Positive Lead</td>
</tr>
<tr>
<td>2</td>
<td>CE102</td>
<td>28VDC Negative Lead</td>
</tr>
</tbody>
</table>
CE102 Pre-cal

CE102 Close-up
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: CE102 MIL-STD-462
Work Order #: 82840
Date: 2/22/2005
Test Type: Conducted Emissions
Time: 1:12:18 PM

Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar
Model: 28V DC

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
Pre-Cal Sweep. Signal at 10KHz. Injecting 2.86mVpp and expecting 17.1dBuV +/-3dB as meter reading.

Transducer Legend:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rndg dBµV</th>
<th>dB</th>
<th>dB</th>
<th>dB</th>
<th>dB</th>
<th>Dist Table</th>
<th>Corr dBµV</th>
<th>Spec dBµV</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.060k</td>
<td>19.0</td>
<td>+0.0</td>
<td>19.0</td>
<td>66.0</td>
<td>-47.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.090k</td>
<td>18.3</td>
<td>+0.0</td>
<td>18.3</td>
<td>66.0</td>
<td>-47.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12.880k</td>
<td>15.7</td>
<td>+0.0</td>
<td>15.7</td>
<td>66.0</td>
<td>-50.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>31.330k</td>
<td>15.1</td>
<td>+0.0</td>
<td>15.1</td>
<td>66.0</td>
<td>-50.9</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>53.380k</td>
<td>14.8</td>
<td>+0.0</td>
<td>14.8</td>
<td>66.0</td>
<td>-51.2</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>29.080k</td>
<td>14.3</td>
<td>+0.0</td>
<td>14.3</td>
<td>66.0</td>
<td>-51.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>59.500k</td>
<td>14.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>66.0</td>
<td>-52.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>19.090k</td>
<td>14.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>66.0</td>
<td>-52.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>68.320k</td>
<td>13.9</td>
<td>+0.0</td>
<td>13.9</td>
<td>66.0</td>
<td>-52.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19.900k</td>
<td>13.9</td>
<td>+0.0</td>
<td>13.9</td>
<td>66.0</td>
<td>-52.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>97.570k</td>
<td>13.7</td>
<td>+0.0</td>
<td>13.7</td>
<td>66.0</td>
<td>-52.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>69.310k</td>
<td>13.7</td>
<td>+0.0</td>
<td>13.7</td>
<td>66.0</td>
<td>-52.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>25.030k</td>
<td>13.7</td>
<td>+0.0</td>
<td>13.7</td>
<td>66.0</td>
<td>-52.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>23.410k</td>
<td>13.7</td>
<td>+0.0</td>
<td>13.7</td>
<td>66.0</td>
<td>-52.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>62.650k</td>
<td>13.2</td>
<td>+0.0</td>
<td>13.2</td>
<td>66.0</td>
<td>-52.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>35.740k</td>
<td>13.2</td>
<td>+0.0</td>
<td>13.2</td>
<td>66.0</td>
<td>-52.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>78.850k</td>
<td>13.1</td>
<td>+0.0</td>
<td>13.1</td>
<td>66.0</td>
<td>-52.9</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>60.310k</td>
<td>13.1</td>
<td>+0.0</td>
<td>13.1</td>
<td>66.0</td>
<td>-52.9</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>44.020k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>18.370k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>16.120k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>49.600k</td>
<td>12.8</td>
<td>+0.0</td>
<td>12.8</td>
<td>66.0</td>
<td>-53.2</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>47.080k</td>
<td>12.5</td>
<td>+0.0</td>
<td>12.5</td>
<td>66.0</td>
<td>-53.5</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>64.990k</td>
<td>12.4</td>
<td>+0.0</td>
<td>12.4</td>
<td>66.0</td>
<td>-53.6</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>66.070k</td>
<td>12.4</td>
<td>+0.0</td>
<td>12.4</td>
<td>66.0</td>
<td>-53.6</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>73.540k</td>
<td>12.3</td>
<td>+0.0</td>
<td>12.3</td>
<td>66.0</td>
<td>-53.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>66.520k</td>
<td>12.3</td>
<td>+0.0</td>
<td>12.3</td>
<td>66.0</td>
<td>-53.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>45.820k</td>
<td>12.3</td>
<td>+0.0</td>
<td>12.3</td>
<td>66.0</td>
<td>-53.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>77.050k</td>
<td>12.2</td>
<td>+0.0</td>
<td>12.2</td>
<td>66.0</td>
<td>-53.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>89.200k</td>
<td>12.1</td>
<td>+0.0</td>
<td>12.1</td>
<td>66.0</td>
<td>-53.9</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: CE102 MIL-STD-462
Work Order #: 82840
Test Type: Conducted Emissions
Date: 2/22/2005
Time: 1:41:56 PM
Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar
Model: 28V DC
S/N:

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Test Conditions / Notes:

Pre-Cal Sweep. Signal at 10MHz. Injecting 14.3mVpp and expecting 40.3dBuV +/-3dB as meter reading.

Transducer Legend:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdnig dBµV</th>
<th>dB</th>
<th>dB</th>
<th>dB</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.993M</td>
<td>39.5</td>
<td>+0.0</td>
<td>39.5</td>
<td>80.0</td>
<td>-40.5</td>
</tr>
<tr>
<td>2</td>
<td>40.420k</td>
<td>17.7</td>
<td>+0.0</td>
<td>17.7</td>
<td>66.0</td>
<td>-48.3</td>
</tr>
<tr>
<td>3</td>
<td>15.940k</td>
<td>14.9</td>
<td>+0.0</td>
<td>14.9</td>
<td>66.0</td>
<td>-51.1</td>
</tr>
<tr>
<td>4</td>
<td>54.100k</td>
<td>14.8</td>
<td>+0.0</td>
<td>14.8</td>
<td>66.0</td>
<td>-51.2</td>
</tr>
<tr>
<td>5</td>
<td>25.030k</td>
<td>14.6</td>
<td>+0.0</td>
<td>14.6</td>
<td>66.0</td>
<td>-51.4</td>
</tr>
<tr>
<td>6</td>
<td>33.490k</td>
<td>14.6</td>
<td>+0.0</td>
<td>14.6</td>
<td>66.0</td>
<td>-51.4</td>
</tr>
<tr>
<td>7</td>
<td>38.710k</td>
<td>14.6</td>
<td>+0.0</td>
<td>14.6</td>
<td>66.0</td>
<td>-51.4</td>
</tr>
<tr>
<td>8</td>
<td>48.700k</td>
<td>14.5</td>
<td>+0.0</td>
<td>14.5</td>
<td>66.0</td>
<td>-51.5</td>
</tr>
<tr>
<td>9</td>
<td>36.370k</td>
<td>13.7</td>
<td>+0.0</td>
<td>13.7</td>
<td>66.0</td>
<td>-52.3</td>
</tr>
<tr>
<td>10</td>
<td>71.830k</td>
<td>13.7</td>
<td>+0.0</td>
<td>13.7</td>
<td>66.0</td>
<td>-52.3</td>
</tr>
<tr>
<td>11</td>
<td>28.000k</td>
<td>13.3</td>
<td>+0.0</td>
<td>13.3</td>
<td>66.0</td>
<td>-52.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>32.320k</td>
<td>13.3</td>
<td>+0.0</td>
<td>13.3</td>
<td>66.0</td>
<td>-52.7</td>
</tr>
<tr>
<td>13</td>
<td>11.260k</td>
<td>13.2</td>
<td>+0.0</td>
<td>13.2</td>
<td>66.0</td>
<td>-52.8</td>
</tr>
<tr>
<td>14</td>
<td>57.430k</td>
<td>13.2</td>
<td>+0.0</td>
<td>13.2</td>
<td>66.0</td>
<td>-52.8</td>
</tr>
<tr>
<td>15</td>
<td>65.170k</td>
<td>13.2</td>
<td>+0.0</td>
<td>13.2</td>
<td>66.0</td>
<td>-52.8</td>
</tr>
<tr>
<td>16</td>
<td>60.580k</td>
<td>13.1</td>
<td>+0.0</td>
<td>13.1</td>
<td>66.0</td>
<td>-52.9</td>
</tr>
<tr>
<td>17</td>
<td>29.080k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
</tr>
<tr>
<td>18</td>
<td>31.150k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
</tr>
<tr>
<td>19</td>
<td>34.750k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
</tr>
<tr>
<td>20</td>
<td>77.860k</td>
<td>12.9</td>
<td>+0.0</td>
<td>12.9</td>
<td>66.0</td>
<td>-53.1</td>
</tr>
<tr>
<td>21</td>
<td>56.080k</td>
<td>12.7</td>
<td>+0.0</td>
<td>12.7</td>
<td>66.0</td>
<td>-53.3</td>
</tr>
<tr>
<td>22</td>
<td>79.570k</td>
<td>12.7</td>
<td>+0.0</td>
<td>12.7</td>
<td>66.0</td>
<td>-53.3</td>
</tr>
<tr>
<td>23</td>
<td>30.250k</td>
<td>12.5</td>
<td>+0.0</td>
<td>12.5</td>
<td>66.0</td>
<td>-53.5</td>
</tr>
<tr>
<td>24</td>
<td>58.510k</td>
<td>12.5</td>
<td>+0.0</td>
<td>12.5</td>
<td>66.0</td>
<td>-53.5</td>
</tr>
<tr>
<td>25</td>
<td>66.700k</td>
<td>12.5</td>
<td>+0.0</td>
<td>12.5</td>
<td>66.0</td>
<td>-53.5</td>
</tr>
<tr>
<td>26</td>
<td>61.300k</td>
<td>12.3</td>
<td>+0.0</td>
<td>12.3</td>
<td>66.0</td>
<td>-53.7</td>
</tr>
<tr>
<td>27</td>
<td>59.140k</td>
<td>12.2</td>
<td>+0.0</td>
<td>12.2</td>
<td>66.0</td>
<td>-53.8</td>
</tr>
<tr>
<td>28</td>
<td>94.960k</td>
<td>12.2</td>
<td>+0.0</td>
<td>12.2</td>
<td>66.0</td>
<td>-53.8</td>
</tr>
<tr>
<td>29</td>
<td>31.690k</td>
<td>12.1</td>
<td>+0.0</td>
<td>12.1</td>
<td>66.0</td>
<td>-53.9</td>
</tr>
<tr>
<td>30</td>
<td>75.430k</td>
<td>12.1</td>
<td>+0.0</td>
<td>12.1</td>
<td>66.0</td>
<td>-53.9</td>
</tr>
<tr>
<td>31</td>
<td>62.470k</td>
<td>12.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>66.0</td>
<td>-54.0</td>
</tr>
<tr>
<td>32</td>
<td>98.650k</td>
<td>12.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>66.0</td>
<td>-54.0</td>
</tr>
<tr>
<td>33</td>
<td>69.220k</td>
<td>11.9</td>
<td>+0.0</td>
<td>11.9</td>
<td>66.0</td>
<td>-54.1</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Resistance</td>
<td>Change</td>
<td>Old Value</td>
<td>New Value</td>
<td>Temperature</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>34</td>
<td>93.520k</td>
<td>11.8</td>
<td>+0.0</td>
<td>11.8</td>
<td>66.0</td>
<td>-54.2</td>
</tr>
<tr>
<td>35</td>
<td>67.420k</td>
<td>11.7</td>
<td>+0.0</td>
<td>11.7</td>
<td>66.0</td>
<td>-54.3</td>
</tr>
<tr>
<td>36</td>
<td>68.500k</td>
<td>11.6</td>
<td>+0.0</td>
<td>11.6</td>
<td>66.0</td>
<td>-54.4</td>
</tr>
<tr>
<td>37</td>
<td>90.190k</td>
<td>11.4</td>
<td>+0.0</td>
<td>11.4</td>
<td>66.0</td>
<td>-54.6</td>
</tr>
<tr>
<td>38</td>
<td>97.750k</td>
<td>11.3</td>
<td>+0.0</td>
<td>11.3</td>
<td>66.0</td>
<td>-54.7</td>
</tr>
<tr>
<td>39</td>
<td>62.110k</td>
<td>11.2</td>
<td>+0.0</td>
<td>11.2</td>
<td>66.0</td>
<td>-54.8</td>
</tr>
<tr>
<td>40</td>
<td>64.360k</td>
<td>11.2</td>
<td>+0.0</td>
<td>11.2</td>
<td>66.0</td>
<td>-54.8</td>
</tr>
<tr>
<td>41</td>
<td>64.720k</td>
<td>11.2</td>
<td>+0.0</td>
<td>11.2</td>
<td>66.0</td>
<td>-54.8</td>
</tr>
<tr>
<td>42</td>
<td>81.730k</td>
<td>11.2</td>
<td>+0.0</td>
<td>11.2</td>
<td>66.0</td>
<td>-54.8</td>
</tr>
<tr>
<td>43</td>
<td>89.110k</td>
<td>11.2</td>
<td>+0.0</td>
<td>11.2</td>
<td>66.0</td>
<td>-54.8</td>
</tr>
<tr>
<td>44</td>
<td>88.660k</td>
<td>11.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>66.0</td>
<td>-55.0</td>
</tr>
<tr>
<td>45</td>
<td>86.410k</td>
<td>10.9</td>
<td>+0.0</td>
<td>10.9</td>
<td>66.0</td>
<td>-55.1</td>
</tr>
<tr>
<td>46</td>
<td>87.580k</td>
<td>10.9</td>
<td>+0.0</td>
<td>10.9</td>
<td>66.0</td>
<td>-55.1</td>
</tr>
<tr>
<td>47</td>
<td>82.720k</td>
<td>10.8</td>
<td>+0.0</td>
<td>10.8</td>
<td>66.0</td>
<td>-55.2</td>
</tr>
<tr>
<td>48</td>
<td>84.610k</td>
<td>10.8</td>
<td>+0.0</td>
<td>10.8</td>
<td>66.0</td>
<td>-55.2</td>
</tr>
<tr>
<td>49</td>
<td>1.173M</td>
<td>22.0</td>
<td>+0.0</td>
<td>22.0</td>
<td>110.8</td>
<td>-88.8</td>
</tr>
<tr>
<td>50</td>
<td>2.419M</td>
<td>10.6</td>
<td>+0.0</td>
<td>10.6</td>
<td>101.4</td>
<td>-90.8</td>
</tr>
<tr>
<td>51</td>
<td>2.266M</td>
<td>10.1</td>
<td>+0.0</td>
<td>10.1</td>
<td>102.6</td>
<td>-92.5</td>
</tr>
<tr>
<td>52</td>
<td>103.900k</td>
<td>12.6</td>
<td>+0.0</td>
<td>12.6</td>
<td>106.0</td>
<td>-93.4</td>
</tr>
<tr>
<td>53</td>
<td>106.300k</td>
<td>12.5</td>
<td>+0.0</td>
<td>12.5</td>
<td>106.0</td>
<td>-93.5</td>
</tr>
<tr>
<td>54</td>
<td>810.250k</td>
<td>18.3</td>
<td>+0.0</td>
<td>18.3</td>
<td>112.0</td>
<td>-93.7</td>
</tr>
<tr>
<td>55</td>
<td>122.200k</td>
<td>11.6</td>
<td>+0.0</td>
<td>11.6</td>
<td>106.0</td>
<td>-94.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>56</td>
<td>118.150k</td>
<td>11.4</td>
<td>+0.0</td>
<td>11.4</td>
<td>106.0</td>
<td>-94.6</td>
</tr>
<tr>
<td>57</td>
<td>115.150k</td>
<td>11.2</td>
<td>+0.0</td>
<td>11.2</td>
<td>106.0</td>
<td>-94.8</td>
</tr>
<tr>
<td>58</td>
<td>201.850k</td>
<td>11.1</td>
<td>+0.0</td>
<td>11.1</td>
<td>106.0</td>
<td>-94.9</td>
</tr>
<tr>
<td>59</td>
<td>673.000k</td>
<td>16.8</td>
<td>+0.0</td>
<td>16.8</td>
<td>112.0</td>
<td>-95.2</td>
</tr>
<tr>
<td>60</td>
<td>123.550k</td>
<td>10.7</td>
<td>+0.0</td>
<td>10.7</td>
<td>106.0</td>
<td>-95.3</td>
</tr>
<tr>
<td>61</td>
<td>1.049M</td>
<td>16.3</td>
<td>+0.0</td>
<td>16.3</td>
<td>111.6</td>
<td>-95.3</td>
</tr>
<tr>
<td>62</td>
<td>126.100k</td>
<td>10.6</td>
<td>+0.0</td>
<td>10.6</td>
<td>106.0</td>
<td>-95.4</td>
</tr>
<tr>
<td>63</td>
<td>161.200k</td>
<td>10.5</td>
<td>+0.0</td>
<td>10.5</td>
<td>106.0</td>
<td>-95.5</td>
</tr>
<tr>
<td>64</td>
<td>167.500k</td>
<td>10.2</td>
<td>+0.0</td>
<td>10.2</td>
<td>106.0</td>
<td>-95.8</td>
</tr>
<tr>
<td>65</td>
<td>215.650k</td>
<td>10.2</td>
<td>+0.0</td>
<td>10.2</td>
<td>106.0</td>
<td>-95.8</td>
</tr>
<tr>
<td>66</td>
<td>249.700k</td>
<td>10.1</td>
<td>+0.0</td>
<td>10.1</td>
<td>106.0</td>
<td>-95.9</td>
</tr>
<tr>
<td>67</td>
<td>176.800k</td>
<td>10.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>106.0</td>
<td>-96.0</td>
</tr>
<tr>
<td>68</td>
<td>130.900k</td>
<td>9.9</td>
<td>+0.0</td>
<td>9.9</td>
<td>106.0</td>
<td>-96.1</td>
</tr>
<tr>
<td>69</td>
<td>137.650k</td>
<td>9.9</td>
<td>+0.0</td>
<td>9.9</td>
<td>106.0</td>
<td>-96.1</td>
</tr>
<tr>
<td>70</td>
<td>146.350k</td>
<td>9.9</td>
<td>+0.0</td>
<td>9.9</td>
<td>106.0</td>
<td>-96.1</td>
</tr>
<tr>
<td>71</td>
<td>174.100k</td>
<td>9.8</td>
<td>+0.0</td>
<td>9.8</td>
<td>106.0</td>
<td>-96.2</td>
</tr>
<tr>
<td>72</td>
<td>179.650k</td>
<td>9.8</td>
<td>+0.0</td>
<td>9.8</td>
<td>106.0</td>
<td>-96.2</td>
</tr>
<tr>
<td>73</td>
<td>223.150k</td>
<td>9.8</td>
<td>+0.0</td>
<td>9.8</td>
<td>106.0</td>
<td>-96.2</td>
</tr>
<tr>
<td>74</td>
<td>132.400k</td>
<td>9.7</td>
<td>+0.0</td>
<td>9.7</td>
<td>106.0</td>
<td>-96.3</td>
</tr>
<tr>
<td>75</td>
<td>246.100k</td>
<td>9.7</td>
<td>+0.0</td>
<td>9.7</td>
<td>106.0</td>
<td>-96.3</td>
</tr>
<tr>
<td>76</td>
<td>230.050k</td>
<td>9.6</td>
<td>+0.0</td>
<td>9.6</td>
<td>106.0</td>
<td>-96.4</td>
</tr>
<tr>
<td>77</td>
<td>195.100k</td>
<td>9.5</td>
<td>+0.0</td>
<td>9.5</td>
<td>106.0</td>
<td>-96.5</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Percent</td>
<td>Change</td>
<td>New Percent</td>
<td>New Value</td>
<td>Change</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>78</td>
<td>212.950k</td>
<td>9.5</td>
<td>+0.0</td>
<td>9.5</td>
<td>106.0</td>
<td>-96.5</td>
</tr>
<tr>
<td>79</td>
<td>1.222M</td>
<td>14.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>110.5</td>
<td>-96.5</td>
</tr>
<tr>
<td>80</td>
<td>218.650k</td>
<td>9.3</td>
<td>+0.0</td>
<td>9.3</td>
<td>106.0</td>
<td>-96.7</td>
</tr>
<tr>
<td>81</td>
<td>229.450k</td>
<td>9.3</td>
<td>+0.0</td>
<td>9.3</td>
<td>106.0</td>
<td>-96.7</td>
</tr>
<tr>
<td>82</td>
<td>133.600k</td>
<td>9.2</td>
<td>+0.0</td>
<td>9.2</td>
<td>106.0</td>
<td>-96.8</td>
</tr>
<tr>
<td>83</td>
<td>187.300k</td>
<td>9.2</td>
<td>+0.0</td>
<td>9.2</td>
<td>106.0</td>
<td>-96.8</td>
</tr>
<tr>
<td>84</td>
<td>170.200k</td>
<td>9.1</td>
<td>+0.0</td>
<td>9.1</td>
<td>106.0</td>
<td>-96.9</td>
</tr>
<tr>
<td>85</td>
<td>147.700k</td>
<td>9.0</td>
<td>+0.0</td>
<td>9.0</td>
<td>106.0</td>
<td>-97.0</td>
</tr>
<tr>
<td>86</td>
<td>199.600k</td>
<td>9.0</td>
<td>+0.0</td>
<td>9.0</td>
<td>106.0</td>
<td>-97.0</td>
</tr>
<tr>
<td>87</td>
<td>203.200k</td>
<td>9.0</td>
<td>+0.0</td>
<td>9.0</td>
<td>106.0</td>
<td>-97.0</td>
</tr>
<tr>
<td>88</td>
<td>205.450k</td>
<td>9.0</td>
<td>+0.0</td>
<td>9.0</td>
<td>106.0</td>
<td>-97.0</td>
</tr>
<tr>
<td>89</td>
<td>224.950k</td>
<td>9.0</td>
<td>+0.0</td>
<td>9.0</td>
<td>106.0</td>
<td>-97.0</td>
</tr>
<tr>
<td>90</td>
<td>149.800k</td>
<td>8.9</td>
<td>+0.0</td>
<td>8.9</td>
<td>106.0</td>
<td>-97.1</td>
</tr>
<tr>
<td>91</td>
<td>188.500k</td>
<td>8.9</td>
<td>+0.0</td>
<td>8.9</td>
<td>106.0</td>
<td>-97.1</td>
</tr>
<tr>
<td>92</td>
<td>195.700k</td>
<td>8.8</td>
<td>+0.0</td>
<td>8.8</td>
<td>106.0</td>
<td>-97.2</td>
</tr>
<tr>
<td>93</td>
<td>226.000k</td>
<td>8.8</td>
<td>+0.0</td>
<td>8.8</td>
<td>106.0</td>
<td>-97.2</td>
</tr>
<tr>
<td>94</td>
<td>238.300k</td>
<td>8.8</td>
<td>+0.0</td>
<td>8.8</td>
<td>106.0</td>
<td>-97.2</td>
</tr>
<tr>
<td>95</td>
<td>232.900k</td>
<td>8.7</td>
<td>+0.0</td>
<td>8.7</td>
<td>106.0</td>
<td>-97.3</td>
</tr>
<tr>
<td>96</td>
<td>241.450k</td>
<td>8.7</td>
<td>+0.0</td>
<td>8.7</td>
<td>106.0</td>
<td>-97.3</td>
</tr>
<tr>
<td>97</td>
<td>242.650k</td>
<td>8.7</td>
<td>+0.0</td>
<td>8.7</td>
<td>106.0</td>
<td>-97.3</td>
</tr>
<tr>
<td>98</td>
<td>151.150k</td>
<td>8.6</td>
<td>+0.0</td>
<td>8.6</td>
<td>106.0</td>
<td>-97.4</td>
</tr>
<tr>
<td>99</td>
<td>245.650k</td>
<td>8.6</td>
<td>+0.0</td>
<td>8.6</td>
<td>106.0</td>
<td>-97.4</td>
</tr>
<tr>
<td>100</td>
<td>225.700k</td>
<td>8.5</td>
<td>+0.0</td>
<td>8.5</td>
<td>106.0</td>
<td>-97.5</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: CE102 MIL-STD-462
Work Order #: 82840
Test Type: Conducted Emissions
Date: 2/22/2005
Time: 1:20:36 PM

Test Conditions / Notes:
Pre-Cal Sweep. Signal at 2MHz. Injecting 113.7mVpp and expecting 58.3dBuV +/-3dB as meter reading.

Transducer Legend:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdngr dBµV</th>
<th>dB</th>
<th>dB</th>
<th>dB</th>
<th>dB</th>
<th>Dist Table</th>
<th>Corr dBµV</th>
<th>Spec dBµV</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.003M</td>
<td>58.1</td>
<td>+0.0</td>
<td>58.1</td>
<td>104.9</td>
<td>-46.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40.510k</td>
<td>18.6</td>
<td>+0.0</td>
<td>18.6</td>
<td>66.0</td>
<td>-47.4</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>38.800k</td>
<td>15.3</td>
<td>+0.0</td>
<td>15.3</td>
<td>66.0</td>
<td>-50.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>28.720k</td>
<td>15.1</td>
<td>+0.0</td>
<td>15.1</td>
<td>66.0</td>
<td>-50.9</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10.810k</td>
<td>15.0</td>
<td>+0.0</td>
<td>15.0</td>
<td>66.0</td>
<td>-51.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>33.220k</td>
<td>14.9</td>
<td>+0.0</td>
<td>14.9</td>
<td>66.0</td>
<td>-51.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>37.180k</td>
<td>14.7</td>
<td>+0.0</td>
<td>14.7</td>
<td>66.0</td>
<td>-51.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12.070k</td>
<td>14.3</td>
<td>+0.0</td>
<td>14.3</td>
<td>66.0</td>
<td>-51.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>53.650k</td>
<td>14.3</td>
<td>+0.0</td>
<td>14.3</td>
<td>66.0</td>
<td>-51.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19.450k</td>
<td>14.2</td>
<td>+0.0</td>
<td>14.2</td>
<td>66.0</td>
<td>-51.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>16.570k</td>
<td>13.9</td>
<td>+0.0</td>
<td>13.9</td>
<td>66.0</td>
<td>-52.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>47.440k</td>
<td>13.9</td>
<td>+0.0</td>
<td>13.9</td>
<td>66.0</td>
<td>-52.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>58.690k</td>
<td>13.5</td>
<td>+0.0</td>
<td>13.5</td>
<td>66.0</td>
<td>-52.5</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>76.150k</td>
<td>13.3</td>
<td>+0.0</td>
<td>13.3</td>
<td>66.0</td>
<td>-52.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>26.470k</td>
<td>13.1</td>
<td>+0.0</td>
<td>13.1</td>
<td>66.0</td>
<td>-52.9</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>50.590k</td>
<td>13.1</td>
<td>+0.0</td>
<td>13.1</td>
<td>66.0</td>
<td>-52.9</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>50.050k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>72.370k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>78.400k</td>
<td>13.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>66.430k</td>
<td>12.9</td>
<td>+0.0</td>
<td>12.9</td>
<td>66.0</td>
<td>-53.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>74.530k</td>
<td>12.9</td>
<td>+0.0</td>
<td>12.9</td>
<td>66.0</td>
<td>-53.1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>24.760k</td>
<td>12.8</td>
<td>+0.0</td>
<td>12.8</td>
<td>66.0</td>
<td>-53.2</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>73.180k</td>
<td>12.8</td>
<td>+0.0</td>
<td>12.8</td>
<td>66.0</td>
<td>-53.2</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>46.360k</td>
<td>12.7</td>
<td>+0.0</td>
<td>12.7</td>
<td>66.0</td>
<td>-53.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>22.420k</td>
<td>12.6</td>
<td>+0.0</td>
<td>12.6</td>
<td>66.0</td>
<td>-53.4</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>68.320k</td>
<td>12.6</td>
<td>+0.0</td>
<td>12.6</td>
<td>66.0</td>
<td>-53.4</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>22.780k</td>
<td>12.5</td>
<td>+0.0</td>
<td>12.5</td>
<td>66.0</td>
<td>-53.5</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>64.990k</td>
<td>12.5</td>
<td>+0.0</td>
<td>12.5</td>
<td>66.0</td>
<td>-53.5</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>71.560k</td>
<td>12.4</td>
<td>+0.0</td>
<td>12.4</td>
<td>66.0</td>
<td>-53.6</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>87.580k</td>
<td>12.4</td>
<td>+0.0</td>
<td>12.4</td>
<td>66.0</td>
<td>-53.6</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: CE102 MIL-STD-462
Work Order #: 82840
Test Type: Conducted Emissions
Date: 2/22/2005
Time: 2:39:32 PM
Equipment: TEM/TPS
Sequence#: 1
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:
T1=F-35 SN 296 AN 00731
T2=20' Cable Male N to Male N AN None
T3=Cable 2410

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq (MHz)</th>
<th>Rdng (dBµV)</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Dist Corr (dBµV)</th>
<th>Spec (dBµV)</th>
<th>Margin (dB)</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60.040k</td>
<td>51.7</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>52.9</td>
<td>66.0</td>
<td>-13.1</td>
</tr>
<tr>
<td>2</td>
<td>58.960k</td>
<td>47.5</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>48.7</td>
<td>66.0</td>
<td>-17.3</td>
</tr>
<tr>
<td>3</td>
<td>10.270k</td>
<td>36.4</td>
<td>+8.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>45.5</td>
<td>66.0</td>
<td>-20.5</td>
</tr>
<tr>
<td>4</td>
<td>12.520k</td>
<td>33.7</td>
<td>+7.8</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>41.7</td>
<td>66.0</td>
<td>-24.3</td>
</tr>
<tr>
<td>5</td>
<td>12.970k</td>
<td>33.7</td>
<td>+7.6</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>41.5</td>
<td>66.0</td>
<td>-24.5</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td>Capacity</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>R5</td>
<td>Duty Cycle</td>
<td>Cap</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>6</td>
<td>12.340k</td>
<td>32.9</td>
<td>+7.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>41.0</td>
<td>66.0</td>
<td>-25.0</td>
</tr>
<tr>
<td>7</td>
<td>13.330k</td>
<td>32.7</td>
<td>+7.4</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>40.3</td>
<td>66.0</td>
<td>-25.7</td>
</tr>
<tr>
<td>8</td>
<td>13.690k</td>
<td>32.5</td>
<td>+7.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>39.9</td>
<td>66.0</td>
<td>-26.1</td>
</tr>
<tr>
<td>9</td>
<td>58.060k</td>
<td>38.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>39.4</td>
<td>66.0</td>
<td>-26.6</td>
</tr>
<tr>
<td>10</td>
<td>57.880k</td>
<td>36.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>37.3</td>
<td>66.0</td>
<td>-28.7</td>
</tr>
<tr>
<td>11</td>
<td>14.230k</td>
<td>29.3</td>
<td>+7.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>36.4</td>
<td>66.0</td>
<td>-29.6</td>
</tr>
<tr>
<td>12</td>
<td>13.960k</td>
<td>28.3</td>
<td>+7.1</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.6</td>
<td>66.0</td>
<td>-30.4</td>
</tr>
<tr>
<td>13</td>
<td>14.680k</td>
<td>28.2</td>
<td>+6.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.1</td>
<td>66.0</td>
<td>-30.9</td>
</tr>
<tr>
<td>14</td>
<td>15.310k</td>
<td>28.4</td>
<td>+6.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.1</td>
<td>66.0</td>
<td>-30.9</td>
</tr>
<tr>
<td>15</td>
<td>17.200k</td>
<td>22.7</td>
<td>+5.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.7</td>
<td>66.0</td>
<td>-37.3</td>
</tr>
<tr>
<td>16</td>
<td>56.980k</td>
<td>26.4</td>
<td>+1.3</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>27.7</td>
<td>66.0</td>
<td>-38.3</td>
</tr>
<tr>
<td>17</td>
<td>62.380k</td>
<td>26.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>27.3</td>
<td>66.0</td>
<td>-38.7</td>
</tr>
<tr>
<td>18</td>
<td>62.740k</td>
<td>24.8</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>25.9</td>
<td>66.0</td>
<td>-40.1</td>
</tr>
<tr>
<td>19</td>
<td>18.640k</td>
<td>20.2</td>
<td>+5.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.7</td>
<td>66.0</td>
<td>-40.3</td>
</tr>
<tr>
<td>20</td>
<td>56.800k</td>
<td>24.2</td>
<td>+1.3</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>25.5</td>
<td>66.0</td>
<td>-40.5</td>
</tr>
<tr>
<td>21</td>
<td>51.580k</td>
<td>23.6</td>
<td>+1.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.1</td>
<td>66.0</td>
<td>-40.9</td>
</tr>
<tr>
<td>22</td>
<td>21.970k</td>
<td>18.2</td>
<td>+4.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>22.8</td>
<td>66.0</td>
<td>-43.2</td>
</tr>
<tr>
<td>23</td>
<td>21.070k</td>
<td>17.7</td>
<td>+4.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>22.5</td>
<td>66.0</td>
<td>-43.5</td>
</tr>
<tr>
<td>24</td>
<td>24.760k</td>
<td>18.3</td>
<td>+3.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>22.3</td>
<td>66.0</td>
<td>-43.7</td>
</tr>
<tr>
<td>25</td>
<td>22.510k</td>
<td>17.3</td>
<td>+4.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>21.8</td>
<td>66.0</td>
<td>-44.2</td>
</tr>
<tr>
<td>26</td>
<td>26.560k</td>
<td>17.8</td>
<td>+3.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>21.5</td>
<td>66.0</td>
<td>-44.5</td>
</tr>
<tr>
<td>27</td>
<td>25.750k</td>
<td>17.2</td>
<td>+3.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>21.1</td>
<td>66.0</td>
<td>-44.9</td>
</tr>
<tr>
<td></td>
<td>Current Value (kΩ)</td>
<td>Resistance (Ω)</td>
<td>Change</td>
<td>Error (Ω)</td>
<td>Change</td>
<td>Temperature (°C)</td>
<td>Change</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>40.060k</td>
<td>18.3</td>
<td>+2.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.5</td>
<td>66</td>
<td>-45.5 Posit</td>
</tr>
<tr>
<td>29</td>
<td>27.190k</td>
<td>16.6</td>
<td>+3.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.2</td>
<td>66</td>
<td>-45.8 Posit</td>
</tr>
<tr>
<td>30</td>
<td>33.670k</td>
<td>17.2</td>
<td>+2.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>19.9</td>
<td>66</td>
<td>-46.1 Posit</td>
</tr>
<tr>
<td>31</td>
<td>74.710k</td>
<td>18.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>19.9</td>
<td>66</td>
<td>-46.1 Posit</td>
</tr>
<tr>
<td>32</td>
<td>78.310k</td>
<td>18.9</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>19.7</td>
<td>66</td>
<td>-46.3 Posit</td>
</tr>
<tr>
<td>33</td>
<td>77.680k</td>
<td>18.7</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>19.5</td>
<td>66</td>
<td>-46.5 Posit</td>
</tr>
<tr>
<td>34</td>
<td>27.640k</td>
<td>15.7</td>
<td>+3.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>19.2</td>
<td>66</td>
<td>-46.8 Posit</td>
</tr>
<tr>
<td>35</td>
<td>28.720k</td>
<td>15.9</td>
<td>+3.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>19.2</td>
<td>66</td>
<td>-46.8 Posit</td>
</tr>
<tr>
<td>36</td>
<td>63.910k</td>
<td>18.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>19.2</td>
<td>66</td>
<td>-46.8 Posit</td>
</tr>
<tr>
<td>37</td>
<td>76.330k</td>
<td>18.1</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>19.0</td>
<td>66</td>
<td>-47.0 Posit</td>
</tr>
<tr>
<td>38</td>
<td>63.640k</td>
<td>17.8</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>18.9</td>
<td>66</td>
<td>-47.1 Posit</td>
</tr>
<tr>
<td>39</td>
<td>30.700k</td>
<td>15.8</td>
<td>+2.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>18.8</td>
<td>66</td>
<td>-47.2 Posit</td>
</tr>
<tr>
<td>40</td>
<td>31.780k</td>
<td>15.8</td>
<td>+2.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>18.7</td>
<td>66</td>
<td>-47.3 Posit</td>
</tr>
<tr>
<td>41</td>
<td>79.840k</td>
<td>17.3</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>18.1</td>
<td>66</td>
<td>-47.9 Posit</td>
</tr>
<tr>
<td>42</td>
<td>80.650k</td>
<td>17.3</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>18.1</td>
<td>66</td>
<td>-47.9 Posit</td>
</tr>
<tr>
<td>43</td>
<td>38.260k</td>
<td>15.7</td>
<td>+2.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>18.0</td>
<td>66</td>
<td>-48.0 Posit</td>
</tr>
<tr>
<td>44</td>
<td>36.910k</td>
<td>15.3</td>
<td>+2.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.8</td>
<td>66</td>
<td>-48.2 Posit</td>
</tr>
<tr>
<td>45</td>
<td>79.300k</td>
<td>16.9</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>17.7</td>
<td>66</td>
<td>-48.3 Posit</td>
</tr>
<tr>
<td>46</td>
<td>38.440k</td>
<td>14.8</td>
<td>+2.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.1</td>
<td>66</td>
<td>-48.9 Posit</td>
</tr>
<tr>
<td>47</td>
<td>38.890k</td>
<td>14.3</td>
<td>+2.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.6</td>
<td>66</td>
<td>-49.4 Posit</td>
</tr>
<tr>
<td>48</td>
<td>42.310k</td>
<td>14.6</td>
<td>+1.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.6</td>
<td>66</td>
<td>-49.4 Posit</td>
</tr>
<tr>
<td>49</td>
<td>64.990k</td>
<td>15.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.3</td>
<td>66</td>
<td>-49.7 Posit</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>70.120k</td>
<td>15.2</td>
<td>+1.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>16.3</td>
<td>66.0</td>
</tr>
<tr>
<td>51</td>
<td>45.820k</td>
<td>13.9</td>
<td>+1.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>15.7</td>
<td>66.0</td>
</tr>
<tr>
<td>52</td>
<td>81.190k</td>
<td>14.5</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td></td>
<td>+0.0</td>
<td>15.3</td>
<td>66.0</td>
</tr>
<tr>
<td>53</td>
<td>71.650k</td>
<td>13.9</td>
<td>+1.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>15.0</td>
<td>66.0</td>
</tr>
<tr>
<td>54</td>
<td>74.260k</td>
<td>13.8</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>14.8</td>
<td>66.0</td>
</tr>
<tr>
<td>55</td>
<td>70.390k</td>
<td>13.6</td>
<td>+1.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>14.7</td>
<td>66.0</td>
</tr>
<tr>
<td>56</td>
<td>85.960k</td>
<td>13.3</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>14.1</td>
<td>66.0</td>
</tr>
<tr>
<td>57</td>
<td>67.780k</td>
<td>12.6</td>
<td>+1.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>13.7</td>
<td>66.0</td>
</tr>
<tr>
<td>58</td>
<td>72.640k</td>
<td>12.4</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>13.4</td>
<td>66.0</td>
</tr>
<tr>
<td>59</td>
<td>84.880k</td>
<td>12.6</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>13.4</td>
<td>66.0</td>
</tr>
<tr>
<td>60</td>
<td>83.350k</td>
<td>12.5</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.0</td>
<td></td>
<td>+0.0</td>
<td>13.2</td>
<td>66.0</td>
</tr>
<tr>
<td>61</td>
<td>89.920k</td>
<td>12.1</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>12.9</td>
<td>66.0</td>
</tr>
<tr>
<td>62</td>
<td>98.110k</td>
<td>12.1</td>
<td>+0.6</td>
<td>+0.0</td>
<td>+0.0</td>
<td></td>
<td>+0.0</td>
<td>12.7</td>
<td>66.0</td>
</tr>
<tr>
<td>63</td>
<td>92.350k</td>
<td>11.2</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.0</td>
<td></td>
<td>+0.0</td>
<td>12.0</td>
<td>66.0</td>
</tr>
<tr>
<td>64</td>
<td>5.605M</td>
<td>27.2</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>27.2</td>
<td>85.8</td>
</tr>
<tr>
<td>65</td>
<td>5.478M</td>
<td>25.8</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>25.8</td>
<td>86.1</td>
</tr>
<tr>
<td>66</td>
<td>5.725M</td>
<td>24.2</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>24.2</td>
<td>85.6</td>
</tr>
<tr>
<td>67</td>
<td>124.600k</td>
<td>43.1</td>
<td>+0.5</td>
<td>+0.0</td>
<td>+0.0</td>
<td></td>
<td>+0.0</td>
<td>43.6</td>
<td>106.0</td>
</tr>
<tr>
<td>68</td>
<td>5.980M</td>
<td>22.7</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>22.7</td>
<td>85.2</td>
</tr>
<tr>
<td>69</td>
<td>5.350M</td>
<td>23.0</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>22.9</td>
<td>86.5</td>
</tr>
<tr>
<td>70</td>
<td>5.853M</td>
<td>20.6</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>20.6</td>
<td>85.4</td>
</tr>
<tr>
<td>71</td>
<td>6.228M</td>
<td>19.6</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td></td>
<td>+0.0</td>
<td>19.6</td>
<td>84.8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>5.103M</td>
<td>20.6</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.5</td>
<td>87.4</td>
<td>-66.9</td>
</tr>
<tr>
<td>73</td>
<td>9.978M</td>
<td>12.9</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>13.0</td>
<td>80.0</td>
<td>-67.0</td>
</tr>
<tr>
<td>74</td>
<td>8.973M</td>
<td>12.9</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>13.0</td>
<td>81.1</td>
<td>-68.1</td>
</tr>
<tr>
<td>75</td>
<td>4.728M</td>
<td>20.4</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.4</td>
<td>88.8</td>
<td>-68.4</td>
</tr>
<tr>
<td>76</td>
<td>7.728M</td>
<td>13.5</td>
<td>-0.2</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>13.7</td>
<td>82.6</td>
<td>-68.9</td>
</tr>
<tr>
<td>77</td>
<td>5.223M</td>
<td>18.1</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>18.0</td>
<td>87.0</td>
<td>-69.0</td>
</tr>
<tr>
<td>78</td>
<td>8.605M</td>
<td>12.3</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>12.4</td>
<td>81.5</td>
<td>-69.1</td>
</tr>
<tr>
<td>79</td>
<td>4.975M</td>
<td>18.4</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>18.3</td>
<td>87.9</td>
<td>-69.6</td>
</tr>
<tr>
<td>80</td>
<td>2.598M</td>
<td>30.2</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.1</td>
<td>100.1</td>
<td>-70.0</td>
</tr>
<tr>
<td>81</td>
<td>8.103M</td>
<td>11.9</td>
<td>-0.2</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>12.1</td>
<td>82.1</td>
<td>-70.0</td>
</tr>
<tr>
<td>82</td>
<td>8.230M</td>
<td>11.7</td>
<td>-0.2</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>11.9</td>
<td>82.0</td>
<td>-70.1</td>
</tr>
<tr>
<td>83</td>
<td>6.355M</td>
<td>14.1</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>14.1</td>
<td>84.5</td>
<td>-70.4</td>
</tr>
<tr>
<td>84</td>
<td>8.853M</td>
<td>10.7</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>10.8</td>
<td>81.2</td>
<td>-70.4</td>
</tr>
<tr>
<td>85</td>
<td>250.000k</td>
<td>35.2</td>
<td>+0.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>35.3</td>
<td>106.0</td>
<td>-70.7</td>
</tr>
<tr>
<td>86</td>
<td>7.353M</td>
<td>11.4</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>11.5</td>
<td>83.1</td>
<td>-71.6</td>
</tr>
<tr>
<td>87</td>
<td>6.850M</td>
<td>11.6</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>11.7</td>
<td>83.8</td>
<td>-72.1</td>
</tr>
<tr>
<td>88</td>
<td>7.225M</td>
<td>10.8</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>10.9</td>
<td>83.3</td>
<td>-72.4</td>
</tr>
<tr>
<td>89</td>
<td>5.673M</td>
<td>13.0</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.0</td>
<td>85.7</td>
<td>-72.7</td>
</tr>
<tr>
<td>90</td>
<td>4.600M</td>
<td>16.0</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.0</td>
<td>89.3</td>
<td>-73.3</td>
</tr>
<tr>
<td>91</td>
<td>2.372M</td>
<td>28.3</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.3</td>
<td>101.8</td>
<td>-73.5</td>
</tr>
<tr>
<td>92</td>
<td>4.855M</td>
<td>14.9</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>14.8</td>
<td>88.3</td>
<td>-73.5</td>
</tr>
<tr>
<td>93</td>
<td>4.353M</td>
<td>16.3</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>16.4</td>
<td>90.4</td>
<td>-74.0</td>
</tr>
<tr>
<td>94</td>
<td>4.225M</td>
<td>15.0</td>
<td>-0.1</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>15.2</td>
<td>90.9</td>
<td>-75.7</td>
</tr>
<tr>
<td></td>
<td>Frequency [MHz]</td>
<td>Amplitude</td>
<td>Phase 1</td>
<td>Phase 2</td>
<td>Peak</td>
<td>Deviation</td>
<td>Result</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>119.650k</td>
<td>+0.5</td>
<td>+0.0</td>
<td>+0.0</td>
<td>30.2</td>
<td>+0.0</td>
<td>-75.8 Posit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>2.725M</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>22.6</td>
<td>+0.0</td>
<td>-76.6 Posit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>249.850k</td>
<td>+0.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>29.2</td>
<td>+0.0</td>
<td>-76.8 Posit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>4.795M</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>11.8</td>
<td>+0.0</td>
<td>-76.8 Posit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>4.480M</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>12.9</td>
<td>+0.0</td>
<td>-76.9 Posit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4.638M</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>12.3</td>
<td>+0.0</td>
<td>-76.9 Posit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image)
Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: CE102 MIL-STD-462
Work Order #: 82840
Date: 2/22/2005
Test Type: Conducted Emissions
Time: 2:43:53 PM
Equipment: TEM/TPS
Sequence#: 2
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:
T1=F-35 SN 296 AN 00731
T2=20' Cable Male N to Male N AN None
T3=Cable 2410

Measurement Data:
Reading listed by margin.

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Dist Table</th>
<th>Corr dBµV</th>
<th>Spec dBµV</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59.950k</td>
<td>52.5</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>53.7</td>
<td>66.0</td>
<td>-12.3</td>
<td>Retur</td>
</tr>
<tr>
<td>2</td>
<td>58.600k</td>
<td>44.8</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>46.0</td>
<td>66.0</td>
<td>-20.0</td>
<td>Retur</td>
</tr>
<tr>
<td>3</td>
<td>58.420k</td>
<td>43.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>44.4</td>
<td>66.0</td>
<td>-21.6</td>
<td>Retur</td>
</tr>
<tr>
<td>4</td>
<td>11.800k</td>
<td>35.7</td>
<td>+8.1</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>44.0</td>
<td>66.0</td>
<td>-22.0</td>
<td>Retur</td>
</tr>
<tr>
<td>5</td>
<td>10.090k</td>
<td>34.7</td>
<td>+9.0</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>43.9</td>
<td>66.0</td>
<td>-22.1</td>
<td>Retur</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10.360k</td>
<td>33.6</td>
<td>+8.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>42.7</td>
<td>66.0</td>
<td>-23.3</td>
<td>Retur</td>
</tr>
<tr>
<td>7</td>
<td>58.240k</td>
<td>41.3</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>42.5</td>
<td>66.0</td>
<td>-23.5</td>
<td>Retur</td>
</tr>
<tr>
<td>8</td>
<td>12.970k</td>
<td>33.4</td>
<td>+7.6</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>41.2</td>
<td>66.0</td>
<td>-24.8</td>
<td>Retur</td>
</tr>
<tr>
<td>9</td>
<td>13.510k</td>
<td>30.4</td>
<td>+7.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.9</td>
<td>66.0</td>
<td>-28.1</td>
<td>Retur</td>
</tr>
<tr>
<td>10</td>
<td>13.960k</td>
<td>30.2</td>
<td>+7.1</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.5</td>
<td>66.0</td>
<td>-28.5</td>
<td>Retur</td>
</tr>
<tr>
<td>11</td>
<td>15.130k</td>
<td>27.7</td>
<td>+6.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>34.5</td>
<td>66.0</td>
<td>-31.5</td>
<td>Retur</td>
</tr>
<tr>
<td>12</td>
<td>57.520k</td>
<td>32.7</td>
<td>+1.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>33.9</td>
<td>66.0</td>
<td>-32.1</td>
<td>Retur</td>
</tr>
<tr>
<td>13</td>
<td>14.680k</td>
<td>26.4</td>
<td>+6.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.3</td>
<td>66.0</td>
<td>-32.7</td>
<td>Retur</td>
</tr>
<tr>
<td>14</td>
<td>57.340k</td>
<td>30.9</td>
<td>+1.3</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>32.2</td>
<td>66.0</td>
<td>-33.8</td>
<td>Retur</td>
</tr>
<tr>
<td>15</td>
<td>57.160k</td>
<td>29.3</td>
<td>+1.3</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>30.6</td>
<td>66.0</td>
<td>-35.4</td>
<td>Retur</td>
</tr>
<tr>
<td>16</td>
<td>15.580k</td>
<td>23.7</td>
<td>+6.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.3</td>
<td>66.0</td>
<td>-35.7</td>
<td>Retur</td>
</tr>
<tr>
<td>17</td>
<td>18.550k</td>
<td>19.4</td>
<td>+5.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.9</td>
<td>66.0</td>
<td>-41.1</td>
<td>Retur</td>
</tr>
<tr>
<td>18</td>
<td>23.590k</td>
<td>20.4</td>
<td>+4.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.7</td>
<td>66.0</td>
<td>-41.3</td>
<td>Retur</td>
</tr>
<tr>
<td>19</td>
<td>21.430k</td>
<td>19.4</td>
<td>+4.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.2</td>
<td>66.0</td>
<td>-41.8</td>
<td>Retur</td>
</tr>
<tr>
<td>20</td>
<td>19.990k</td>
<td>18.7</td>
<td>+5.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>23.8</td>
<td>66.0</td>
<td>-42.2</td>
<td>Retur</td>
</tr>
<tr>
<td>21</td>
<td>22.870k</td>
<td>18.5</td>
<td>+4.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>22.9</td>
<td>66.0</td>
<td>-43.1</td>
<td>Retur</td>
</tr>
<tr>
<td>22</td>
<td>22.420k</td>
<td>18.2</td>
<td>+4.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>22.7</td>
<td>66.0</td>
<td>-43.3</td>
<td>Retur</td>
</tr>
<tr>
<td>23</td>
<td>63.280k</td>
<td>21.6</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>22.7</td>
<td>66.0</td>
<td>-43.3</td>
<td>Retur</td>
</tr>
<tr>
<td>24</td>
<td>24.940k</td>
<td>18.3</td>
<td>+3.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>22.3</td>
<td>66.0</td>
<td>-43.7</td>
<td>Retur</td>
</tr>
<tr>
<td>25</td>
<td>62.920k</td>
<td>21.2</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>22.3</td>
<td>66.0</td>
<td>-43.7</td>
<td>Retur</td>
</tr>
<tr>
<td>26</td>
<td>56.440k</td>
<td>19.4</td>
<td>+1.3</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>20.7</td>
<td>66.0</td>
<td>-45.3</td>
<td>Retur</td>
</tr>
<tr>
<td>27</td>
<td>26.830k</td>
<td>16.8</td>
<td>+3.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.5</td>
<td>66.0</td>
<td>-45.5</td>
<td>Retur</td>
</tr>
<tr>
<td>No.</td>
<td>Value</td>
<td>Temperature</td>
<td>Change 1</td>
<td>Change 2</td>
<td>Change 3</td>
<td>Change 4</td>
<td>Change 5</td>
<td>Change 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>74.620k</td>
<td>19.5</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.5</td>
<td>-45.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>36.370k</td>
<td>17.7</td>
<td>+2.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.2</td>
<td>-45.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>27.910k</td>
<td>16.5</td>
<td>+3.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.0</td>
<td>-46.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>33.130k</td>
<td>17.2</td>
<td>+2.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.0</td>
<td>-46.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>56.260k</td>
<td>18.7</td>
<td>+1.3</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>20.0</td>
<td>-46.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>40.510k</td>
<td>17.6</td>
<td>+2.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>19.8</td>
<td>-46.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>28.450k</td>
<td>16.3</td>
<td>+3.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>19.7</td>
<td>-46.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>74.980k</td>
<td>18.8</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>19.7</td>
<td>-46.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>76.690k</td>
<td>18.7</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>19.6</td>
<td>-46.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>52.210k</td>
<td>18.0</td>
<td>+1.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>19.5</td>
<td>-46.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>28.900k</td>
<td>16.0</td>
<td>+3.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>19.3</td>
<td>-46.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>78.400k</td>
<td>17.8</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>18.6</td>
<td>-47.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>46.000k</td>
<td>16.5</td>
<td>+1.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>18.3</td>
<td>-47.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>35.380k</td>
<td>15.6</td>
<td>+2.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>18.2</td>
<td>-47.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>55.990k</td>
<td>16.8</td>
<td>+1.3</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>18.1</td>
<td>-47.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>29.260k</td>
<td>14.7</td>
<td>+3.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.9</td>
<td>-48.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>43.120k</td>
<td>15.9</td>
<td>+1.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.9</td>
<td>-48.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>38.620k</td>
<td>15.5</td>
<td>+2.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.8</td>
<td>-48.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>37.180k</td>
<td>15.3</td>
<td>+2.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.7</td>
<td>-48.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>36.640k</td>
<td>14.9</td>
<td>+2.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.4</td>
<td>-48.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>44.740k</td>
<td>15.3</td>
<td>+1.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.2</td>
<td>-48.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>37.990k</td>
<td>14.5</td>
<td>+2.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.9</td>
<td>-49.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Mean</td>
<td>Deviation</td>
<td>Error</td>
<td>Return</td>
<td>Value</td>
<td>Mean</td>
<td>Deviation</td>
<td>Error</td>
<td>Return</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>50</td>
<td>64.900k</td>
<td>15.2</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.4</td>
<td>66.0</td>
<td>-49.6</td>
<td>Retur</td>
</tr>
<tr>
<td>51</td>
<td>47.890k</td>
<td>14.4</td>
<td>+1.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.1</td>
<td>66.0</td>
<td>-49.9</td>
<td>Retur</td>
</tr>
<tr>
<td>52</td>
<td>45.370k</td>
<td>13.9</td>
<td>+1.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>15.8</td>
<td>66.0</td>
<td>-50.2</td>
<td>Retur</td>
</tr>
<tr>
<td>53</td>
<td>46.720k</td>
<td>14.0</td>
<td>+1.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>15.8</td>
<td>66.0</td>
<td>-50.2</td>
<td>Retur</td>
</tr>
<tr>
<td>54</td>
<td>64.360k</td>
<td>14.6</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>15.7</td>
<td>66.0</td>
<td>-50.3</td>
<td>Retur</td>
</tr>
<tr>
<td>55</td>
<td>80.560k</td>
<td>14.8</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>15.6</td>
<td>66.0</td>
<td>-50.4</td>
<td>Retur</td>
</tr>
<tr>
<td>56</td>
<td>81.190k</td>
<td>14.8</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>15.6</td>
<td>66.0</td>
<td>-50.4</td>
<td>Retur</td>
</tr>
<tr>
<td>57</td>
<td>81.910k</td>
<td>14.5</td>
<td>+0.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>15.3</td>
<td>66.0</td>
<td>-50.7</td>
<td>Retur</td>
</tr>
<tr>
<td>58</td>
<td>46.360k</td>
<td>13.1</td>
<td>+1.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>14.9</td>
<td>66.0</td>
<td>-51.1</td>
<td>Retur</td>
</tr>
<tr>
<td>59</td>
<td>86.050k</td>
<td>13.9</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>14.7</td>
<td>66.0</td>
<td>-51.3</td>
<td>Retur</td>
</tr>
<tr>
<td>60</td>
<td>66.340k</td>
<td>13.3</td>
<td>+1.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>14.5</td>
<td>66.0</td>
<td>-51.5</td>
<td>Retur</td>
</tr>
<tr>
<td>61</td>
<td>70.930k</td>
<td>13.2</td>
<td>+1.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>14.3</td>
<td>66.0</td>
<td>-51.7</td>
<td>Retur</td>
</tr>
<tr>
<td>62</td>
<td>73.630k</td>
<td>13.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>14.0</td>
<td>66.0</td>
<td>-52.0</td>
<td>Retur</td>
</tr>
<tr>
<td>63</td>
<td>73.270k</td>
<td>12.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.9</td>
<td>66.0</td>
<td>-52.1</td>
<td>Retur</td>
</tr>
<tr>
<td>64</td>
<td>68.590k</td>
<td>12.7</td>
<td>+1.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.8</td>
<td>66.0</td>
<td>-52.2</td>
<td>Retur</td>
</tr>
<tr>
<td>65</td>
<td>85.240k</td>
<td>13.0</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.8</td>
<td>66.0</td>
<td>-52.2</td>
<td>Retur</td>
</tr>
<tr>
<td>66</td>
<td>89.560k</td>
<td>12.6</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.4</td>
<td>66.0</td>
<td>-52.6</td>
<td>Retur</td>
</tr>
<tr>
<td>67</td>
<td>72.460k</td>
<td>12.3</td>
<td>+0.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.3</td>
<td>66.0</td>
<td>-52.7</td>
<td>Retur</td>
</tr>
<tr>
<td>68</td>
<td>88.210k</td>
<td>12.5</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.3</td>
<td>66.0</td>
<td>-52.7</td>
<td>Retur</td>
</tr>
<tr>
<td>69</td>
<td>70.480k</td>
<td>12.1</td>
<td>+1.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.2</td>
<td>66.0</td>
<td>-52.8</td>
<td>Retur</td>
</tr>
<tr>
<td>70</td>
<td>71.380k</td>
<td>11.9</td>
<td>+1.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>Retur</td>
</tr>
<tr>
<td>71</td>
<td>87.040k</td>
<td>12.2</td>
<td>+0.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>Retur</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>72</td>
<td>99.820k</td>
<td>12.4</td>
<td>+0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>13.0</td>
<td>66.0</td>
<td>-53.0</td>
<td>Retur</td>
</tr>
<tr>
<td>73</td>
<td>95.590k</td>
<td>11.7</td>
<td>+0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.3</td>
<td>66.0</td>
<td>-53.7</td>
<td>Retur</td>
</tr>
<tr>
<td>74</td>
<td>91.270k</td>
<td>10.9</td>
<td>+0.7</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>11.7</td>
<td>66.0</td>
<td>-54.3</td>
<td>Retur</td>
</tr>
<tr>
<td>75</td>
<td>93.700k</td>
<td>11.0</td>
<td>+0.6</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>11.7</td>
<td>66.0</td>
<td>-54.3</td>
<td>Retur</td>
</tr>
<tr>
<td>76</td>
<td>5.478M</td>
<td>27.9</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>27.9</td>
<td>86.1</td>
<td>-58.2</td>
<td>Retur</td>
</tr>
<tr>
<td>77</td>
<td>5.605M</td>
<td>27.1</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>27.1</td>
<td>85.8</td>
<td>-58.7</td>
<td>Retur</td>
</tr>
<tr>
<td>78</td>
<td>5.980M</td>
<td>24.5</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>24.5</td>
<td>85.2</td>
<td>-60.7</td>
<td>Retur</td>
</tr>
<tr>
<td>79</td>
<td>5.725M</td>
<td>24.0</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>24.0</td>
<td>85.6</td>
<td>-61.6</td>
<td>Retur</td>
</tr>
<tr>
<td>80</td>
<td>5.350M</td>
<td>22.6</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>22.5</td>
<td>86.5</td>
<td>-64.0</td>
<td>Retur</td>
</tr>
<tr>
<td>81</td>
<td>5.223M</td>
<td>22.7</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>22.6</td>
<td>87.0</td>
<td>-64.4</td>
<td>Retur</td>
</tr>
<tr>
<td>82</td>
<td>124.600k</td>
<td>40.8</td>
<td>+0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>41.3</td>
<td>106.0</td>
<td>-64.7</td>
<td>Retur</td>
</tr>
<tr>
<td>83</td>
<td>6.228M</td>
<td>18.3</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>18.3</td>
<td>84.8</td>
<td>-66.5</td>
<td>Retur</td>
</tr>
<tr>
<td>84</td>
<td>5.853M</td>
<td>18.7</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>18.7</td>
<td>85.4</td>
<td>-66.7</td>
<td>Retur</td>
</tr>
<tr>
<td>85</td>
<td>9.100M</td>
<td>13.8</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>13.9</td>
<td>80.9</td>
<td>-67.0</td>
<td>Retur</td>
</tr>
<tr>
<td>86</td>
<td>8.230M</td>
<td>13.3</td>
<td>-0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>13.5</td>
<td>82.0</td>
<td>-68.5</td>
<td>Retur</td>
</tr>
<tr>
<td>87</td>
<td>4.975M</td>
<td>19.3</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>19.2</td>
<td>87.9</td>
<td>-68.7</td>
<td>Retur</td>
</tr>
<tr>
<td>88</td>
<td>9.858M</td>
<td>11.3</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>11.4</td>
<td>80.1</td>
<td>-68.7</td>
<td>Retur</td>
</tr>
<tr>
<td>89</td>
<td>6.355M</td>
<td>15.2</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>15.2</td>
<td>84.5</td>
<td>-69.3</td>
<td>Retur</td>
</tr>
<tr>
<td>90</td>
<td>9.483M</td>
<td>11.1</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>11.2</td>
<td>80.5</td>
<td>-69.3</td>
<td>Retur</td>
</tr>
<tr>
<td>91</td>
<td>2.605M</td>
<td>30.2</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>30.1</td>
<td>100.0</td>
<td>-69.9</td>
<td>Retur</td>
</tr>
<tr>
<td>92</td>
<td>5.523M</td>
<td>16.1</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>16.1</td>
<td>86.0</td>
<td>-69.9</td>
<td>Retur</td>
</tr>
<tr>
<td>93</td>
<td>7.728M</td>
<td>12.5</td>
<td>-0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>12.7</td>
<td>82.6</td>
<td>-69.9</td>
<td>Retur</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>8.103M</td>
<td>11.9</td>
<td>-0.2</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>12.1</td>
<td>82.1</td>
<td>-70.0</td>
<td>Retur</td>
</tr>
<tr>
<td>95</td>
<td>5.425M</td>
<td>16.2</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.1</td>
<td>86.3</td>
<td>-70.2</td>
<td>Retur</td>
</tr>
<tr>
<td>96</td>
<td>6.978M</td>
<td>12.7</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>12.8</td>
<td>83.6</td>
<td>-70.8</td>
<td>Retur</td>
</tr>
<tr>
<td>97</td>
<td>4.855M</td>
<td>17.5</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.4</td>
<td>88.3</td>
<td>-70.9</td>
<td>Retur</td>
</tr>
<tr>
<td>98</td>
<td>6.603M</td>
<td>12.6</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>12.7</td>
<td>84.2</td>
<td>-71.5</td>
<td>Retur</td>
</tr>
<tr>
<td>99</td>
<td>4.600M</td>
<td>17.6</td>
<td>-0.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.6</td>
<td>89.3</td>
<td>-71.7</td>
<td>Retur</td>
</tr>
<tr>
<td>100</td>
<td>5.103M</td>
<td>15.3</td>
<td>-0.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>15.2</td>
<td>87.4</td>
<td>-72.2</td>
<td>Retur</td>
</tr>
</tbody>
</table>

CECM – Conducted Emissions, Common Mode, DC to 150MHz

Test Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>Serial #</th>
<th>Asset #</th>
<th>Cal Date</th>
<th>Cal Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscilloscope</td>
<td>HP</td>
<td>54615B</td>
<td>US35420829</td>
<td>697</td>
<td>8/29/03</td>
<td>8/29/05</td>
</tr>
<tr>
<td>Isolation Transformer</td>
<td>Not Listed</td>
<td>None</td>
<td>None</td>
<td>00745</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>10uF Capacitor</td>
<td>Solar</td>
<td>6512-106R</td>
<td>01739</td>
<td>01739</td>
<td>6/2/03</td>
<td>6/2/05</td>
</tr>
<tr>
<td>10uF Capacitor</td>
<td>Solar</td>
<td>6512-106R</td>
<td>01737</td>
<td>01737</td>
<td>6/2/03</td>
<td>6/2/05</td>
</tr>
</tbody>
</table>

CNR = Calibration Not Required

Test Procedure

Line to Chassis Ground: While the UUT was up and running in high noise mode, the oscilloscope was connected from the 28VDC Line to chassis ground using 150MHz BW setting. The time scale on the oscilloscope was changed from 1ns/division to 5s/division and the noise plots were captured.

Return to Chassis Ground: While the UUT was up and running in high noise mode, the oscilloscope was connected from the 28VDC Return to chassis ground using 150MHz BW setting. The time scale on the oscilloscope was changed from 1ns/division to 5s/division and the noise plots were captured.
Conducted Emissions Common Mode Test Setup

Conducted Emissions Common Mode Closeup
CECM Capture 1 DC Line

CECM Capture 2 DC Line
CECM Capture 3 DC Line

CECM Capture 4 DC Line
CECM Capture 5 DC Line

CECM Capture 6 DC Return
CECM Capture 7 DC Return

CECM Capture 8 DC Return
CECM Capture 9 DC Return

CECM Capture 10 DC Return
CECM Capture 11 DC Return

CECM Capture 12 DC Return
RE101 - Radiated Emissions, Magnetic Field, 30Hz to 100kHz

Test Equipment

<table>
<thead>
<tr>
<th>Function</th>
<th>Asset #</th>
<th>S/N</th>
<th>Calibration Date</th>
<th>Cal Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable RG214/U</td>
<td>02410</td>
<td>None</td>
<td>06/07/2004</td>
<td>06/07/2005</td>
</tr>
<tr>
<td>Cable RG58 C/U</td>
<td>None</td>
<td>None</td>
<td>04/12/2004</td>
<td>04/12/2005</td>
</tr>
<tr>
<td>RF Probe F-303</td>
<td>01485</td>
<td>21</td>
<td>08/20/2003</td>
<td>08/20/2005</td>
</tr>
<tr>
<td>SA - E4446A</td>
<td>02668</td>
<td>US44300408</td>
<td>01/13/2005</td>
<td>01/13/2007</td>
</tr>
</tbody>
</table>

Test Procedure

A signal generator was connected into the measurement system. The test engineer performed a path loss check by injecting a signal at 50kHz that was 6dB below the limit line and measuring the resulting emission on the spectrum analyzer. Then, the signal generator was removed and the test cable was connected from the loop sensor to the spectrum analyzer.

The UUT was powered up in standard operating mode. The loop was placed 7cm from the front side of the UUT chassis and a scan was performed. Then, the loop was placed 7cm from the backside of the UUT and the scan was repeated. Full scans were also performed on the top, bottom left and right sides of the UUT.

<table>
<thead>
<tr>
<th>Seq. #</th>
<th>Test Description</th>
<th>Test Lead/ Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CE102</td>
<td>JT1, JT2 and JC1 Side</td>
</tr>
<tr>
<td>4</td>
<td>CE102</td>
<td>JT3, JS1, JT4, J2 & JC2 Side</td>
</tr>
<tr>
<td>5</td>
<td>CE102</td>
<td>JS1 & J2 parallel to cables JT7, JC4 & JT8</td>
</tr>
<tr>
<td>6</td>
<td>CE102</td>
<td>JT7, JC4 & JT8</td>
</tr>
<tr>
<td>7</td>
<td>CE102</td>
<td>JT5, JC3 & JT6 side</td>
</tr>
<tr>
<td>8</td>
<td>CE102</td>
<td>Top Side</td>
</tr>
</tbody>
</table>
Radiated Emissions Path Check

Radiated Emissions Test Setup
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center

Specification: RE101 Test Limit

Work Order #: 82840 Date: 2/23/2005

Test Type: Radiated Scan Time: 9:58:38 AM

Equipment: TEM/TPS Sequence#: 3

Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar

Model: TEM/TPS

S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHEM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S24500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56°. JT1, JT2 & JC1 Side.

Transducer Legend:

T1=F-303 Loop Sensor
T2=20' Cable Male N to Male N AN None
T3=Cable 2410

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>Dist Table</th>
<th>Corr dBpt</th>
<th>Spec dBpt</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.560k</td>
<td>+24.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.8</td>
<td>53.8</td>
<td>-18.0</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.053k</td>
<td>+75.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>90.0</td>
<td>111.5</td>
<td>-21.5</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17.120k</td>
<td>+28.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.6</td>
<td>61.3</td>
<td>-25.7</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20.840k</td>
<td>+27.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.8</td>
<td>59.6</td>
<td>-25.8</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12.560k</td>
<td>+29.1</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>38.1</td>
<td>64.0</td>
<td>-25.9</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15.080k</td>
<td>7.8</td>
<td>+28.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>36.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>29.120k</td>
<td>4.4</td>
<td>+25.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10.600k</td>
<td>9.0</td>
<td>+29.8</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>39.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19.840k</td>
<td>6.0</td>
<td>+27.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20.920k</td>
<td>5.7</td>
<td>+27.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>48.920k</td>
<td>1.5</td>
<td>+24.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>47.160k</td>
<td>1.6</td>
<td>+24.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>20.160k</td>
<td>5.7</td>
<td>+27.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>25.760k</td>
<td>4.4</td>
<td>+26.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>33.080k</td>
<td>3.0</td>
<td>+25.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>48.200k</td>
<td>1.2</td>
<td>+24.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>49.480k</td>
<td>1.1</td>
<td>+23.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>11.520k</td>
<td>7.9</td>
<td>+29.5</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>11.200k</td>
<td>7.9</td>
<td>+29.6</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>16.000k</td>
<td>6.3</td>
<td>+28.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>34.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>20.600k</td>
<td>5.0</td>
<td>+27.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>25.640k</td>
<td>4.0</td>
<td>+26.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>34.240k</td>
<td>2.5</td>
<td>+25.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>45.040k</td>
<td>1.1</td>
<td>+24.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>14.040k</td>
<td>6.6</td>
<td>+28.7</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>25.280k</td>
<td>3.8</td>
<td>+26.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>36.520k</td>
<td>2.0</td>
<td>+25.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>27.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency [kHz]</td>
<td>1.9</td>
<td>+25.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+27.0</td>
<td>54.5</td>
<td>-27.5</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>37.320k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>24.400k</td>
<td>3.9</td>
<td>+26.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.6</td>
<td>58.2</td>
<td>-27.6</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>35.920k</td>
<td>2.0</td>
<td>+25.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>27.3</td>
<td>54.9</td>
<td>-27.6</td>
<td></td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/23/2006 Time: 9:58:38 AM Stanford Linear Accelerator Center WO# 82846
RE101 Test Limit Test Distance: 1 Meter Sequence#: 3
JT1, JT2 & JCT Side

![Graph](image-url)
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE101 Test Limit
Work Order #: 82840
Date: 2/23/2005
Test Type: Radiated Scan
Time: 10:33:12 AM
Equipment: TEM/TPS
Sequence#: 4
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N45-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56". JT3, JS1, JT4, J2 & JC2 Side.

Transducer Legend:
T1=F-303 Loop Sensor
T2=20' Cable Male N to Male N AN None
T3=Cable 2410

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdnge dBµV</th>
<th>T1 db</th>
<th>T2 db</th>
<th>T3 db</th>
<th>Dist db</th>
<th>Corr dBpt</th>
<th>Spec dBpt</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.055k</td>
<td>18.7</td>
<td>+74.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>93.6</td>
<td>111.2</td>
<td>-17.6</td>
<td>Magne</td>
</tr>
<tr>
<td>2</td>
<td>40.880k</td>
<td>10.7</td>
<td>+24.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.5</td>
<td>53.8</td>
<td>-18.3</td>
<td>Magne</td>
</tr>
<tr>
<td>3</td>
<td>39.440k</td>
<td>4.3</td>
<td>+24.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.2</td>
<td>54.1</td>
<td>-24.9</td>
<td>Magne</td>
</tr>
<tr>
<td>4</td>
<td>30.320k</td>
<td>5.3</td>
<td>+25.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>31.2</td>
<td>56.3</td>
<td>-25.1</td>
<td>Magne</td>
</tr>
<tr>
<td>5</td>
<td>13.000k</td>
<td>8.7</td>
<td>+29.0</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.9</td>
<td>63.7</td>
<td>-25.8</td>
<td>Magne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>32.600k</td>
<td>4.1</td>
<td>+25.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.7</td>
<td>55.7</td>
<td>-26.0</td>
<td>Magne</td>
</tr>
<tr>
<td>7</td>
<td>12.240k</td>
<td>8.5</td>
<td>+29.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.9</td>
<td>64.2</td>
<td>-26.3</td>
<td>Magne</td>
</tr>
<tr>
<td>8</td>
<td>43.240k</td>
<td>2.4</td>
<td>+24.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>27.0</td>
<td>53.3</td>
<td>-26.3</td>
<td>Magne</td>
</tr>
<tr>
<td>9</td>
<td>13.480k</td>
<td>7.9</td>
<td>+28.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.0</td>
<td>63.4</td>
<td>-26.4</td>
<td>Magne</td>
</tr>
<tr>
<td>10</td>
<td>10.360k</td>
<td>9.0</td>
<td>+29.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>39.1</td>
<td>65.7</td>
<td>-26.6</td>
<td>Magne</td>
</tr>
<tr>
<td>11</td>
<td>25.800k</td>
<td>4.7</td>
<td>+26.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>31.2</td>
<td>57.8</td>
<td>-26.6</td>
<td>Magne</td>
</tr>
<tr>
<td>12</td>
<td>24.360k</td>
<td>4.7</td>
<td>+26.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>31.4</td>
<td>58.2</td>
<td>-26.8</td>
<td>Magne</td>
</tr>
<tr>
<td>13</td>
<td>11.120k</td>
<td>8.3</td>
<td>+29.6</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>38.1</td>
<td>65.1</td>
<td>-27.0</td>
<td>Magne</td>
</tr>
<tr>
<td>14</td>
<td>24.560k</td>
<td>4.4</td>
<td>+26.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>31.1</td>
<td>58.2</td>
<td>-27.1</td>
<td>Magne</td>
</tr>
<tr>
<td>15</td>
<td>33.000k</td>
<td>2.9</td>
<td>+25.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.5</td>
<td>55.6</td>
<td>-27.1</td>
<td>Magne</td>
</tr>
<tr>
<td>16</td>
<td>44.640k</td>
<td>1.5</td>
<td>+24.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.9</td>
<td>53.0</td>
<td>-27.1</td>
<td>Magne</td>
</tr>
<tr>
<td>17</td>
<td>48.200k</td>
<td>1.1</td>
<td>+24.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.2</td>
<td>52.3</td>
<td>-27.1</td>
<td>Magne</td>
</tr>
<tr>
<td>18</td>
<td>46.560k</td>
<td>1.1</td>
<td>+24.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.4</td>
<td>52.6</td>
<td>-27.2</td>
<td>Magne</td>
</tr>
<tr>
<td>19</td>
<td>16.880k</td>
<td>6.0</td>
<td>+28.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>34.1</td>
<td>61.4</td>
<td>-27.3</td>
<td>Magne</td>
</tr>
<tr>
<td>20</td>
<td>23.600k</td>
<td>4.4</td>
<td>+26.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>31.2</td>
<td>58.5</td>
<td>-27.3</td>
<td>Magne</td>
</tr>
<tr>
<td>21</td>
<td>30.920k</td>
<td>3.1</td>
<td>+25.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.9</td>
<td>56.2</td>
<td>-27.3</td>
<td>Magne</td>
</tr>
<tr>
<td>22</td>
<td>31.080k</td>
<td>3.0</td>
<td>+25.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.8</td>
<td>56.1</td>
<td>-27.3</td>
<td>Magne</td>
</tr>
<tr>
<td>23</td>
<td>28.840k</td>
<td>3.2</td>
<td>+26.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.3</td>
<td>56.8</td>
<td>-27.5</td>
<td>Magne</td>
</tr>
<tr>
<td>24</td>
<td>49.640k</td>
<td>0.6</td>
<td>+23.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.6</td>
<td>52.1</td>
<td>-27.5</td>
<td>Magne</td>
</tr>
<tr>
<td>25</td>
<td>27.440k</td>
<td>3.3</td>
<td>+26.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.6</td>
<td>57.2</td>
<td>-27.6</td>
<td>Magne</td>
</tr>
<tr>
<td>26</td>
<td>27.840k</td>
<td>3.2</td>
<td>+26.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.4</td>
<td>57.1</td>
<td>-27.7</td>
<td>Magne</td>
</tr>
<tr>
<td>27</td>
<td>47.160k</td>
<td>0.6</td>
<td>+24.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.8</td>
<td>52.5</td>
<td>-27.7</td>
<td>Magne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>28</td>
<td>47.680k</td>
<td>0.5</td>
<td>+24.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.7</td>
<td>52.4</td>
<td>-27.7</td>
<td>Magne</td>
</tr>
<tr>
<td>29</td>
<td>42.280k</td>
<td>1.1</td>
<td>+24.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.7</td>
<td>53.5</td>
<td>-27.8</td>
<td>Magne</td>
</tr>
<tr>
<td>30</td>
<td>23.840k</td>
<td>3.6</td>
<td>+26.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.4</td>
<td>58.4</td>
<td>-28.0</td>
<td>Magne</td>
</tr>
<tr>
<td>31</td>
<td>32.080k</td>
<td>2.2</td>
<td>+25.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>27.9</td>
<td>55.9</td>
<td>-28.0</td>
<td>Magne</td>
</tr>
<tr>
<td>32</td>
<td>24.120k</td>
<td>3.3</td>
<td>+26.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.1</td>
<td>58.3</td>
<td>-28.2</td>
<td>Magne</td>
</tr>
<tr>
<td>33</td>
<td>26.000k</td>
<td>3.0</td>
<td>+26.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.5</td>
<td>57.7</td>
<td>-28.2</td>
<td>Magne</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/23/2006 Time: 10:33:12 AM Stanford Linear Accelerator Center WO#: 82340 RE101 Test Limit Test Distance: 1 Meter Sequence#: 4 JT3, JS1, JT4, J2 & JC2 Side

Diagram:

- **Sweep Data**
- **1 - RE101 Test Limit**

Page 47 of 224
Report No.: MIL05-015
Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE101 Test Limit
Work Order #: 82840 Date: 2/23/2005
Test Type: Radiated Scan Time: 10:41:20 AM
Equipment: TEM/TPS Sequence#: 5
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56". JS1 & J2, parallel to cables

Transducer Legend:
T1=F-303 Loop Sensor
T2=20' Cable Male N to Male N AN None
T3=Cable 2410

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>Dist dB</th>
<th>Corr dBpT</th>
<th>Spec dBpT</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.055k</td>
<td>19.1</td>
<td>+74.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>94.0</td>
<td>111.2</td>
<td>-17.2</td>
<td>Magne</td>
</tr>
<tr>
<td>2</td>
<td>40.680k</td>
<td>10.0</td>
<td>+24.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>34.8</td>
<td>53.8</td>
<td>-19.0</td>
<td>Magne</td>
</tr>
<tr>
<td>3</td>
<td>20.880k</td>
<td>6.6</td>
<td>+27.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.9</td>
<td>59.6</td>
<td>-25.7</td>
<td>Magne</td>
</tr>
<tr>
<td>4</td>
<td>27.400k</td>
<td>5.2</td>
<td>+26.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>31.5</td>
<td>57.2</td>
<td>-25.7</td>
<td>Magne</td>
</tr>
<tr>
<td>5</td>
<td>28.040k</td>
<td>4.7</td>
<td>+26.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.9</td>
<td>57.0</td>
<td>-26.1</td>
<td>Magne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17.400k</td>
<td>7.0</td>
<td>+27.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.0</td>
<td>61.2</td>
<td>-26.2</td>
<td>Magne</td>
</tr>
<tr>
<td>7</td>
<td>20.680k</td>
<td>6.1</td>
<td>+27.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.4</td>
<td>59.7</td>
<td>-26.3</td>
<td>Magne</td>
</tr>
<tr>
<td>8</td>
<td>16.280k</td>
<td>7.0</td>
<td>+28.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.3</td>
<td>61.8</td>
<td>-26.5</td>
<td>Magne</td>
</tr>
<tr>
<td>9</td>
<td>30.520k</td>
<td>3.9</td>
<td>+25.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.8</td>
<td>56.3</td>
<td>-26.5</td>
<td>Magne</td>
</tr>
<tr>
<td>10</td>
<td>36.400k</td>
<td>3.1</td>
<td>+25.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.3</td>
<td>54.8</td>
<td>-26.5</td>
<td>Magne</td>
</tr>
<tr>
<td>11</td>
<td>10.000k</td>
<td>9.2</td>
<td>+30.0</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>39.4</td>
<td>66.0</td>
<td>-26.6</td>
<td>Magne</td>
</tr>
<tr>
<td>12</td>
<td>21.800k</td>
<td>5.5</td>
<td>+27.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.6</td>
<td>59.2</td>
<td>-26.6</td>
<td>Magne</td>
</tr>
<tr>
<td>13</td>
<td>25.440k</td>
<td>4.7</td>
<td>+26.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>31.3</td>
<td>57.9</td>
<td>-26.6</td>
<td>Magne</td>
</tr>
<tr>
<td>14</td>
<td>15.240k</td>
<td>7.1</td>
<td>+28.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.6</td>
<td>62.3</td>
<td>-26.7</td>
<td>Magne</td>
</tr>
<tr>
<td>15</td>
<td>31.480k</td>
<td>3.5</td>
<td>+25.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.3</td>
<td>56.0</td>
<td>-26.7</td>
<td>Magne</td>
</tr>
<tr>
<td>16</td>
<td>22.800k</td>
<td>5.0</td>
<td>+26.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.0</td>
<td>58.8</td>
<td>-26.8</td>
<td>Magne</td>
</tr>
<tr>
<td>17</td>
<td>27.080k</td>
<td>3.8</td>
<td>+26.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.1</td>
<td>57.3</td>
<td>-27.2</td>
<td>Magne</td>
</tr>
<tr>
<td>18</td>
<td>44.440k</td>
<td>1.4</td>
<td>+24.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.8</td>
<td>53.0</td>
<td>-27.2</td>
<td>Magne</td>
</tr>
<tr>
<td>19</td>
<td>21.200k</td>
<td>4.8</td>
<td>+27.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.1</td>
<td>59.5</td>
<td>-27.4</td>
<td>Magne</td>
</tr>
<tr>
<td>20</td>
<td>32.920k</td>
<td>2.6</td>
<td>+25.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.2</td>
<td>55.6</td>
<td>-27.4</td>
<td>Magne</td>
</tr>
<tr>
<td>21</td>
<td>14.240k</td>
<td>6.5</td>
<td>+28.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.3</td>
<td>62.9</td>
<td>-27.6</td>
<td>Magne</td>
</tr>
<tr>
<td>22</td>
<td>42.760k</td>
<td>1.2</td>
<td>+24.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.8</td>
<td>53.4</td>
<td>-27.6</td>
<td>Magne</td>
</tr>
<tr>
<td>23</td>
<td>16.760k</td>
<td>5.7</td>
<td>+28.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.8</td>
<td>61.5</td>
<td>-27.7</td>
<td>Magne</td>
</tr>
<tr>
<td>24</td>
<td>43.760k</td>
<td>1.0</td>
<td>+24.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.5</td>
<td>53.2</td>
<td>-27.7</td>
<td>Magne</td>
</tr>
<tr>
<td>25</td>
<td>24.480k</td>
<td>3.6</td>
<td>+26.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.3</td>
<td>58.2</td>
<td>-27.9</td>
<td>Magne</td>
</tr>
<tr>
<td>26</td>
<td>29.160k</td>
<td>2.8</td>
<td>+25.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.8</td>
<td>56.7</td>
<td>-27.9</td>
<td>Magne</td>
</tr>
<tr>
<td>27</td>
<td>31.960k</td>
<td>2.3</td>
<td>+25.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.0</td>
<td>55.9</td>
<td>-27.9</td>
<td>Magne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>43.160k</td>
<td>0.8</td>
<td>+24.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.4</td>
<td>53.3</td>
<td>-27.9</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>44.160k</td>
<td>0.5</td>
<td>+24.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.0</td>
<td>53.1</td>
<td>-28.1</td>
<td></td>
</tr>
</tbody>
</table>

RE101 Test Limit Test Distance: 1 Meter Sequence#: 5
JS1 & J2, parallel to cables

Graph

- **Sweep Data**
- **1 - RE101 Test Limit**

Frequency [MHz]

dBpt

Page 50 of 224
Report No.: MIL05-015
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE101 Test Limit

Work Order #: 82840 Date: 2/23/2005
Test Type: Radiated Scan Time: 10:51:00 AM
Equipment: TEM/TPS Sequence#: 6
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56". JT7, JC4 & JT8 side

Transducer Legend:

T1=F-303 Loop Sensor
T2=20' Cable Male N to Male N AN None
T3=Cable 2410

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>Dist Table</th>
<th>Corr dBpt</th>
<th>Spec dBpt</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.055k</td>
<td>17.9</td>
<td>+74.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>92.8</td>
<td>111.2</td>
<td>-18.4</td>
<td>Magne</td>
</tr>
<tr>
<td>2</td>
<td>40.600k</td>
<td>9.8</td>
<td>+24.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>34.6</td>
<td>53.8</td>
<td>-19.2</td>
<td>Magne</td>
</tr>
<tr>
<td>3</td>
<td>22.360k</td>
<td>6.7</td>
<td>+27.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.8</td>
<td>59.0</td>
<td>-25.2</td>
<td>Magne</td>
</tr>
<tr>
<td>4</td>
<td>14.440k</td>
<td>8.5</td>
<td>+28.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.2</td>
<td>62.8</td>
<td>-25.6</td>
<td>Magne</td>
</tr>
<tr>
<td>5</td>
<td>22.760k</td>
<td>6.0</td>
<td>+26.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.0</td>
<td>58.8</td>
<td>-25.8</td>
<td>Magne</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td>Current</td>
<td>Load</td>
<td>Error</td>
<td>Result</td>
<td>Load</td>
<td>Error</td>
<td>Result</td>
<td>Load</td>
<td>Error</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>6</td>
<td>20.160k</td>
<td>6.3</td>
<td>+27.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>33.7</td>
<td>59.9</td>
<td>-26.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>30.520k</td>
<td>4.2</td>
<td>+25.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>30.1</td>
<td>56.3</td>
<td>-26.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16.120k</td>
<td>7.2</td>
<td>+28.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>35.5</td>
<td>61.8</td>
<td>-26.3</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>25.400k</td>
<td>5.0</td>
<td>+26.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>31.6</td>
<td>57.9</td>
<td>-26.3</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>29.880k</td>
<td>4.2</td>
<td>+25.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>30.2</td>
<td>56.5</td>
<td>-26.3</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>49.520k</td>
<td>1.7</td>
<td>+23.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>25.7</td>
<td>52.1</td>
<td>-26.4</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>35.360k</td>
<td>3.2</td>
<td>+25.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>28.5</td>
<td>55.0</td>
<td>-26.5</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11.920k</td>
<td>8.4</td>
<td>+29.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>37.9</td>
<td>64.5</td>
<td>-26.6</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>17.600k</td>
<td>6.5</td>
<td>+27.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>34.5</td>
<td>61.1</td>
<td>-26.6</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>48.960k</td>
<td>1.4</td>
<td>+24.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>25.5</td>
<td>52.2</td>
<td>-26.7</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10.400k</td>
<td>8.7</td>
<td>+29.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>38.8</td>
<td>65.6</td>
<td>-26.8</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>11.600k</td>
<td>8.2</td>
<td>+29.4</td>
<td>+0.1</td>
<td>+0.1</td>
<td>37.8</td>
<td>64.7</td>
<td>-26.9</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>44.920k</td>
<td>1.6</td>
<td>+24.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>26.0</td>
<td>52.9</td>
<td>-26.9</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>36.680k</td>
<td>2.5</td>
<td>+25.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>27.7</td>
<td>54.7</td>
<td>-27.0</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>15.560k</td>
<td>6.6</td>
<td>+28.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>35.0</td>
<td>62.1</td>
<td>-27.1</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>18.200k</td>
<td>5.9</td>
<td>+27.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>33.7</td>
<td>60.8</td>
<td>-27.1</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>12.120k</td>
<td>7.6</td>
<td>+29.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>37.1</td>
<td>64.3</td>
<td>-27.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>13.280k</td>
<td>7.2</td>
<td>+28.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>36.3</td>
<td>63.5</td>
<td>-27.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>17.920k</td>
<td>5.8</td>
<td>+27.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>33.7</td>
<td>60.9</td>
<td>-27.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>28.360k</td>
<td>3.6</td>
<td>+26.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>29.7</td>
<td>56.9</td>
<td>-27.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>12.680k</td>
<td>7.3</td>
<td>+29.1</td>
<td>+0.1</td>
<td>+0.1</td>
<td>36.6</td>
<td>63.9</td>
<td>-27.3</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>19.800k</td>
<td>5.3</td>
<td>+27.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.8</td>
<td>60.1</td>
<td>-27.3</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>45.560k</td>
<td>1.1</td>
<td>+24.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.5</td>
<td>52.8</td>
<td>-27.3</td>
<td></td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/23/2006 Time: 10:51:00 AM Stanford Linear Accelerator Center WO#: 82340
RE101 Test Limit Test Distance: 1 Meter Sequence#: 6
JT7, JC4 & JK3 side

Sweep Data 1 - RE101 Test Limit
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE101 Test Limit
Work Order #: 82840 Date: 2/23/2005
Test Type: Radiated Scan Time: 10:59:17 AM
Equipment: TEM/TPS Sequence#: 7
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXN1B41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56’. JT5, JC3 & JT6 side

Transducer Legend:

<table>
<thead>
<tr>
<th>T1=F-303 Loop Sensor</th>
<th>T2=20 Cable Male N to Male N</th>
<th>AN None</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3=Cable 2410</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>Dist dB</th>
<th>Corr dBp</th>
<th>Spec dBp</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.054k</td>
<td>17.5</td>
<td>+75.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>92.5</td>
<td>111.3</td>
<td>-18.8</td>
<td>Magnet</td>
</tr>
<tr>
<td>2</td>
<td>40.640k</td>
<td>9.8</td>
<td>+24.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>34.6</td>
<td>53.8</td>
<td>-19.2</td>
<td>Magnet</td>
</tr>
<tr>
<td>3</td>
<td>14.040k</td>
<td>8.0</td>
<td>+28.7</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>36.9</td>
<td>63.0</td>
<td>-26.1</td>
<td>Magnet</td>
</tr>
<tr>
<td>4</td>
<td>15.840k</td>
<td>7.5</td>
<td>+28.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.9</td>
<td>62.0</td>
<td>-26.1</td>
<td>Magnet</td>
</tr>
<tr>
<td>5</td>
<td>14.200k</td>
<td>7.9</td>
<td>+28.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>36.7</td>
<td>62.9</td>
<td>-26.2</td>
<td>Magnet</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>21.200k</td>
<td>5.9</td>
<td>+27.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.2</td>
<td>59.5</td>
<td>-26.3</td>
<td>Magne</td>
</tr>
<tr>
<td>7</td>
<td>47.360k</td>
<td>1.6</td>
<td>+24.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.8</td>
<td>52.5</td>
<td>-26.7</td>
<td>Magne</td>
</tr>
<tr>
<td>8</td>
<td>13.280k</td>
<td>7.6</td>
<td>+28.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>36.7</td>
<td>63.5</td>
<td>-26.8</td>
<td>Magne</td>
</tr>
<tr>
<td>9</td>
<td>20.840k</td>
<td>5.5</td>
<td>+27.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.8</td>
<td>59.6</td>
<td>-26.8</td>
<td>Magne</td>
</tr>
<tr>
<td>10</td>
<td>16.120k</td>
<td>6.6</td>
<td>+28.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>34.9</td>
<td>61.8</td>
<td>-26.9</td>
<td>Magne</td>
</tr>
<tr>
<td>11</td>
<td>31.720k</td>
<td>3.3</td>
<td>+25.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.0</td>
<td>56.0</td>
<td>-27.0</td>
<td>Magne</td>
</tr>
<tr>
<td>12</td>
<td>46.320k</td>
<td>1.4</td>
<td>+24.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.7</td>
<td>52.7</td>
<td>-27.0</td>
<td>Magne</td>
</tr>
<tr>
<td>13</td>
<td>20.040k</td>
<td>5.2</td>
<td>+27.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.7</td>
<td>59.9</td>
<td>-27.2</td>
<td>Magne</td>
</tr>
<tr>
<td>14</td>
<td>20.240k</td>
<td>5.3</td>
<td>+27.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.7</td>
<td>59.9</td>
<td>-27.2</td>
<td>Magne</td>
</tr>
<tr>
<td>15</td>
<td>26.400k</td>
<td>4.0</td>
<td>+26.3</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.4</td>
<td>57.6</td>
<td>-27.2</td>
<td>Magne</td>
</tr>
<tr>
<td>16</td>
<td>45.920k</td>
<td>1.2</td>
<td>+24.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.5</td>
<td>52.7</td>
<td>-27.2</td>
<td>Magne</td>
</tr>
<tr>
<td>17</td>
<td>24.480k</td>
<td>4.2</td>
<td>+26.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.9</td>
<td>58.2</td>
<td>-27.3</td>
<td>Magne</td>
</tr>
<tr>
<td>18</td>
<td>44.200k</td>
<td>1.3</td>
<td>+24.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.8</td>
<td>53.1</td>
<td>-27.3</td>
<td>Magne</td>
</tr>
<tr>
<td>19</td>
<td>10.160k</td>
<td>8.3</td>
<td>+29.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>38.4</td>
<td>65.8</td>
<td>-27.4</td>
<td>Magne</td>
</tr>
<tr>
<td>20</td>
<td>25.000k</td>
<td>4.0</td>
<td>+26.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.6</td>
<td>58.0</td>
<td>-27.4</td>
<td>Magne</td>
</tr>
<tr>
<td>21</td>
<td>46.000k</td>
<td>0.6</td>
<td>+24.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.9</td>
<td>52.7</td>
<td>-27.8</td>
<td>Magne</td>
</tr>
<tr>
<td>22</td>
<td>12.880k</td>
<td>6.7</td>
<td>+29.0</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.9</td>
<td>63.8</td>
<td>-27.9</td>
<td>Magne</td>
</tr>
<tr>
<td>23</td>
<td>1.224k</td>
<td>1.8</td>
<td>+48.2</td>
<td>+0.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>50.1</td>
<td>84.2</td>
<td>-34.1</td>
<td>Magne</td>
</tr>
<tr>
<td>24</td>
<td>.109k</td>
<td>0.9</td>
<td>+68.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>69.8</td>
<td>105.3</td>
<td>-35.5</td>
<td>Magne</td>
</tr>
<tr>
<td>25</td>
<td>.182k</td>
<td>-0.3</td>
<td>+64.5</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>64.2</td>
<td>100.8</td>
<td>-36.6</td>
<td>Magne</td>
</tr>
<tr>
<td>26</td>
<td>.218k</td>
<td>-1.1</td>
<td>+62.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>61.8</td>
<td>99.2</td>
<td>-37.4</td>
<td>Magne</td>
</tr>
<tr>
<td>27</td>
<td>.024k</td>
<td>-1.3</td>
<td>+82.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>80.8</td>
<td>118.3</td>
<td>-37.5</td>
<td>Magne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.480k</td>
<td>-1.8</td>
<td>+42.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>40.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2.832k</td>
<td>-1.7</td>
<td>+40.9</td>
<td>+0.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>39.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.576k</td>
<td>-2.0</td>
<td>+35.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>33.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/23/2006 Time: 10:50:17 AM Stanford Linear Accelerator Center WO#: 82940 RE101 Test Limit Test Distance: 1 Meter Sequence#: 7 JT5, JC3 & JT6 side
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE101 Test Limit
Work Order #: 82840 Date: 2/23/2005
Test Type: Radiated Scan Time: 11:06:17 AM
Equipment: TEM/TPS Sequence#: 8
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56". Top side

Transducer Legend:
T1= F-303 Loop Sensor
T2= 20' Cable Male N to Male N AN None
T3= Cable 2410

Measurement Data: Reading listed by margin.
Test Distance: 1 Meter

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>Dist dB</th>
<th>Corr dBp</th>
<th>Spec dBp</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.680k</td>
<td>10.5</td>
<td>+24.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.3</td>
<td>53.8</td>
<td>-18.5</td>
<td>Magne</td>
</tr>
<tr>
<td>2</td>
<td>.054k</td>
<td>16.9</td>
<td>+75.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>92.0</td>
<td>111.4</td>
<td>-19.4</td>
<td>Magne</td>
</tr>
<tr>
<td>3</td>
<td>14.440k</td>
<td>8.8</td>
<td>+28.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>37.5</td>
<td>62.8</td>
<td>-25.3</td>
<td>Magne</td>
</tr>
<tr>
<td>4</td>
<td>12.800k</td>
<td>8.7</td>
<td>+29.1</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>38.0</td>
<td>63.8</td>
<td>-25.3</td>
<td>Magne</td>
</tr>
<tr>
<td>5</td>
<td>37.320k</td>
<td>3.6</td>
<td>+25.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>28.7</td>
<td>54.5</td>
<td>-25.8</td>
<td>Magne</td>
</tr>
<tr>
<td>6</td>
<td>32.280k</td>
<td>4.2</td>
<td>+25.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.9</td>
<td>55.8</td>
<td>-25.9</td>
<td>Magne</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td>Current</td>
<td>Resistance</td>
<td>Change</td>
<td>Magnitude</td>
<td>Phase</td>
<td>Change</td>
<td>Magnitude</td>
<td>Phase</td>
<td>Change</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>7</td>
<td>12.040k</td>
<td>8.3</td>
<td>+29.3</td>
<td>+0.1</td>
<td>+0.1</td>
<td>37.8</td>
<td>64.4</td>
<td>-26.6</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13.360k</td>
<td>7.8</td>
<td>+28.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>36.9</td>
<td>63.5</td>
<td>-26.6</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18.560k</td>
<td>6.1</td>
<td>+27.7</td>
<td>+0.0</td>
<td>+0.1</td>
<td>33.9</td>
<td>60.6</td>
<td>-26.7</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11.520k</td>
<td>8.3</td>
<td>+29.5</td>
<td>+0.1</td>
<td>+0.1</td>
<td>38.0</td>
<td>64.8</td>
<td>-26.8</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>37.760k</td>
<td>2.4</td>
<td>+25.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>27.5</td>
<td>54.4</td>
<td>-26.9</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38.320k</td>
<td>2.4</td>
<td>+24.9</td>
<td>+0.0</td>
<td>+0.1</td>
<td>27.4</td>
<td>54.3</td>
<td>-26.9</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>43.920k</td>
<td>1.7</td>
<td>+24.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>26.2</td>
<td>53.1</td>
<td>-26.9</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>43.280k</td>
<td>1.7</td>
<td>+24.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>26.2</td>
<td>53.3</td>
<td>-27.1</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>17.720k</td>
<td>5.9</td>
<td>+27.8</td>
<td>+0.0</td>
<td>+0.1</td>
<td>33.8</td>
<td>61.0</td>
<td>-27.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>43.600k</td>
<td>1.5</td>
<td>+24.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>26.0</td>
<td>53.2</td>
<td>-27.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>47.520k</td>
<td>1.0</td>
<td>+24.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>25.2</td>
<td>52.4</td>
<td>-27.2</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>11.800k</td>
<td>7.6</td>
<td>+29.4</td>
<td>+0.1</td>
<td>+0.1</td>
<td>37.2</td>
<td>64.5</td>
<td>-27.3</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>43.440k</td>
<td>1.4</td>
<td>+24.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>25.9</td>
<td>53.2</td>
<td>-27.3</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>27.480k</td>
<td>3.5</td>
<td>+26.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>29.8</td>
<td>57.2</td>
<td>-27.4</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>32.720k</td>
<td>2.7</td>
<td>+25.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>28.3</td>
<td>55.7</td>
<td>-27.4</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>10.240k</td>
<td>8.2</td>
<td>+29.9</td>
<td>+0.1</td>
<td>+0.1</td>
<td>38.3</td>
<td>65.8</td>
<td>-27.5</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>19.280k</td>
<td>5.2</td>
<td>+27.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>32.8</td>
<td>60.3</td>
<td>-27.5</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>27.040k</td>
<td>3.4</td>
<td>+26.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>29.7</td>
<td>57.3</td>
<td>-27.6</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>41.840k</td>
<td>1.2</td>
<td>+24.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>25.9</td>
<td>53.5</td>
<td>-27.6</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>19.120k</td>
<td>5.1</td>
<td>+27.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>32.7</td>
<td>60.4</td>
<td>-27.7</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>42.600k</td>
<td>1.1</td>
<td>+24.5</td>
<td>+0.0</td>
<td>+0.1</td>
<td>25.7</td>
<td>53.4</td>
<td>-27.7</td>
<td>Magne</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>16.560k</td>
<td>5.5</td>
<td>+28.1</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>33.7</td>
<td>61.6</td>
<td>-27.9</td>
<td>Magne</td>
</tr>
<tr>
<td>29</td>
<td>43.800k</td>
<td>0.8</td>
<td>+24.4</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.3</td>
<td>53.2</td>
<td>-27.9</td>
<td>Magne</td>
</tr>
<tr>
<td>30</td>
<td>41.960k</td>
<td>0.8</td>
<td>+24.6</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.5</td>
<td>53.5</td>
<td>-28.0</td>
<td>Magne</td>
</tr>
</tbody>
</table>

Note: The table and graph are related to the testing of some parameters, possibly for a technical or scientific report. The exact context is not provided in the image.
RE102 - Radiated Emissions, Electric Field, 10kHz to 18GHz

Test Equipment

<table>
<thead>
<tr>
<th>Function</th>
<th>Asset #</th>
<th>S/N</th>
<th>Calibration Date</th>
<th>Cal Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA - E4446A</td>
<td>02668</td>
<td>US44300408</td>
<td>01/13/2005</td>
<td>01/13/2007</td>
</tr>
<tr>
<td>Cable RG214/U</td>
<td>02410</td>
<td>None</td>
<td>06/07/2004</td>
<td>06/07/2005</td>
</tr>
<tr>
<td>Rod Antenna - 3301B</td>
<td>01579</td>
<td>92073275</td>
<td>01/12/2004</td>
<td>01/12/2006</td>
</tr>
<tr>
<td>Cable E24304</td>
<td>None</td>
<td>None</td>
<td>04/12/2004</td>
<td>04/12/2005</td>
</tr>
<tr>
<td>Cable RG58 C/U</td>
<td>None</td>
<td>None</td>
<td>04/12/2004</td>
<td>04/12/2005</td>
</tr>
<tr>
<td>Cable RG58 C/U</td>
<td>None</td>
<td>None</td>
<td>04/12/2004</td>
<td>04/12/2005</td>
</tr>
<tr>
<td>Pre-Amp 8447D</td>
<td>00567</td>
<td>1937A03055</td>
<td>07/21/2003</td>
<td>07/21/2005</td>
</tr>
<tr>
<td>Bi-Con Antenna - 3110</td>
<td>00503</td>
<td>9205-1522</td>
<td>01/07/2005</td>
<td>01/07/2007</td>
</tr>
<tr>
<td>Horn - SAS 570</td>
<td>02525</td>
<td>155 part # 2490</td>
<td>06/04/2003</td>
<td>06/04/2005</td>
</tr>
<tr>
<td>SA - E4446A</td>
<td>02668</td>
<td>US44300408</td>
<td>01/13/2005</td>
<td>01/13/2007</td>
</tr>
<tr>
<td>HF Cable</td>
<td>P05201</td>
<td>None</td>
<td>02/08/2005</td>
<td>02/08/2007</td>
</tr>
<tr>
<td>HF Cable</td>
<td>P05200</td>
<td>None</td>
<td>02/08/2005</td>
<td>02/08/2007</td>
</tr>
<tr>
<td>Horn Antenna-3115</td>
<td>02113</td>
<td>9602-4660</td>
<td>02/26/2003</td>
<td>02/26/2005</td>
</tr>
<tr>
<td>HF-Pre-Amp 83051A</td>
<td>00941A</td>
<td>31A00238</td>
<td>03/17/2003</td>
<td>03/17/2005</td>
</tr>
</tbody>
</table>

Test Procedure

The signal generator was connected to the rod antenna through the calibration fixture. The test engineer injected a signal at 10kHz that was 6dB below the limit line and measured the resulting emission on the spectrum analyzer. The check was repeated at 15.005MHz and 30MHz. Then, the signal generator was removed and the antenna element was connected to the antenna and the antenna output was connected to the measurement system.
The UUT was powered up in standard operating mode. The rod antenna was placed one meter in front of the UUT. The EMITest™ software automatically scanned from 10kHz to 30MHz using the sweep rates required by the MIL-STD 461E. The biconical antenna was placed one meter in front of the UUT and was connected to the measurement system. The test engineer removed performed a path loss check at 200MHz. The EMITest™ software automatically scanned from 30MHz to 200MHz in horizontal and vertical antenna polarizations using the sweep rates required by the MIL-STD 461E. The double ridge guide horn antenna was connected into the setup and placed one meter from the UUT setup. The test engineer performed a path loss check at 1GHz. The EMITest™ software automatically scanned from 200MHz to 1GHz in horizontal and vertical antenna polarizations using the sweep rates required by the MIL-STD 461E. Then, the high frequency double ridge guide horn antenna was installed and placed one meter from the UUT setup. The antenna was then connected to the measurement system. The test engineer performed a path loss check at 18GHz. The EMITest™ software automatically scanned from 1GHz to 18GHz in horizontal and vertical antenna polarizations using the sweep rates required by the MIL-STD 461E.

<table>
<thead>
<tr>
<th>Seq. #</th>
<th>Test Description</th>
<th>Test Lead/ Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Path Check at 10kHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 15.005MHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 30MHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 200MHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 1000MHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 1 – 1.55GHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 1.55 – 1.6GHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 1.6 – 1.77GHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 1.77 – 2.3GHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 2.3 – 18GHz</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Path Check at 18GHz</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>30 – 200MHz</td>
<td>Vertical</td>
</tr>
<tr>
<td>10</td>
<td>30 – 200MHz</td>
<td>Horizontal</td>
</tr>
<tr>
<td>11</td>
<td>200 – 1000MHz</td>
<td>Horizontal</td>
</tr>
<tr>
<td>12</td>
<td>200 – 1000MHz</td>
<td>Vertical</td>
</tr>
<tr>
<td>13</td>
<td>1 – 1.55GHz</td>
<td>Horizontal</td>
</tr>
<tr>
<td>14</td>
<td>1.55 – 1.6GHz</td>
<td>Horizontal / Fail</td>
</tr>
<tr>
<td>15</td>
<td>1.6 – 1.77GHz</td>
<td>Horizontal</td>
</tr>
<tr>
<td>16</td>
<td>1.77 – 2.3GHz</td>
<td>Horizontal / Fail</td>
</tr>
<tr>
<td>Seq. #</td>
<td>Test Description</td>
<td>Test Lead/ Polarity</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>17</td>
<td>2.3 – 18GHz</td>
<td>Horizontal</td>
</tr>
<tr>
<td>18</td>
<td>1.77 – 1.9GHz</td>
<td>Horizontal / Fail</td>
</tr>
<tr>
<td>19</td>
<td>1.9 – 2.03GHz</td>
<td>Horizontal</td>
</tr>
<tr>
<td>20</td>
<td>2.03 – 2.16GHz</td>
<td>Horizontal</td>
</tr>
<tr>
<td>21</td>
<td>2.16 – 2.3GHz</td>
<td>Horizontal</td>
</tr>
<tr>
<td>22</td>
<td>1 – 1.55GHz</td>
<td>Vertical</td>
</tr>
<tr>
<td>23</td>
<td>1.55 – 1.6GHz</td>
<td>Vertical / Fail</td>
</tr>
<tr>
<td>24</td>
<td>1.6 – 1.77GHz</td>
<td>Vertical</td>
</tr>
<tr>
<td>25</td>
<td>1.77 – 2.3GHz</td>
<td>Vertical / Fail</td>
</tr>
<tr>
<td>26</td>
<td>2.3 – 18GHz</td>
<td>Vertical</td>
</tr>
<tr>
<td>27</td>
<td>1.55 – 1.6GHz</td>
<td>Vertical / Fail</td>
</tr>
<tr>
<td>28</td>
<td>1.55 – 1.6GHz</td>
<td>Vertical / Fail</td>
</tr>
<tr>
<td>29</td>
<td>1.55 – 1.6GHz</td>
<td>Vertical / Fail</td>
</tr>
<tr>
<td>30</td>
<td>1.55 – 1.563GHz</td>
<td>Vertical</td>
</tr>
<tr>
<td>31</td>
<td>1.563 – 1.576GHz</td>
<td>Vertical</td>
</tr>
<tr>
<td>32</td>
<td>1.576 – 1.589GHz</td>
<td>Vertical</td>
</tr>
<tr>
<td>33</td>
<td>1.589 – 1.6GHz</td>
<td>Vertical</td>
</tr>
</tbody>
</table>
RE102 Path Check

Rod Antenna, 10kHz - 30MHz Pre-Cal
Rod Antenna, 10kHz - 30MHz Test Setup

Bicon Antenna, 30 - 200 MHz Vertical Polarization Test Setup
Horn Antenna, 200 - 1000MHz Horizontal Polarization Test Setup

Horn Antenna, 200-1000MHz Horizontal Polarization Closeup
18GHz Path Check

Horn Antenna, 1 - 18GHz Horizontal Polarization Test Setup
Radiated Emissions Fix

Radiated Emissions Fix Closeup
Radiated Emissions Fix

Radiated Emissions Foil Fix
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/25/2005
Test Type: Radiated Scan
Time: 9:12:51 AM
Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar
Model: S/N:

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Test Conditions / Notes:

Path Check Sweep. Signal at 10KHz. 100 (spec limit) - 6dB - 4.2 (Antenna Factor) = 89.8dBuV signal level.

Transducer Legend:

T1=AN 01579 Rod Antenna
T2=20' Cable Male N to Male N AN None
T3=Cable 2410

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>Dist Corr dB</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.134k</td>
<td>91.9</td>
<td>+4.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>96.3</td>
<td>99.9</td>
<td>-3.6</td>
</tr>
<tr>
<td>2</td>
<td>1.168M</td>
<td>22.8</td>
<td>+4.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>27.1</td>
<td>67.7</td>
<td>-40.6</td>
</tr>
<tr>
<td>3</td>
<td>20.201k</td>
<td>46.5</td>
<td>+4.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>50.6</td>
<td>95.2</td>
<td>-44.6</td>
</tr>
<tr>
<td>4</td>
<td>27.941M</td>
<td>8.3</td>
<td>+10.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>19.1</td>
<td>64.0</td>
<td>-44.9</td>
</tr>
<tr>
<td>5</td>
<td>28.228M</td>
<td>8.0</td>
<td>+10.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>18.9</td>
<td>64.0</td>
<td>-45.1</td>
</tr>
<tr>
<td>6</td>
<td>27.422M</td>
<td>8.0</td>
<td>+10.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>18.7</td>
<td>64.0</td>
<td>-45.3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>7</td>
<td>28.556M</td>
<td>7.7</td>
<td>+10.5</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>18.7</td>
<td>64.0</td>
<td>-45.3</td>
</tr>
<tr>
<td>8</td>
<td>16.004M</td>
<td>10.9</td>
<td>+7.2</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>18.5</td>
<td>64.0</td>
<td>-45.5</td>
</tr>
<tr>
<td>9</td>
<td>27.821M</td>
<td>7.5</td>
<td>+10.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>18.3</td>
<td>64.0</td>
<td>-45.7</td>
</tr>
<tr>
<td>10</td>
<td>21.850M</td>
<td>9.0</td>
<td>+8.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>18.2</td>
<td>64.0</td>
<td>-45.8</td>
</tr>
<tr>
<td>11</td>
<td>24.183M</td>
<td>8.2</td>
<td>+9.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>18.0</td>
<td>64.0</td>
<td>-46.0</td>
</tr>
<tr>
<td>12</td>
<td>25.811M</td>
<td>7.8</td>
<td>+9.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>18.0</td>
<td>64.0</td>
<td>-46.0</td>
</tr>
<tr>
<td>13</td>
<td>26.018M</td>
<td>7.7</td>
<td>+9.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>17.9</td>
<td>64.0</td>
<td>-46.1</td>
</tr>
<tr>
<td>14</td>
<td>26.473M</td>
<td>7.5</td>
<td>+9.9</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>17.9</td>
<td>64.0</td>
<td>-46.1</td>
</tr>
<tr>
<td>15</td>
<td>27.008M</td>
<td>7.3</td>
<td>+10.1</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>17.9</td>
<td>64.0</td>
<td>-46.1</td>
</tr>
<tr>
<td>16</td>
<td>19.507M</td>
<td>9.1</td>
<td>+8.0</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>17.6</td>
<td>64.0</td>
<td>-46.4</td>
</tr>
<tr>
<td>17</td>
<td>20.238M</td>
<td>8.8</td>
<td>+8.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>17.5</td>
<td>64.0</td>
<td>-46.5</td>
</tr>
<tr>
<td>18</td>
<td>20.979M</td>
<td>8.6</td>
<td>+8.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>17.5</td>
<td>64.0</td>
<td>-46.5</td>
</tr>
<tr>
<td>19</td>
<td>20.679M</td>
<td>8.6</td>
<td>+8.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>17.4</td>
<td>64.0</td>
<td>-46.6</td>
</tr>
<tr>
<td>20</td>
<td>9.928M</td>
<td>10.9</td>
<td>+6.0</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>17.2</td>
<td>64.0</td>
<td>-46.8</td>
</tr>
<tr>
<td>21</td>
<td>1.217M</td>
<td>16.1</td>
<td>+4.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.4</td>
<td>67.4</td>
<td>-47.0</td>
</tr>
<tr>
<td>22</td>
<td>3.271M</td>
<td>12.0</td>
<td>+4.8</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>17.0</td>
<td>64.0</td>
<td>-47.0</td>
</tr>
<tr>
<td>23</td>
<td>10.929M</td>
<td>10.4</td>
<td>+6.2</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>16.9</td>
<td>64.0</td>
<td>-47.1</td>
</tr>
<tr>
<td>24</td>
<td>5.313M</td>
<td>11.2</td>
<td>+5.1</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.5</td>
<td>64.0</td>
<td>-47.5</td>
</tr>
<tr>
<td>25</td>
<td>7.936M</td>
<td>10.5</td>
<td>+5.6</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>16.5</td>
<td>64.0</td>
<td>-47.5</td>
</tr>
<tr>
<td>26</td>
<td>7.586M</td>
<td>10.5</td>
<td>+5.5</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>16.4</td>
<td>64.0</td>
<td>-47.6</td>
</tr>
<tr>
<td>27</td>
<td>8.607M</td>
<td>10.4</td>
<td>+5.7</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>16.4</td>
<td>64.0</td>
<td>-47.6</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Parameter 1</td>
<td>Parameter 2</td>
<td>Parameter 3</td>
<td>Parameter 4</td>
<td>Parameter 5</td>
<td>Parameter 6</td>
<td>Parameter 7</td>
<td>Parameter 8</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>28</td>
<td>4.462M</td>
<td>11.1</td>
<td>+4.9</td>
<td>+0.1</td>
<td>+0.2</td>
<td>+0.0</td>
<td>16.3</td>
<td>64.0</td>
<td>-47.7</td>
</tr>
<tr>
<td>29</td>
<td>6.124M</td>
<td>10.9</td>
<td>+5.2</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.3</td>
<td>64.0</td>
<td>-47.7</td>
</tr>
<tr>
<td>30</td>
<td>1.920M</td>
<td>11.8</td>
<td>+4.4</td>
<td>+0.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>16.4</td>
<td>64.3</td>
<td>-47.9</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/25/2005
Test Type: Radiated Scan
Time: 9:17:29 AM

Test Conditions / Notes:
Path Check Sweep. Signal at 15.005MHz. 64 (spec limit) - 6dB - 6.9 (Antenna Factor) = 51.1dBuV signal level.

Transducer Legend:
T1=AN 01579 Rod Antenna
T2=20’ Cable Male N to Male N AN None
T3=Cable 2410

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>Dist dB</th>
<th>Corr dB</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.003M</td>
<td>51.9</td>
<td>+6.9</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>59.2</td>
<td>64.0</td>
<td>-4.8</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>1.169M</td>
<td>21.4</td>
<td>+4.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.7</td>
<td>67.6</td>
<td>-41.9</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>27.279M</td>
<td>7.8</td>
<td>+10.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>18.5</td>
<td>64.0</td>
<td>-45.5</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>20.859M</td>
<td>9.0</td>
<td>+8.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>17.9</td>
<td>64.0</td>
<td>-46.1</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>1.216M</td>
<td>16.2</td>
<td>+4.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.5</td>
<td>67.4</td>
<td>-46.9</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>13.121M</td>
<td>10.2</td>
<td>+6.4</td>
<td>+0.2</td>
<td>+0.2</td>
<td>+0.0</td>
<td>17.0</td>
<td>64.0</td>
<td>-47.0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Meterage</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
<td>0.4</td>
<td>0.6</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10.478M</td>
<td>10</td>
<td>+6</td>
<td>+1</td>
<td>+0</td>
<td>+0</td>
<td>16</td>
<td>64</td>
<td>-47</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20.088M</td>
<td>8</td>
<td>+8</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>16</td>
<td>64</td>
<td>-47</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18.557M</td>
<td>8</td>
<td>+7</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>16</td>
<td>64</td>
<td>-47</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18.707M</td>
<td>7</td>
<td>+7</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>16</td>
<td>64</td>
<td>-47</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>19.277M</td>
<td>7</td>
<td>+8</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>16</td>
<td>64</td>
<td>-48</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.850M</td>
<td>10</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>15</td>
<td>64</td>
<td>-49</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.837M</td>
<td>10</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>15</td>
<td>64</td>
<td>-49</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.739M</td>
<td>10</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>15</td>
<td>64</td>
<td>-49</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.051M</td>
<td>14</td>
<td>+4</td>
<td>+ 0</td>
<td>+0</td>
<td>+0</td>
<td>18</td>
<td>68</td>
<td>-49</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.689M</td>
<td>10</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>14</td>
<td>65</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.097M</td>
<td>13</td>
<td>+4</td>
<td>+ 0</td>
<td>+0</td>
<td>+0</td>
<td>17</td>
<td>68</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.580M</td>
<td>10</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>15</td>
<td>65</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.617M</td>
<td>10</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>14</td>
<td>65</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.643M</td>
<td>9</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>14</td>
<td>65</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.447M</td>
<td>10</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>14</td>
<td>66</td>
<td>-51</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.417M</td>
<td>9</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>14</td>
<td>66</td>
<td>-51</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>819.700k</td>
<td>13</td>
<td>+4</td>
<td>+ 0</td>
<td>+0</td>
<td>+0</td>
<td>17</td>
<td>70</td>
<td>-52</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>692.050k</td>
<td>14</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>18</td>
<td>71</td>
<td>-52</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>618.050k</td>
<td>12</td>
<td>+4</td>
<td>+ 1</td>
<td>+0</td>
<td>+0</td>
<td>16</td>
<td>72</td>
<td>-55</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>288.750k</td>
<td>14</td>
<td>+3</td>
<td>+ 0</td>
<td>+0</td>
<td>+0</td>
<td>18</td>
<td>77</td>
<td>-58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency [kHz]</td>
<td>dBuV/m</td>
<td>Phase [°]</td>
<td>Modulation [%]</td>
<td>Gain [dB]</td>
<td>Output [dBm]</td>
<td>Voltage [V]</td>
<td>Test Distance [None]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>327.600k</td>
<td>12.9</td>
<td>+4.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>16.9</td>
<td>76.3</td>
<td>-59.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+4.0</td>
<td>+0.0</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>155.550k</td>
<td>16.5</td>
<td>+4.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>20.5</td>
<td>81.4</td>
<td>-60.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+4.0</td>
<td>+0.0</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>40.604k</td>
<td>19.6</td>
<td>+4.0</td>
<td>+0.0</td>
<td>+0.1</td>
<td>23.7</td>
<td>90.5</td>
<td>-66.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+4.0</td>
<td>+0.0</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/25/2005
Time: 9:36:02 AM
Test Type: Radiated Scan

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Test Conditions / Notes:
Path Check Sweep. Signal at 15.005MHz. 64 (spec limit) - 6dB - 10.9 (Antenna Factor) = 47.1dBuV signal level.

Transducer Legend:
T1=AN 01579 Rod Antenna
T2=20' Cable Male N to Male N AN None
T3=Cable 2410

<table>
<thead>
<tr>
<th>Measurement Data:</th>
<th>Reading listed by margin.</th>
<th>Test Distance: None</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Freq MHz</td>
<td>Rdng dBµV</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>29.992M</td>
<td>+44.5</td>
</tr>
<tr>
<td>2</td>
<td>1.166M</td>
<td>+21.8</td>
</tr>
<tr>
<td>3</td>
<td>28.109M</td>
<td>+7.7</td>
</tr>
<tr>
<td>4</td>
<td>27.534M</td>
<td>+7.2</td>
</tr>
<tr>
<td>5</td>
<td>26.273M</td>
<td>+7.1</td>
</tr>
<tr>
<td>6</td>
<td>1.216M</td>
<td>+16.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>26.521M</td>
<td>6.9</td>
</tr>
<tr>
<td>8</td>
<td>26.640M</td>
<td>6.8</td>
</tr>
<tr>
<td>9</td>
<td>26.058M</td>
<td>7.0</td>
</tr>
<tr>
<td>10</td>
<td>24.590M</td>
<td>7.2</td>
</tr>
<tr>
<td>11</td>
<td>21.479M</td>
<td>7.9</td>
</tr>
<tr>
<td>12</td>
<td>21.650M</td>
<td>7.8</td>
</tr>
<tr>
<td>13</td>
<td>19.087M</td>
<td>8.3</td>
</tr>
<tr>
<td>14</td>
<td>16.935M</td>
<td>8.6</td>
</tr>
<tr>
<td>15</td>
<td>8.767M</td>
<td>9.7</td>
</tr>
<tr>
<td>16</td>
<td>1.053M</td>
<td>15.5</td>
</tr>
<tr>
<td>17</td>
<td>1.364M</td>
<td>12.8</td>
</tr>
<tr>
<td>18</td>
<td>1.983M</td>
<td>10.0</td>
</tr>
<tr>
<td>19</td>
<td>1.789M</td>
<td>10.1</td>
</tr>
<tr>
<td>20</td>
<td>1.710M</td>
<td>10.4</td>
</tr>
<tr>
<td>21</td>
<td>1.957M</td>
<td>9.3</td>
</tr>
<tr>
<td>22</td>
<td>1.482M</td>
<td>10.6</td>
</tr>
<tr>
<td>23</td>
<td>1.502M</td>
<td>10.5</td>
</tr>
<tr>
<td>24</td>
<td>1.094M</td>
<td>12.8</td>
</tr>
<tr>
<td>25</td>
<td>1.926M</td>
<td>8.5</td>
</tr>
<tr>
<td>26</td>
<td>1.432M</td>
<td>10.2</td>
</tr>
<tr>
<td>27</td>
<td>1.414M</td>
<td>9.6</td>
</tr>
<tr>
<td>28</td>
<td>816.000k</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>29</td>
<td>1.032M</td>
<td>10.1</td>
</tr>
<tr>
<td>30</td>
<td>692.050k</td>
<td>12.7</td>
</tr>
<tr>
<td>31</td>
<td>779.000k</td>
<td>11.2</td>
</tr>
<tr>
<td>32</td>
<td>745.700k</td>
<td>10.7</td>
</tr>
<tr>
<td>33</td>
<td>614.350k</td>
<td>11.6</td>
</tr>
<tr>
<td>34</td>
<td>638.400k</td>
<td>10.9</td>
</tr>
<tr>
<td>35</td>
<td>473.750k</td>
<td>11.5</td>
</tr>
<tr>
<td>36</td>
<td>431.200k</td>
<td>11.8</td>
</tr>
<tr>
<td>37</td>
<td>150.000k</td>
<td>14.9</td>
</tr>
<tr>
<td>38</td>
<td>40.738k</td>
<td>18.3</td>
</tr>
<tr>
<td>39</td>
<td>10.134k</td>
<td>23.3</td>
</tr>
<tr>
<td>40</td>
<td>82.750k</td>
<td>9.1</td>
</tr>
<tr>
<td>41</td>
<td>11.879k</td>
<td>21.9</td>
</tr>
<tr>
<td>42</td>
<td>12.550k</td>
<td>21.5</td>
</tr>
<tr>
<td>43</td>
<td>20.201k</td>
<td>18.2</td>
</tr>
<tr>
<td>44</td>
<td>149.965k</td>
<td>4.5</td>
</tr>
<tr>
<td>45</td>
<td>117.784k</td>
<td>6.0</td>
</tr>
<tr>
<td>46</td>
<td>146.904k</td>
<td>4.4</td>
</tr>
<tr>
<td>47</td>
<td>144.611k</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>149.047k</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>149.365k</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>149.469k</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/25/2005 Time: 9:36:02 AM Stanford Linear Accelerator Center WO#: 82840
RE102 10KHz-16GHz Test Distance: None Sequence#: 0
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/23/2005
Time: 12:41:53 PM
Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar
Model:
S/N:

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Test Conditions / Notes:
Path Check Sweep. Signal at 200MHz. 70(spec limit) - 6dB - 16.9 (Antenna Factor) = 47.1dBuV signal level.

Transducer Legend:
T1=20' Cable Male N to Male N AN None
T3=Bicon503
T5=AN 0567 SN 1937A03055
T2=Cable 2410
T4=2' Cable Male BNC to Male N AN None

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdnng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
<th>Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>199.918M</td>
<td>73.4</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+16.9</td>
<td>+0.1</td>
<td>+0.0</td>
<td>64.4</td>
<td>70.1</td>
<td>-5.7</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30.370M</td>
<td>29.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+16.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>18.3</td>
<td>64.0</td>
<td>-45.7</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>152.926M</td>
<td>30.7</td>
<td>+0.5</td>
<td>+0.8</td>
<td>+15.3</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.0</td>
<td>67.7</td>
<td>-47.7</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>188.208M</td>
<td>29.5</td>
<td>+0.6</td>
<td>+1.1</td>
<td>+16.5</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.3</td>
<td>69.5</td>
<td>-49.2</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>99.739M</td>
<td>29.4</td>
<td>+0.4</td>
<td>+0.8</td>
<td>+10.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.4</td>
<td>64.0</td>
<td>-50.6</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97.692M</td>
<td>29.8</td>
<td>+0.4</td>
<td>+0.8</td>
<td>+9.6</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.3</td>
<td>64.0</td>
<td>-50.7</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>96.691M</td>
<td>30.0</td>
<td>+0.4</td>
<td>+0.7</td>
<td>+9.4</td>
<td>+0.1</td>
<td>+0.0</td>
<td>13.2</td>
<td>64.0</td>
<td>-50.8</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>57.810M</td>
<td>28.9</td>
<td>+0.3</td>
<td>+0.5</td>
<td>+9.2</td>
<td>+0.1</td>
<td>+0.0</td>
<td>11.6</td>
<td>64.0</td>
<td>-52.4</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>86.982M</td>
<td>29.6</td>
<td>+0.4</td>
<td>+0.6</td>
<td>+7.5</td>
<td>+0.1</td>
<td>+0.0</td>
<td>10.7</td>
<td>64.0</td>
<td>-53.3</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/23/2005
Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar
Model:

Test Conditions / Notes:
Path Check Sweep. Signal at 1000MHz. 84(spec limit) - 6dB - 22.7 (Antenna Factor) = 55.3dBuV signal level.

Transducer Legend:

- T1=20' Cable Male N to Male N AN None
- T3=2' Cable Male BNC to Male N AN None
- T5=SAS-570 Horn Antenna - 2525
- T2=Cable 2410
- T4=AN 0567 SN 1937A03055

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq</th>
<th>Rdng</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>dBµV</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>Table</td>
<td>dBµV/m</td>
<td>dBµV/m</td>
<td>dB</td>
<td>Ant</td>
</tr>
<tr>
<td>1</td>
<td>999.901M</td>
<td>77.6</td>
<td>+1.7</td>
<td>+2.9</td>
<td>+0.6</td>
<td>-27.4</td>
<td>+0.0</td>
<td>78.1</td>
<td>84.2</td>
<td>-6.1</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>500.000M</td>
<td>47.0</td>
<td>+1.1</td>
<td>+1.8</td>
<td>+0.3</td>
<td>-27.7</td>
<td>+0.0</td>
<td>39.4</td>
<td>78.1</td>
<td>-38.7</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>603.303M</td>
<td>44.8</td>
<td>+1.2</td>
<td>+2.2</td>
<td>+0.3</td>
<td>-27.5</td>
<td>+0.0</td>
<td>38.8</td>
<td>79.7</td>
<td>-40.9</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>675.275M</td>
<td>36.1</td>
<td>+1.3</td>
<td>+2.3</td>
<td>+0.5</td>
<td>-27.4</td>
<td>+0.0</td>
<td>30.9</td>
<td>80.7</td>
<td>-49.8</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>891.791M</td>
<td>35.6</td>
<td>+1.6</td>
<td>+2.7</td>
<td>+0.5</td>
<td>-27.3</td>
<td>+0.0</td>
<td>33.3</td>
<td>83.2</td>
<td>-49.9</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>679.779M</td>
<td>32.8</td>
<td>+1.3</td>
<td>+2.3</td>
<td>+0.5</td>
<td>-27.4</td>
<td>+0.0</td>
<td>27.6</td>
<td>80.8</td>
<td>-53.2</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>698.298M</td>
<td>31.5</td>
<td>+1.4</td>
<td>+2.3</td>
<td>+0.4</td>
<td>-27.3</td>
<td>+0.0</td>
<td>26.4</td>
<td>81.0</td>
<td>-54.6</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>475.776M</td>
<td>31.0</td>
<td>+1.0</td>
<td>+1.8</td>
<td>+0.3</td>
<td>-27.9</td>
<td>+0.0</td>
<td>22.9</td>
<td>77.7</td>
<td>-54.8</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>607.807M</td>
<td>30.4</td>
<td>+1.2</td>
<td>+2.2</td>
<td>+0.3</td>
<td>-27.5</td>
<td>+0.0</td>
<td>24.3</td>
<td>79.8</td>
<td>-55.5</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>Power</td>
<td>Error</td>
<td>Efficiency</td>
<td>Power Factor</td>
<td>Phase</td>
<td>Noise</td>
<td>Reading</td>
<td>Sweep Data</td>
<td>1 - RE102 10KHz-18GHz</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>828.928M</td>
<td>29.5</td>
<td>+1.4</td>
<td>+2.7</td>
<td>+0.5</td>
<td>-27.2</td>
<td>+0.0</td>
<td>26.5 82.5</td>
<td>-56.0 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>701.601M</td>
<td>30.1</td>
<td>+1.4</td>
<td>+2.3</td>
<td>+0.4</td>
<td>-27.3</td>
<td>+0.0</td>
<td>25.0 81.1</td>
<td>-56.1 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>833.533M</td>
<td>29.0</td>
<td>+1.5</td>
<td>+2.7</td>
<td>+0.5</td>
<td>-27.3</td>
<td>+0.0</td>
<td>26.0 82.6</td>
<td>-56.6 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>300.000M</td>
<td>28.4</td>
<td>+0.8</td>
<td>+1.7</td>
<td>+0.3</td>
<td>-27.7</td>
<td>+0.0</td>
<td>16.3 73.6</td>
<td>-57.3 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>358.659M</td>
<td>29.2</td>
<td>+0.8</td>
<td>+1.6</td>
<td>+0.2</td>
<td>-27.4</td>
<td>+0.0</td>
<td>17.9 75.2</td>
<td>-57.3 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>600.400M</td>
<td>28.4</td>
<td>+1.2</td>
<td>+2.2</td>
<td>+0.3</td>
<td>-27.5</td>
<td>+0.0</td>
<td>22.4 79.7</td>
<td>-57.3 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>628.128M</td>
<td>28.9</td>
<td>+1.2</td>
<td>+2.2</td>
<td>+0.4</td>
<td>-27.6</td>
<td>+0.0</td>
<td>22.7 80.1</td>
<td>-57.4 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>593.093M</td>
<td>28.2</td>
<td>+1.2</td>
<td>+2.1</td>
<td>+0.3</td>
<td>-27.6</td>
<td>+0.0</td>
<td>21.9 79.6</td>
<td>-57.7 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>784.984M</td>
<td>28.2</td>
<td>+1.5</td>
<td>+2.5</td>
<td>+0.5</td>
<td>-27.3</td>
<td>+0.0</td>
<td>24.2 82.0</td>
<td>-57.8 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>823.022M</td>
<td>27.5</td>
<td>+1.4</td>
<td>+2.7</td>
<td>+0.5</td>
<td>-27.1</td>
<td>+0.0</td>
<td>24.5 82.5</td>
<td>-58.0 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>900.700M</td>
<td>27.5</td>
<td>+1.6</td>
<td>+2.7</td>
<td>+0.5</td>
<td>-27.4</td>
<td>+0.0</td>
<td>25.1 83.2</td>
<td>-58.1 None</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840 Date: 2/23/2005
Test Type: Radiated Scan Time: 4:38:28 PM

Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar
Model:
S/N:

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Test Conditions / Notes:

Path Check Sweep, Signal at 1000MHz. 109(spec limit) - 6dB - 45.2 (Antenna Factor) = -49.2dBm signal level.

Transducer Legend:

Measurement Data: Reading listed by margin.

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>dB</th>
<th>dB</th>
<th>dB</th>
<th>dB</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
</tr>
</thead>
</table>

Test Distance: None
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/23/2005
Time: 4:39:45 PM

Test Conditions / Notes:
Path Check Sweep. Signal at 1000MHz. 109(spec limit) - 6dB - 45.2 (Antenna Factor) = -49.2dBm signal level.

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Corr Table</th>
<th>Spec dBµV/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1551.793M</td>
<td>15.6</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.7</td>
<td>14.0</td>
<td>-1.3</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>1583.352M</td>
<td>15.4</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>1562.541M</td>
<td>15.1</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.2</td>
<td>14.0</td>
<td>-1.8</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>1591.490M</td>
<td>15.0</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.2</td>
<td>14.0</td>
<td>-1.8</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>1598.763M</td>
<td>14.9</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.2</td>
<td>14.0</td>
<td>-1.8</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>1595.265M</td>
<td>14.8</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>1595.436M</td>
<td>14.8</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>1599.817M</td>
<td>14.8</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>1551.297M</td>
<td>14.9</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>1558.625M</td>
<td>14.9</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>None</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1561.616M</td>
<td>14.9</td>
<td>-30.3</td>
<td>25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>12</td>
<td>1585.968M</td>
<td>14.8</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>13</td>
<td>1592.670M</td>
<td>14.7</td>
<td>-30.3</td>
<td>25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>14</td>
<td>1595.749M</td>
<td>14.7</td>
<td>-30.3</td>
<td>25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>15</td>
<td>1552.126M</td>
<td>14.8</td>
<td>-30.3</td>
<td>25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
</tr>
<tr>
<td>16</td>
<td>1556.817M</td>
<td>14.8</td>
<td>-30.3</td>
<td>25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
</tr>
<tr>
<td>17</td>
<td>1576.565M</td>
<td>14.7</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
</tr>
<tr>
<td>18</td>
<td>1584.532M</td>
<td>14.7</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
</tr>
<tr>
<td>19</td>
<td>1599.229M</td>
<td>14.6</td>
<td>-30.3</td>
<td>25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
</tr>
<tr>
<td>20</td>
<td>1555.925M</td>
<td>14.7</td>
<td>-30.3</td>
<td>25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
</tr>
<tr>
<td>21</td>
<td>1598.353M</td>
<td>14.5</td>
<td>-30.3</td>
<td>25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
</tr>
<tr>
<td>22</td>
<td>1559.345M</td>
<td>14.6</td>
<td>-30.3</td>
<td>25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>23</td>
<td>1569.069M</td>
<td>14.5</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>24</td>
<td>1580.529M</td>
<td>14.5</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>25</td>
<td>1582.334M</td>
<td>14.5</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>26</td>
<td>1586.385M</td>
<td>14.5</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>27</td>
<td>1586.466M</td>
<td>14.5</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>28</td>
<td>1590.184M</td>
<td>14.5</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>29</td>
<td>1556.916M</td>
<td>14.5</td>
<td>-30.3</td>
<td>25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.6</td>
<td>14.0</td>
<td>-2.4</td>
</tr>
<tr>
<td>30</td>
<td>1574.778M</td>
<td>14.4</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.6</td>
<td>14.0</td>
<td>-2.4</td>
</tr>
<tr>
<td>31</td>
<td>1575.652M</td>
<td>14.4</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.6</td>
<td>14.0</td>
<td>-2.4</td>
</tr>
<tr>
<td>32</td>
<td>1578.307M</td>
<td>14.4</td>
<td>-30.3</td>
<td>25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.6</td>
<td>14.0</td>
<td>-2.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>33</td>
<td>1585.166M</td>
<td>14.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.6</td>
<td>14.0</td>
<td>-2.4</td>
</tr>
<tr>
<td>34</td>
<td>1598.488M</td>
<td>14.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.6</td>
<td>14.0</td>
<td>-2.4</td>
</tr>
<tr>
<td>35</td>
<td>1560.748M</td>
<td>14.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.5</td>
<td>14.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>36</td>
<td>1560.940M</td>
<td>14.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.5</td>
<td>14.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>37</td>
<td>1574.523M</td>
<td>14.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.5</td>
<td>14.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>38</td>
<td>1585.845M</td>
<td>14.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.5</td>
<td>14.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>39</td>
<td>1586.115M</td>
<td>14.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.5</td>
<td>14.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>40</td>
<td>1595.734M</td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.5</td>
<td>14.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>41</td>
<td>1596.794M</td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.5</td>
<td>14.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>42</td>
<td>1558.940M</td>
<td>14.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>43</td>
<td>1560.817M</td>
<td>14.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>44</td>
<td>1560.967M</td>
<td>14.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>45</td>
<td>1566.096M</td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>46</td>
<td>1584.493M</td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>47</td>
<td>1585.082M</td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>48</td>
<td>1586.082M</td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>49</td>
<td>1586.568M</td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>50</td>
<td>1597.451M</td>
<td>14.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>51</td>
<td>1598.726M</td>
<td>14.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>52</td>
<td>1599.871M</td>
<td>14.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>53</td>
<td>1599.949M</td>
<td>14.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
</tr>
<tr>
<td>54</td>
<td>1551.405M</td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.3</td>
<td>14.0</td>
<td>-2.7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1558.811M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1559.135M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1562.090M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1562.955M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1564.703M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1565.057M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1578.935M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1584.166M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>1587.247M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1590.241M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.7</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1560.634M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>1563.427M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>1565.147M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>1565.439M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1566.381M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1567.613M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1571.021M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1572.364M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>1572.808M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1572.838M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1573.973M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.0</td>
<td>-2.8</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>1575.679M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1577.484M</td>
<td>14.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.2</td>
<td>14.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>78</td>
<td>1578.004M</td>
<td>14.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.2</td>
<td>14.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>79</td>
<td>1578.094M</td>
<td>14.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.2</td>
<td>14.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>80</td>
<td>1584.049M</td>
<td>14.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.2</td>
<td>14.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>81</td>
<td>1590.637M</td>
<td>14.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.2</td>
<td>14.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>82</td>
<td>1592.238M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.2</td>
<td>14.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>83</td>
<td>1597.659M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.2</td>
<td>14.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>84</td>
<td>1551.495M</td>
<td>14.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>85</td>
<td>1559.276M</td>
<td>14.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>86</td>
<td>1564.066M</td>
<td>14.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>87</td>
<td>1566.958M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>88</td>
<td>1567.892M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>89</td>
<td>1575.138M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>90</td>
<td>1576.631M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>91</td>
<td>1584.124M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>92</td>
<td>1590.292M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>93</td>
<td>1590.448M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>94</td>
<td>1590.881M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>95</td>
<td>1595.764M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>96</td>
<td>1596.755M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.1</td>
<td>14.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>97</td>
<td>1555.982M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>98</td>
<td>1559.631M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>1560.910M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>100</td>
<td>1561.778M</td>
<td>13.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>101</td>
<td>1566.054M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>102</td>
<td>1566.922M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>103</td>
<td>1567.501M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>104</td>
<td>1579.541M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>105</td>
<td>1579.842M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>106</td>
<td>1583.535M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>107</td>
<td>1583.709M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>108</td>
<td>1587.415M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>109</td>
<td>1597.376M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>110</td>
<td>1597.529M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>111</td>
<td>1598.554M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>112</td>
<td>1598.829M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.0</td>
<td>14.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>113</td>
<td>1552.048M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>114</td>
<td>1559.207M</td>
<td>13.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>115</td>
<td>1567.306M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>116</td>
<td>1572.222M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>117</td>
<td>1572.691M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>118</td>
<td>1585.148M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>119</td>
<td>1587.851M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>120</td>
<td>1588.205M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>No.</td>
<td>Time (M)</td>
<td>Frequency</td>
<td>Amplitude</td>
<td>Phase</td>
<td>Level</td>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>1588.638M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
<td>None</td>
</tr>
<tr>
<td>122</td>
<td>1597.397M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>123</td>
<td>1599.824M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.9</td>
<td>14.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>124</td>
<td>1559.586M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>125</td>
<td>1562.436M</td>
<td>13.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>126</td>
<td>1571.226M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>127</td>
<td>1571.475M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>128</td>
<td>1572.147M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>129</td>
<td>1578.667M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>130</td>
<td>1578.812M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>131</td>
<td>1583.818M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>132</td>
<td>1592.100M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>133</td>
<td>1597.758M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>134</td>
<td>1597.866M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>135</td>
<td>1598.535M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>136</td>
<td>1598.638M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>137</td>
<td>1599.854M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.8</td>
<td>14.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>138</td>
<td>1562.835M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>139</td>
<td>1563.649M</td>
<td>13.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>140</td>
<td>1571.565M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>141</td>
<td>1575.793M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>142</td>
<td>1576.024M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>1576.054M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>144</td>
<td>1576.186M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>145</td>
<td>1578.544M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>146</td>
<td>1587.938M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>147</td>
<td>1587.974M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>148</td>
<td>1588.163M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>149</td>
<td>1590.397M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>150</td>
<td>1596.391M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>151</td>
<td>1597.571M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>152</td>
<td>1598.501M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.7</td>
<td>14.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>153</td>
<td>1552.105M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>154</td>
<td>1561.204M</td>
<td>13.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>155</td>
<td>1567.234M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>156</td>
<td>1567.384M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>157</td>
<td>1572.481M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>158</td>
<td>1576.345M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>159</td>
<td>1577.184M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>160</td>
<td>1579.103M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>161</td>
<td>1588.307M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>162</td>
<td>1596.193M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>163</td>
<td>1597.286M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>164</td>
<td>1597.713M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>165</td>
<td>1598.800M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.6</td>
<td>14.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>166</td>
<td>1551.943M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>167</td>
<td>1563.478M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>168</td>
<td>1564.550M</td>
<td>13.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>169</td>
<td>1565.841M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>170</td>
<td>1566.682M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>171</td>
<td>1573.315M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>172</td>
<td>1573.685M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>173</td>
<td>1577.478M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>174</td>
<td>1583.757M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>175</td>
<td>1585.941M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>176</td>
<td>1586.499M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>177</td>
<td>1592.190M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>178</td>
<td>1596.538M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>179</td>
<td>1597.635M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>180</td>
<td>1597.743M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.5</td>
<td>14.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>181</td>
<td>1551.559M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>182</td>
<td>1552.006M</td>
<td>13.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>183</td>
<td>1567.144M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>184</td>
<td>1575.261M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>185</td>
<td>1576.066M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>186</td>
<td>1576.796M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>187</td>
<td>1579.391M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>188</td>
<td>1584.025M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>189</td>
<td>1584.232M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>190</td>
<td>1584.313M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>191</td>
<td>1596.259M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.4</td>
<td>14.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>192</td>
<td>1564.414M</td>
<td>13.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>193</td>
<td>1566.156M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>194</td>
<td>1572.679M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>195</td>
<td>1572.997M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>196</td>
<td>1573.856M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>197</td>
<td>1574.018M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>198</td>
<td>1575.541M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>199</td>
<td>1578.319M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>200</td>
<td>1584.385M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>201</td>
<td>1597.307M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.3</td>
<td>14.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>202</td>
<td>1560.682M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>203</td>
<td>1561.946M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>204</td>
<td>1564.120M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>205</td>
<td>1564.324M</td>
<td>13.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>206</td>
<td>1566.015M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>207</td>
<td>1566.141M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>208</td>
<td>1566.273M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>209</td>
<td>1567.408M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>210</td>
<td>1572.391M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>211</td>
<td>1573.141M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>212</td>
<td>1573.180M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>213</td>
<td>1579.346M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>214</td>
<td>1551.691M</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>215</td>
<td>1567.024M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>216</td>
<td>1572.069M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>217</td>
<td>1572.243M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>218</td>
<td>1573.069M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>219</td>
<td>1576.529M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>220</td>
<td>1576.541M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>221</td>
<td>1576.874M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>222</td>
<td>1578.388M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
</tr>
<tr>
<td>223</td>
<td>1551.850M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>224</td>
<td>1551.901M</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>225</td>
<td>1567.453M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>226</td>
<td>1571.724M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>227</td>
<td>1571.934M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>228</td>
<td>1577.000M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>229</td>
<td>1578.475M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>230</td>
<td>1579.316M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>1583.953M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>232</td>
<td>1559.574M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>233</td>
<td>1562.634M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>234</td>
<td>1562.712M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>235</td>
<td>1563.907M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>236</td>
<td>1564.444M</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>237</td>
<td>1567.423M</td>
<td>12.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>238</td>
<td>1572.508M</td>
<td>12.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>239</td>
<td>1576.469M</td>
<td>12.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>240</td>
<td>1579.193M</td>
<td>12.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>241</td>
<td>1559.460M</td>
<td>12.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.8</td>
<td>14.0</td>
<td>-4.2</td>
</tr>
<tr>
<td>242</td>
<td>1566.559M</td>
<td>12.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.8</td>
<td>14.0</td>
<td>-4.2</td>
</tr>
<tr>
<td>243</td>
<td>1561.087M</td>
<td>12.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.7</td>
<td>14.0</td>
<td>-4.3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>1566.493M</td>
<td>12.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>1573.033M</td>
<td>12.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc.
Date: 2/23/2005 Time: 4:39:45 PM Stanford Linear Accelerator Center WO#: 82640
RE102 10kHz-18GHz Test Distance: None Sequence#: 0
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840 • Date: 2/23/2005
Test Type: Radiated Scan • Time: 4:47:34 PM
Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar
Model:
S/N:

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Test Conditions / Notes:
Path Check Sweep. Signal at 1000MHz. 109(spec limit) - 6dB - 45.2 (Antenna Factor) = -49.2dBm signal level.

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table dBµV/m</th>
<th>Corr dBµV/m</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1769.063M</td>
<td>42.2</td>
<td>-30.1</td>
<td>+26.2</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>40.5</td>
<td>89.0</td>
<td>-48.5</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>1669.385M</td>
<td>41.8</td>
<td>-30.2</td>
<td>+25.8</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>39.4</td>
<td>88.4</td>
<td>-49.0</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>1607.942M</td>
<td>41.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>38.8</td>
<td>88.0</td>
<td>-49.2</td>
<td>None</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/23/2005
Time: 4:50:09 PM

Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
Path Check Sweep. Signal at 1000MHz. 109(spec limit) - 6dB - 45.2 (Antenna Factor) = -49.2dBm signal level.

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBmV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table</th>
<th>Corr dB</th>
<th>Spec dBm/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2277.087M</td>
<td>20.3</td>
<td>-29.7</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>20.9</td>
<td>25.0</td>
<td>-4.1</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>2210.571M</td>
<td>19.8</td>
<td>-29.4</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>20.5</td>
<td>25.0</td>
<td>-4.5</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>2111.932M</td>
<td>19.4</td>
<td>-28.8</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>20.3</td>
<td>25.0</td>
<td>-4.7</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>2272.943M</td>
<td>19.6</td>
<td>-29.7</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>20.2</td>
<td>25.0</td>
<td>-4.8</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>2276.116M</td>
<td>19.5</td>
<td>-29.7</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>20.1</td>
<td>25.0</td>
<td>-4.9</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>2115.896M</td>
<td>18.9</td>
<td>-28.8</td>
<td>+27.4</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.9</td>
<td>25.0</td>
<td>-5.1</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>2286.076M</td>
<td>19.2</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.9</td>
<td>25.0</td>
<td>-5.1</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>2207.407M</td>
<td>19.0</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.8</td>
<td>25.0</td>
<td>-5.2</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>2216.917M</td>
<td>19.1</td>
<td>-29.4</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.8</td>
<td>25.0</td>
<td>-5.2</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>2199.139M</td>
<td>18.9</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.7</td>
<td>25.0</td>
<td>-5.3</td>
<td>None</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2293.952M</td>
<td>19.1</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.7</td>
<td>25.0</td>
<td>-5.3</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>2177.978M</td>
<td>18.8</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.6</td>
<td>25.0</td>
<td>-5.4</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>2187.457M</td>
<td>18.8</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.6</td>
<td>25.0</td>
<td>-5.4</td>
<td>None</td>
</tr>
<tr>
<td>14</td>
<td>2193.934M</td>
<td>18.9</td>
<td>-29.3</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.6</td>
<td>25.0</td>
<td>-5.4</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>2277.917M</td>
<td>19.0</td>
<td>-29.7</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.6</td>
<td>25.0</td>
<td>-5.4</td>
<td>None</td>
</tr>
<tr>
<td>16</td>
<td>2284.565M</td>
<td>18.9</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.6</td>
<td>25.0</td>
<td>-5.4</td>
<td>None</td>
</tr>
<tr>
<td>17</td>
<td>2173.784M</td>
<td>18.6</td>
<td>-29.1</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.5</td>
<td>25.0</td>
<td>-5.5</td>
<td>None</td>
</tr>
<tr>
<td>18</td>
<td>2199.329M</td>
<td>18.7</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.5</td>
<td>25.0</td>
<td>-5.5</td>
<td>None</td>
</tr>
<tr>
<td>19</td>
<td>2201.191M</td>
<td>18.7</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.5</td>
<td>25.0</td>
<td>-5.5</td>
<td>None</td>
</tr>
<tr>
<td>20</td>
<td>2281.341M</td>
<td>18.8</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.5</td>
<td>25.0</td>
<td>-5.5</td>
<td>None</td>
</tr>
<tr>
<td>21</td>
<td>2289.740M</td>
<td>18.8</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.5</td>
<td>25.0</td>
<td>-5.5</td>
<td>None</td>
</tr>
<tr>
<td>22</td>
<td>2044.855M</td>
<td>18.9</td>
<td>-28.9</td>
<td>+27.1</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.4</td>
<td>25.0</td>
<td>-5.6</td>
<td>None</td>
</tr>
<tr>
<td>23</td>
<td>2128.628M</td>
<td>18.5</td>
<td>-28.9</td>
<td>+27.4</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.4</td>
<td>25.0</td>
<td>-5.6</td>
<td>None</td>
</tr>
<tr>
<td>24</td>
<td>2211.491M</td>
<td>18.7</td>
<td>-29.4</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.4</td>
<td>25.0</td>
<td>-5.6</td>
<td>None</td>
</tr>
<tr>
<td>25</td>
<td>2226.236M</td>
<td>18.6</td>
<td>-29.4</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.4</td>
<td>25.0</td>
<td>-5.6</td>
<td>None</td>
</tr>
<tr>
<td>26</td>
<td>2287.137M</td>
<td>18.7</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.4</td>
<td>25.0</td>
<td>-5.6</td>
<td>None</td>
</tr>
<tr>
<td>27</td>
<td>2299.782M</td>
<td>18.8</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.4</td>
<td>25.0</td>
<td>-5.6</td>
<td>None</td>
</tr>
<tr>
<td>28</td>
<td>2279.859M</td>
<td>18.6</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.3</td>
<td>25.0</td>
<td>-5.7</td>
<td>None</td>
</tr>
<tr>
<td>No.</td>
<td>Frequency</td>
<td>Power</td>
<td>Deviation</td>
<td>Deviation Ref</td>
<td>Deviation</td>
<td>Deviation Ref</td>
<td>Distance</td>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2293.004M</td>
<td>18.7</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>-5.7</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2294.189M</td>
<td>18.7</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>-5.7</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/23/2005 Time: 4:50:09 PM Stanford Linear Accelerator Center WO#: 82640 RE102 10kHz-18GHz Test Distance: None Sequence#: 0
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/23/2005
Time: 4:54:25 PM

Equipment:
Manufacturer: Tested By: A. Brar
S/N:

Equipment Under Test (UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Test Conditions / Notes:

Path Check Sweep. Signal at 1000MHz. 109(spec limit) - 6dB - 45.2 (Antenna Factor) = -49.2dBm signal level.

Transducer Legend:

T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table</th>
<th>Corr dBµV/m</th>
<th>Spec dBµV/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17999.310M</td>
<td>78.9</td>
<td>-29.6</td>
<td>+45.2</td>
<td>+3.6</td>
<td>+4.2</td>
<td>+0.0</td>
<td>102.3</td>
<td>109.0</td>
<td>-6.7</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>10295.990M</td>
<td>40.3</td>
<td>-27.3</td>
<td>+39.4</td>
<td>+2.6</td>
<td>+3.0</td>
<td>+0.0</td>
<td>58.0</td>
<td>103.8</td>
<td>-45.8</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>13392.080M</td>
<td>40.4</td>
<td>-30.2</td>
<td>+42.9</td>
<td>+3.0</td>
<td>+3.4</td>
<td>+0.0</td>
<td>59.5</td>
<td>106.3</td>
<td>-46.8</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>10317.010M</td>
<td>39.0</td>
<td>-27.3</td>
<td>+39.4</td>
<td>+2.6</td>
<td>+3.0</td>
<td>+0.0</td>
<td>56.7</td>
<td>103.9</td>
<td>-47.2</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>13838.530M</td>
<td>40.0</td>
<td>-30.6</td>
<td>+43.4</td>
<td>+3.1</td>
<td>+3.4</td>
<td>+0.0</td>
<td>59.3</td>
<td>106.6</td>
<td>-47.3</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>12777.470M</td>
<td>40.0</td>
<td>-29.2</td>
<td>+41.3</td>
<td>+2.9</td>
<td>+3.2</td>
<td>+0.0</td>
<td>58.2</td>
<td>105.8</td>
<td>-47.6</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>14454.140M</td>
<td>40.1</td>
<td>-30.8</td>
<td>+43.4</td>
<td>+3.2</td>
<td>+3.5</td>
<td>+0.0</td>
<td>59.4</td>
<td>107.0</td>
<td>-47.6</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>3240.940M</td>
<td>40.7</td>
<td>-29.1</td>
<td>+30.7</td>
<td>+1.4</td>
<td>+1.5</td>
<td>+0.0</td>
<td>45.2</td>
<td>93.2</td>
<td>-48.0</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>3902.601M</td>
<td>41.0</td>
<td>-29.5</td>
<td>+32.3</td>
<td>+1.5</td>
<td>+1.6</td>
<td>+0.0</td>
<td>46.9</td>
<td>94.9</td>
<td>-48.0</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>5480.177M</td>
<td>39.5</td>
<td>-28.3</td>
<td>+35.0</td>
<td>+1.8</td>
<td>+2.0</td>
<td>+0.0</td>
<td>50.0</td>
<td>98.0</td>
<td>-48.0</td>
<td>None</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12212.900M</td>
<td>39.3</td>
<td>-28.8</td>
<td>+40.9</td>
<td>+2.8</td>
<td>+3.2</td>
<td>+0.0</td>
<td>57.4</td>
<td>105.4</td>
<td>-48.0</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>8654.348M</td>
<td>37.8</td>
<td>-26.8</td>
<td>+38.3</td>
<td>+2.3</td>
<td>+2.5</td>
<td>+0.0</td>
<td>54.1</td>
<td>102.2</td>
<td>-48.1</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>4213.912M</td>
<td>40.4</td>
<td>-29.7</td>
<td>+32.6</td>
<td>+1.7</td>
<td>+1.7</td>
<td>+0.0</td>
<td>46.7</td>
<td>95.6</td>
<td>-48.9</td>
<td>None</td>
</tr>
<tr>
<td>14</td>
<td>5254.952M</td>
<td>38.7</td>
<td>-28.4</td>
<td>+34.3</td>
<td>+1.8</td>
<td>+2.0</td>
<td>+0.0</td>
<td>48.4</td>
<td>97.6</td>
<td>-49.2</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>7199.895M</td>
<td>38.2</td>
<td>-27.0</td>
<td>+34.0</td>
<td>+2.2</td>
<td>+2.3</td>
<td>+0.0</td>
<td>50.5</td>
<td>100.5</td>
<td>-50.0</td>
<td>None</td>
</tr>
<tr>
<td>16</td>
<td>7465.160M</td>
<td>37.5</td>
<td>-27.1</td>
<td>+35.6</td>
<td>+2.2</td>
<td>+2.4</td>
<td>+0.0</td>
<td>50.6</td>
<td>100.9</td>
<td>-50.3</td>
<td>None</td>
</tr>
<tr>
<td>17</td>
<td>17166.850M</td>
<td>39.0</td>
<td>-29.5</td>
<td>+41.0</td>
<td>+3.5</td>
<td>+4.0</td>
<td>+0.0</td>
<td>58.0</td>
<td>108.6</td>
<td>-50.6</td>
<td>None</td>
</tr>
<tr>
<td>18</td>
<td>15453.140M</td>
<td>40.3</td>
<td>-30.7</td>
<td>+38.6</td>
<td>+3.3</td>
<td>+3.6</td>
<td>+0.0</td>
<td>55.1</td>
<td>107.6</td>
<td>-52.5</td>
<td>None</td>
</tr>
<tr>
<td>19</td>
<td>16755.440M</td>
<td>38.9</td>
<td>-30.1</td>
<td>+38.7</td>
<td>+3.4</td>
<td>+3.9</td>
<td>+0.0</td>
<td>54.8</td>
<td>108.3</td>
<td>-53.5</td>
<td>None</td>
</tr>
<tr>
<td>20</td>
<td>16546.230M</td>
<td>40.2</td>
<td>-30.4</td>
<td>+37.5</td>
<td>+3.3</td>
<td>+3.8</td>
<td>+0.0</td>
<td>54.4</td>
<td>108.2</td>
<td>-53.8</td>
<td>None</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/23/2005 Time: 4:54:25 PM Stanford Linear Accelerator Center VCC#: 82640 RE102 10kHz-18GHz Test Distance: None Sequence#: 0

![Graph](image)
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/23/2005
Test Type: Radiated Scan
Time: 4:12:55 PM

Equipment: Sequence#: 0
Manufacturer: Tested By: A. Brar
Model:
S/N:

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
</table>

Test Conditions / Notes:

Path Check Sweep. Signal at 1000MHz. 109(spec limit) - 6dB - 45.2 (Antenna Factor) = -49.2dBm signal level.

Transducer Legend:

T1=AMP AN09941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1587.698M</td>
<td>20.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>18.0</td>
<td>14.0</td>
<td>+4.0</td>
</tr>
<tr>
<td>2</td>
<td>1552.753M</td>
<td>20.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.8</td>
<td>14.0</td>
<td>+3.8</td>
</tr>
<tr>
<td>3</td>
<td>1554.354M</td>
<td>20.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.6</td>
<td>14.0</td>
<td>+3.6</td>
</tr>
<tr>
<td>4</td>
<td>1597.102M</td>
<td>20.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.6</td>
<td>14.0</td>
<td>+3.6</td>
</tr>
<tr>
<td>5</td>
<td>1577.528M</td>
<td>20.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.5</td>
<td>14.0</td>
<td>+3.5</td>
</tr>
<tr>
<td>6</td>
<td>1550.080M</td>
<td>20.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.2</td>
<td>14.0</td>
<td>+3.2</td>
</tr>
<tr>
<td>7</td>
<td>1556.657M</td>
<td>19.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.0</td>
<td>14.0</td>
<td>+3.0</td>
</tr>
<tr>
<td>8</td>
<td>1562.653M</td>
<td>19.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.0</td>
<td>14.0</td>
<td>+3.0</td>
</tr>
<tr>
<td>9</td>
<td>1557.007M</td>
<td>19.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.9</td>
<td>14.0</td>
<td>+2.9</td>
</tr>
<tr>
<td>10</td>
<td>1568.899M</td>
<td>19.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.9</td>
<td>14.0</td>
<td>+2.9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>1553.724M</td>
<td>19.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.8</td>
<td>14.0</td>
<td>+2.8</td>
</tr>
<tr>
<td>12</td>
<td>1564.464M</td>
<td>19.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.8</td>
<td>14.0</td>
<td>+2.8</td>
</tr>
<tr>
<td>13</td>
<td>1569.369M</td>
<td>19.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.8</td>
<td>14.0</td>
<td>+2.8</td>
</tr>
<tr>
<td>14</td>
<td>1562.022M</td>
<td>19.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.7</td>
<td>14.0</td>
<td>+2.7</td>
</tr>
<tr>
<td>15</td>
<td>1562.112M</td>
<td>19.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.5</td>
<td>14.0</td>
<td>+2.5</td>
</tr>
<tr>
<td>16</td>
<td>2280.390M</td>
<td>25.3</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>26.0</td>
<td>25.0</td>
<td>+1.0</td>
</tr>
<tr>
<td>17</td>
<td>2188.198M</td>
<td>24.9</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>25.7</td>
<td>25.0</td>
<td>+0.7</td>
</tr>
<tr>
<td>18</td>
<td>2296.395M</td>
<td>24.9</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>25.5</td>
<td>25.0</td>
<td>+0.5</td>
</tr>
<tr>
<td>19</td>
<td>2297.661M</td>
<td>24.6</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>25.2</td>
<td>25.0</td>
<td>+0.2</td>
</tr>
<tr>
<td>20</td>
<td>2281.232M</td>
<td>24.0</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.7</td>
<td>25.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>21</td>
<td>2288.170M</td>
<td>24.0</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.7</td>
<td>25.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>22</td>
<td>2291.678M</td>
<td>24.1</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.7</td>
<td>25.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>23</td>
<td>2016.366M</td>
<td>24.1</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.5</td>
<td>25.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>24</td>
<td>2188.018M</td>
<td>23.7</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.5</td>
<td>25.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>25</td>
<td>2224.865M</td>
<td>23.7</td>
<td>-29.4</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.5</td>
<td>25.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>26</td>
<td>2232.612M</td>
<td>23.8</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.5</td>
<td>25.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>27</td>
<td>2290.606M</td>
<td>23.9</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.5</td>
<td>25.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>28</td>
<td>2293.549M</td>
<td>23.9</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.5</td>
<td>25.0</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.8</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>24.4</td>
<td>25.0</td>
<td>-0.6</td>
<td>None</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>29</td>
<td>2269.820M</td>
<td></td>
<td>-29.7</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>24.4</td>
<td>25.0</td>
<td>-0.6</td>
<td>None</td>
</tr>
<tr>
<td>30</td>
<td>2297.252M</td>
<td></td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>24.4</td>
<td>25.0</td>
<td>-0.6</td>
<td>None</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Test Date: 2/23/2005
Test Time: 1:43:32 PM
Test Equipment: TEM/TPS
Equipment Manufacturer: Stanford Linear Accelerator Center
Equipment Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLBL41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:
T1=20’ Cable Male N to Male N AN None
T3=Bicon503
T5=AN 0567 SN 1937A03055
T2=Cable 2410
T4=2’ Cable Male BNC to Male N AN None

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq</th>
<th>Rdng</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>dBµV</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>Table</td>
<td>dBµV/m</td>
<td>dBµV/m</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>199.988M</td>
<td>56.4</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+16.9</td>
<td>+0.1</td>
<td>+0.0</td>
<td>47.4</td>
<td>70.1</td>
<td>-22.7</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>199.811M</td>
<td>53.1</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+16.9</td>
<td>+0.1</td>
<td>+0.0</td>
<td>44.1</td>
<td>70.1</td>
<td>-26.0</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>180.004M</td>
<td>44.3</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+16.3</td>
<td>+0.2</td>
<td>+0.0</td>
<td>35.1</td>
<td>69.1</td>
<td>-34.0</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>100.000M</td>
<td>45.0</td>
<td>+0.4</td>
<td>+0.8</td>
<td>+10.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.1</td>
<td>64.0</td>
<td>-34.9</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>99.956M</td>
<td>44.9</td>
<td>+0.4</td>
<td>+0.8</td>
<td>+10.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>29.0</td>
<td>64.0</td>
<td>-35.0</td>
<td>Vert</td>
</tr>
<tr>
<td>6</td>
<td>160.069M</td>
<td>42.6</td>
<td>+0.5</td>
<td>+0.8</td>
<td>+15.6</td>
<td>+0.1</td>
<td>+0.0</td>
<td>32.3</td>
<td>68.1</td>
<td>-35.8</td>
<td>Vert</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>7</td>
<td>140.046</td>
<td>41.5</td>
<td>+0.5</td>
<td>+0.8</td>
<td>+14.5</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.2</td>
<td>-36.7</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>49.951</td>
<td>41.3</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+11.6</td>
<td>+0.0</td>
<td>+0.0</td>
<td>26.1</td>
<td>-37.9</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>120.023</td>
<td>39.7</td>
<td>+0.4</td>
<td>+0.8</td>
<td>+12.7</td>
<td>+0.1</td>
<td>+0.0</td>
<td>26.3</td>
<td>-39.3</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>196.793</td>
<td>39.3</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+16.8</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.2</td>
<td>-39.7</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>47.146</td>
<td>37.7</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+13.3</td>
<td>+0.0</td>
<td>+0.0</td>
<td>24.1</td>
<td>-39.9</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>45.373</td>
<td>36.1</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+14.4</td>
<td>+0.0</td>
<td>+0.0</td>
<td>23.6</td>
<td>-40.4</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>46.220</td>
<td>36.4</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+13.8</td>
<td>+0.0</td>
<td>+0.0</td>
<td>23.3</td>
<td>-40.7</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>158.129</td>
<td>37.2</td>
<td>+0.5</td>
<td>+0.8</td>
<td>+15.5</td>
<td>+0.1</td>
<td>+0.0</td>
<td>26.8</td>
<td>-41.2</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>47.278</td>
<td>35.4</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+13.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>21.7</td>
<td>-42.3</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>44.394</td>
<td>33.9</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+14.5</td>
<td>+0.0</td>
<td>+0.0</td>
<td>21.5</td>
<td>-42.5</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>186.884</td>
<td>35.6</td>
<td>+0.6</td>
<td>+1.1</td>
<td>+16.5</td>
<td>+0.2</td>
<td>+0.0</td>
<td>26.6</td>
<td>-42.9</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>188.208</td>
<td>35.3</td>
<td>+0.6</td>
<td>+1.1</td>
<td>+16.5</td>
<td>+0.1</td>
<td>+0.0</td>
<td>26.1</td>
<td>-43.4</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>32.223M</td>
<td>32.0</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+15.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>20.1</td>
<td>64.0</td>
<td>-43.9</td>
<td>Vert</td>
</tr>
<tr>
<td>20</td>
<td>75.792M</td>
<td>39.8</td>
<td>+0.3</td>
<td>+0.3</td>
<td>+15.1</td>
<td>+0.0</td>
<td>+0.0</td>
<td>19.6</td>
<td>64.0</td>
<td>-44.4</td>
<td>Vert</td>
</tr>
</tbody>
</table>

RE102 10KHz-18GHz Test Distance: 1 Meter Sequence#: 9

![Graph](image-url)
Test Location: CKC Laboratories, Inc.
1120 Fulton Place
Fremont, CA 94539
(510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/23/2005
Test Type: Radiated Scan
Time: 1:47:45 PM
Equipment: TEM/TPS
Sequence#: 10
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

T1=20’ Cable Male N to Male N AN None	T2=Cable 2410
T3=Bicon503	T4=2’ Cable Male BNC to Male N AN None
T5=AN 0567 SN 1937A03055	

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq</th>
<th>Rdng</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>dBµV</td>
<td>dBA</td>
<td>dB</td>
<td>dB</td>
<td>dBA</td>
<td>Table</td>
<td>dBA V/m</td>
<td>dBA V/m</td>
<td>dB</td>
<td>Ant</td>
</tr>
<tr>
<td>1</td>
<td>199.953M</td>
<td>54.5</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+16.9</td>
<td>+0.1</td>
<td>+0.0</td>
<td>45.5</td>
<td>70.1</td>
<td>-24.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>2</td>
<td>80.015M</td>
<td>56.4</td>
<td>+0.3</td>
<td>+0.6</td>
<td>+6.3</td>
<td>+0.1</td>
<td>+0.0</td>
<td>36.2</td>
<td>64.0</td>
<td>-27.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>3</td>
<td>120.023M</td>
<td>48.6</td>
<td>+0.4</td>
<td>+0.8</td>
<td>+12.7</td>
<td>+0.1</td>
<td>+0.0</td>
<td>35.2</td>
<td>65.6</td>
<td>-30.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>4</td>
<td>45.558M</td>
<td>44.1</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+14.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>31.4</td>
<td>64.0</td>
<td>-32.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>5</td>
<td>180.004M</td>
<td>45.7</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+16.3</td>
<td>+0.2</td>
<td>+0.0</td>
<td>36.5</td>
<td>69.1</td>
<td>-32.6</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48.363M</td>
<td>40.1</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+12.5</td>
<td>+0.0</td>
<td>+0.0</td>
<td>25.8</td>
<td>64.0</td>
<td>-38.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46.564M</td>
<td>39.0</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+13.6</td>
<td>+0.0</td>
<td>+0.0</td>
<td>25.7</td>
<td>64.0</td>
<td>-38.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64.733M</td>
<td>43.5</td>
<td>+0.3</td>
<td>+0.5</td>
<td>+7.6</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.5</td>
<td>64.0</td>
<td>-39.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.000M</td>
<td>40.1</td>
<td>+0.4</td>
<td>+0.8</td>
<td>+10.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>24.2</td>
<td>64.0</td>
<td>-39.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>99.956M</td>
<td>39.8</td>
<td>+0.4</td>
<td>+0.8</td>
<td>+10.1</td>
<td>+0.1</td>
<td>+0.0</td>
<td>23.9</td>
<td>64.0</td>
<td>-40.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>159.981M</td>
<td>37.1</td>
<td>+0.5</td>
<td>+0.8</td>
<td>+15.6</td>
<td>+0.1</td>
<td>+0.0</td>
<td>26.8</td>
<td>68.1</td>
<td>-41.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51.089M</td>
<td>37.9</td>
<td>+0.2</td>
<td>+0.5</td>
<td>+11.2</td>
<td>+0.0</td>
<td>+0.0</td>
<td>22.3</td>
<td>64.0</td>
<td>-41.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>139.958M</td>
<td>36.5</td>
<td>+0.5</td>
<td>+0.8</td>
<td>+14.5</td>
<td>+0.1</td>
<td>+0.0</td>
<td>25.2</td>
<td>66.9</td>
<td>-41.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59.987M</td>
<td>39.8</td>
<td>+0.3</td>
<td>+0.5</td>
<td>+8.6</td>
<td>+0.1</td>
<td>+0.0</td>
<td>22.0</td>
<td>64.0</td>
<td>-42.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40.002M</td>
<td>34.3</td>
<td>+0.3</td>
<td>+0.5</td>
<td>+13.9</td>
<td>+0.0</td>
<td>+0.0</td>
<td>21.5</td>
<td>64.0</td>
<td>-42.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>63.992M</td>
<td>40.3</td>
<td>+0.3</td>
<td>+0.5</td>
<td>+7.7</td>
<td>+0.1</td>
<td>+0.0</td>
<td>21.4</td>
<td>64.0</td>
<td>-42.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>195.791M</td>
<td>35.9</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+16.8</td>
<td>+0.1</td>
<td>+0.0</td>
<td>26.8</td>
<td>69.9</td>
<td>-43.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62.512M</td>
<td>39.2</td>
<td>+0.3</td>
<td>+0.5</td>
<td>+8.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>20.7</td>
<td>64.0</td>
<td>-43.3</td>
<td></td>
</tr>
</tbody>
</table>

Page 110 of 224
Report No.: MIL05-015
| | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 19 | 194.765M | 35.3 | +0.6 | +1.1 | +16.7 | +0.1 | +0.0 | 26.3 | 69.8 | -43.5 | Horiz |
| | | | | | -27.5 | | | | | | |
| 20 | 89.986M | 38.3 | +0.4 | +0.7 | +8.0 | +0.1 | +0.0 | 19.9 | 64.0 | -44.1 | Horiz |
| | | | | | -27.6 | | | | | | |
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center

Specification: RE102 10KHz-18GHz

Work Order #: 82840

Test Type: Radiated Scan

Equipment: TEM/TPS

Manufacturer: Stanford Linear Accelerator Center

Model: TEM/TPS

S/N: GLA1754

Equipment Under Test (UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

T1=20' Cable Male N to Male N AN None
T3=2' Cable Male BNC to Male N AN None
T5=SAS-570 Horn Antenna - 2525

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>RdnG</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Corr</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>739.839M</td>
<td>61.1</td>
<td>+1.4</td>
<td>+2.5</td>
<td>+0.4</td>
<td>-27.2</td>
<td>+0.0</td>
<td>56.9</td>
<td>-24.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>2</td>
<td>699.899M</td>
<td>60.8</td>
<td>+1.4</td>
<td>+2.3</td>
<td>+0.4</td>
<td>-27.3</td>
<td>+0.0</td>
<td>55.7</td>
<td>-25.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>3</td>
<td>200.000M</td>
<td>59.6</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+0.1</td>
<td>-27.6</td>
<td>+0.0</td>
<td>44.0</td>
<td>-26.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>4</td>
<td>400.000M</td>
<td>61.2</td>
<td>+1.0</td>
<td>+1.7</td>
<td>+0.3</td>
<td>-27.6</td>
<td>+0.0</td>
<td>49.9</td>
<td>-26.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>5</td>
<td>520.020M</td>
<td>59.5</td>
<td>+1.1</td>
<td>+1.9</td>
<td>+0.3</td>
<td>-27.8</td>
<td>+0.0</td>
<td>51.9</td>
<td>-26.5</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
<td>Distance (M)</td>
<td>Elevation (m)</td>
<td>slope (°)</td>
<td>vertical displacement (m)</td>
<td>horizontal displacement (m)</td>
<td>Latitude (m)</td>
<td>Longitude (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>400.200M</td>
<td>60.0</td>
<td>+1.0</td>
<td>+1.7</td>
<td>+0.3</td>
<td>48.7</td>
<td>76.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>500.000M</td>
<td>58.3</td>
<td>+1.1</td>
<td>+1.8</td>
<td>+0.3</td>
<td>50.7</td>
<td>78.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>580.080M</td>
<td>58.4</td>
<td>+1.4</td>
<td>+2.0</td>
<td>+0.3</td>
<td>51.5</td>
<td>79.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>720.020M</td>
<td>58.1</td>
<td>+1.4</td>
<td>+2.4</td>
<td>+0.4</td>
<td>53.2</td>
<td>81.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>960.081M</td>
<td>56.3</td>
<td>+1.6</td>
<td>+2.9</td>
<td>+0.5</td>
<td>55.7</td>
<td>83.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>679.980M</td>
<td>57.8</td>
<td>+1.3</td>
<td>+2.3</td>
<td>+0.5</td>
<td>52.6</td>
<td>80.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>640.040M</td>
<td>57.3</td>
<td>+1.3</td>
<td>+2.2</td>
<td>+0.4</td>
<td>51.3</td>
<td>80.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>660.060M</td>
<td>56.9</td>
<td>+1.3</td>
<td>+2.2</td>
<td>+0.4</td>
<td>51.3</td>
<td>80.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>999.901M</td>
<td>53.8</td>
<td>+1.7</td>
<td>+2.9</td>
<td>+0.6</td>
<td>54.3</td>
<td>84.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>700.500M</td>
<td>55.8</td>
<td>+1.4</td>
<td>+2.3</td>
<td>+0.4</td>
<td>50.7</td>
<td>81.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>779.979M</td>
<td>55.6</td>
<td>+1.5</td>
<td>+2.5</td>
<td>+0.5</td>
<td>51.7</td>
<td>82.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>759.959M</td>
<td>56.1</td>
<td>+1.4</td>
<td>+2.5</td>
<td>+0.4</td>
<td>51.3</td>
<td>81.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>379.980M</td>
<td>56.7</td>
<td>+0.9</td>
<td>+1.6</td>
<td>+0.3</td>
<td>44.8</td>
<td>75.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 113 of 224
Report No.: MIL05-015
| | | | | | | | | | | |
|----|----|----|----|----|----|----|----|----|----|
| | | | | | | | | | |
| 19 | 500.300M | 54.2 | +1.1 | +1.8 | +0.3 | -27.7 | +0.0 | 46.6 | 78.1 | -31.5 Horiz +16.9 +16.9 |
| 20 | 839.939M | 53.9 | +1.5 | +2.6 | +0.6 | -27.4 | +0.0 | 50.9 | 82.6 | -31.7 Horiz +19.7 +19.7 |

CKC Laboratories, Inc. Date: 2/23/2005 Time: 1:58:33 PM Stanford Linear Accelerator Center WO#: 82640 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence#: 11
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz

Work Order #: 82840 Date: 2/23/2005
Test Type: Radiated Scan Time: 2:05:59 PM
Equipment: TEM/TPS Sequence#: 12
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DPM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

T1=20’ Cable Male N to Male N AN None
T3=2’ Cable Male BNC to Male N AN None
T5=SAS-570 Horn Antenna - 2525
T2=Cable 2410
T4=AN 0567 SN 1937A03055

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq (MHz)</th>
<th>Rdng (dB)</th>
<th>T1 (dB)</th>
<th>T2 (dB)</th>
<th>T3 (dB)</th>
<th>T4 (dB)</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec (dB)</th>
<th>Margin (dB)</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400.000M</td>
<td>69.6</td>
<td>+1.0</td>
<td>+1.7</td>
<td>+0.3</td>
<td>-27.6</td>
<td>+0.0</td>
<td>58.3</td>
<td>76.1</td>
<td>-17.8</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>400.200M</td>
<td>69.3</td>
<td>+1.0</td>
<td>+1.7</td>
<td>+0.3</td>
<td>-27.6</td>
<td>+0.0</td>
<td>58.0</td>
<td>76.1</td>
<td>-18.1</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>459.960M</td>
<td>63.0</td>
<td>+1.0</td>
<td>+1.9</td>
<td>+0.3</td>
<td>-28.0</td>
<td>+0.0</td>
<td>53.9</td>
<td>77.4</td>
<td>-23.5</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>680.080M</td>
<td>61.8</td>
<td>+1.3</td>
<td>+2.3</td>
<td>+0.5</td>
<td>-27.4</td>
<td>+0.0</td>
<td>56.6</td>
<td>80.8</td>
<td>-24.2</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>200.000M</td>
<td>61.0</td>
<td>+0.6</td>
<td>+1.0</td>
<td>+0.1</td>
<td>-27.6</td>
<td>+0.0</td>
<td>45.4</td>
<td>70.1</td>
<td>-24.7</td>
<td>Vert</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>440.040M</td>
<td>62.3</td>
<td>+1.0</td>
<td>+14.7</td>
<td>52.3</td>
<td>-27.8</td>
<td>+0.0</td>
<td>-24.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>520.020M</td>
<td>60.7</td>
<td>+1.1</td>
<td>+16.9</td>
<td>53.1</td>
<td>-27.8</td>
<td>+0.0</td>
<td>-25.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>379.980M</td>
<td>61.7</td>
<td>+0.9</td>
<td>+13.2</td>
<td>49.8</td>
<td>-27.9</td>
<td>+0.0</td>
<td>-25.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>500.000M</td>
<td>59.3</td>
<td>+1.1</td>
<td>+16.9</td>
<td>51.7</td>
<td>-27.7</td>
<td>+0.0</td>
<td>-26.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>359.960M</td>
<td>59.6</td>
<td>+0.8</td>
<td>+13.5</td>
<td>48.4</td>
<td>-27.3</td>
<td>+0.0</td>
<td>-26.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>419.920M</td>
<td>60.8</td>
<td>+1.1</td>
<td>+13.7</td>
<td>49.8</td>
<td>-27.9</td>
<td>+0.0</td>
<td>-26.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>840.039M</td>
<td>58.7</td>
<td>+1.5</td>
<td>+19.7</td>
<td>55.7</td>
<td>-27.4</td>
<td>+0.0</td>
<td>-26.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>479.980M</td>
<td>57.5</td>
<td>+1.0</td>
<td>+17.0</td>
<td>49.7</td>
<td>-27.9</td>
<td>+0.0</td>
<td>-28.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>660.060M</td>
<td>57.0</td>
<td>+1.3</td>
<td>+17.9</td>
<td>51.4</td>
<td>-27.4</td>
<td>+0.0</td>
<td>-29.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>500.300M</td>
<td>56.4</td>
<td>+1.1</td>
<td>+16.9</td>
<td>48.8</td>
<td>-27.7</td>
<td>+0.0</td>
<td>-29.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>700.000M</td>
<td>55.6</td>
<td>+1.4</td>
<td>+18.1</td>
<td>50.5</td>
<td>-27.3</td>
<td>+0.0</td>
<td>-30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>779.979M</td>
<td>54.7</td>
<td>+1.5</td>
<td>+19.0</td>
<td>50.8</td>
<td>-27.4</td>
<td>+0.0</td>
<td>-31.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>540.140M</td>
<td>55.5</td>
<td>+1.1</td>
<td>+16.3</td>
<td>47.4</td>
<td>-27.8</td>
<td>+0.0</td>
<td>-31.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>320.020M</td>
<td>54.3</td>
<td>+0.9</td>
<td>+1.4</td>
<td>+0.3</td>
<td>-27.6</td>
<td>+0.0</td>
<td>42.5</td>
<td>74.2</td>
<td>-31.7</td>
<td>Vert +13.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20</td>
<td>639.940M</td>
<td>53.8</td>
<td>+1.3</td>
<td>+2.2</td>
<td>+0.4</td>
<td>-27.6</td>
<td>+0.0</td>
<td>47.8</td>
<td>80.3</td>
<td>-32.5</td>
<td>Vert +17.7</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/23/2005
Test Type: Radiated Scan
Time: 5:03:38 PM
Equipment: TEM/TPS
Sequence#: 13
Manufacturer: Stanford Linear Accelerator Center
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

| T1=AMP | AN00941A 50GHz | T2=Horn Antenna 4660 (Frement) | T3=ANP05200 1-40GHz | T4=ANP5201 1-40GHz |

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist Table</th>
<th>Corr</th>
<th>Spec dBµV/m</th>
<th>Margin</th>
<th>Polar</th>
<th>Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1179.867M</td>
<td>56.9</td>
<td>-29.7</td>
<td>+24.4</td>
<td>+0.9</td>
<td>+0.9</td>
<td>53.4</td>
<td>85.6</td>
<td>-32.2</td>
<td>Horiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000.000M</td>
<td>55.8</td>
<td>-29.7</td>
<td>+23.8</td>
<td>+0.8</td>
<td>+0.8</td>
<td>51.5</td>
<td>84.2</td>
<td>-32.7</td>
<td>Horiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1119.859M</td>
<td>53.4</td>
<td>-29.7</td>
<td>+24.2</td>
<td>+0.9</td>
<td>+0.8</td>
<td>49.6</td>
<td>85.2</td>
<td>-35.6</td>
<td>Horiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1300.375M</td>
<td>53.9</td>
<td>-29.7</td>
<td>+24.7</td>
<td>+1.0</td>
<td>+0.9</td>
<td>50.8</td>
<td>86.5</td>
<td>-35.7</td>
<td>Horiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1159.661M</td>
<td>53.2</td>
<td>-29.7</td>
<td>+24.3</td>
<td>+0.9</td>
<td>+0.9</td>
<td>49.6</td>
<td>85.5</td>
<td>-35.9</td>
<td>Horiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1339.963M</td>
<td>53.7</td>
<td>-29.7</td>
<td>+24.8</td>
<td>+1.0</td>
<td>+0.9</td>
<td>50.7</td>
<td>86.7</td>
<td>-36.0</td>
<td>Horiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>1339.149M</td>
<td>53.4</td>
<td>-29.7</td>
<td>+24.8</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>50.4</td>
<td>86.7</td>
<td>-36.3</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1080.063M</td>
<td>51.3</td>
<td>-29.7</td>
<td>+24.1</td>
<td>+0.9</td>
<td>+0.8</td>
<td>+0.0</td>
<td>47.4</td>
<td>84.8</td>
<td>-37.4</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1199.527M</td>
<td>51.9</td>
<td>-29.7</td>
<td>+24.4</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>48.4</td>
<td>85.8</td>
<td>-37.4</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1020.291M</td>
<td>50.7</td>
<td>-29.7</td>
<td>+23.9</td>
<td>+0.8</td>
<td>+0.8</td>
<td>+0.0</td>
<td>46.5</td>
<td>84.3</td>
<td>-37.8</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1320.035M</td>
<td>51.0</td>
<td>-29.7</td>
<td>+24.8</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>48.0</td>
<td>86.6</td>
<td>-38.6</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1039.796M</td>
<td>48.5</td>
<td>-29.7</td>
<td>+23.9</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>44.5</td>
<td>84.5</td>
<td>-40.0</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1219.551M</td>
<td>48.6</td>
<td>-29.7</td>
<td>+24.5</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>45.2</td>
<td>85.9</td>
<td>-40.7</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1500.071M</td>
<td>49.8</td>
<td>-30.3</td>
<td>+25.2</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>46.7</td>
<td>87.7</td>
<td>-41.0</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1520.296M</td>
<td>49.8</td>
<td>-30.3</td>
<td>+25.3</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>46.8</td>
<td>87.8</td>
<td>-41.0</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1359.766M</td>
<td>48.7</td>
<td>-29.7</td>
<td>+24.9</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>45.8</td>
<td>86.9</td>
<td>-41.1</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1420.017M</td>
<td>48.9</td>
<td>-30.0</td>
<td>+25.0</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>45.9</td>
<td>87.2</td>
<td>-41.3</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1100.511M</td>
<td>47.3</td>
<td>-29.7</td>
<td>+24.1</td>
<td>+0.9</td>
<td>+0.8</td>
<td>+0.0</td>
<td>43.4</td>
<td>85.0</td>
<td>-41.6</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1259.599M</td>
<td>47.9</td>
<td>-29.7</td>
<td>+24.6</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>44.6</td>
<td>86.2</td>
<td>-41.6</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1480.268M</td>
<td>48.8</td>
<td>-30.3</td>
<td>+25.2</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>45.7</td>
<td>87.6</td>
<td>-41.9</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1140.150M</td>
<td>46.8</td>
<td>-29.7</td>
<td>+24.3</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>43.2</td>
<td>85.3</td>
<td>-42.1</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1379.990M</td>
<td>46.3</td>
<td>-29.8</td>
<td>+24.9</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>43.4</td>
<td>87.0</td>
<td>-43.6</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1459.623M</td>
<td>47.0</td>
<td>-30.2</td>
<td>+25.1</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>43.9</td>
<td>87.5</td>
<td>-43.6</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1399.793M</td>
<td>46.2</td>
<td>-29.8</td>
<td>+25.0</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>43.4</td>
<td>87.1</td>
<td>-43.7</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1240.485M</td>
<td>45.4</td>
<td>-29.7</td>
<td>+24.5</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>42.0</td>
<td>86.0</td>
<td>-44.0</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency [MHz]</td>
<td>dBi/V/m</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1550</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Sweep Data

- 1 - RE102 10KHz-18GHz
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Equipment: TEM/TPS
Manufacturer: Stanford Linear Accelerator Center
Model: TEM/TPS
S/N: GLA1754

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Measurement Data:
Reading listed by margin. Test Distance: 1 Meter

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table dBµV/m</th>
<th>Corr dBµV/m</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1599.930M</td>
<td>31.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>28.9</td>
<td>14.0</td>
<td>+14.9</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1559.874M</td>
<td>30.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>+13.8</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1559.913M</td>
<td>30.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>+13.6</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1559.964M</td>
<td>30.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>+13.5</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1559.997M</td>
<td>30.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>+13.5</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1560.078M</td>
<td>30.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>+13.4</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>7</td>
<td>1560.132M</td>
<td>30.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>27.3</td>
<td>14.0</td>
<td>+13.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>8</td>
<td>1560.072M</td>
<td>30.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>27.2</td>
<td>14.0</td>
<td>+13.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>9</td>
<td>1560.219M</td>
<td>29.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>26.4</td>
<td>14.0</td>
<td>+12.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>10</td>
<td>1599.600M</td>
<td>28.9</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>26.2</td>
<td>14.0</td>
<td>+12.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>11</td>
<td>1599.664M</td>
<td>28.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>26.0</td>
<td>14.0</td>
<td>+12.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>12</td>
<td>1599.627M</td>
<td>28.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>25.6</td>
<td>14.0</td>
<td>+11.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>13</td>
<td>1599.530M</td>
<td>28.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>25.3</td>
<td>14.0</td>
<td>+11.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>14</td>
<td>1599.493M</td>
<td>26.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>23.4</td>
<td>14.0</td>
<td>+ 9.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>15</td>
<td>1599.477M</td>
<td>25.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>22.6</td>
<td>14.0</td>
<td>+ 8.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>16</td>
<td>1559.354M</td>
<td>23.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>20.8</td>
<td>14.0</td>
<td>+ 6.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>17</td>
<td>1559.415M</td>
<td>23.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>20.5</td>
<td>14.0</td>
<td>+ 6.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>18</td>
<td>1560.733M</td>
<td>23.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>20.3</td>
<td>14.0</td>
<td>+ 6.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>19</td>
<td>1560.655M</td>
<td>22.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>19.1</td>
<td>14.0</td>
<td>+ 5.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>20</td>
<td>1560.682M</td>
<td>21.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>19.0</td>
<td>14.0</td>
<td>+ 5.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>21</td>
<td>1579.893M</td>
<td>21.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>18.9</td>
<td>14.0</td>
<td>+ 4.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>22</td>
<td>1559.105M</td>
<td>20.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.7</td>
<td>14.0</td>
<td>+ 3.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>23</td>
<td>1559.147M</td>
<td>20.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.5</td>
<td>14.0</td>
<td>+ 3.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>24</td>
<td>1598.970M</td>
<td>20.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.3</td>
<td>14.0</td>
<td>+ 3.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>25</td>
<td>1580.118M</td>
<td>19.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.0</td>
<td>14.0</td>
<td>+ 3.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>26</td>
<td>1560.946M</td>
<td>19.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.9</td>
<td>14.0</td>
<td>+ 2.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>27</td>
<td>1579.623M</td>
<td>19.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.9</td>
<td>14.0</td>
<td>+ 2.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>28</td>
<td>1579.779M</td>
<td>19.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.5</td>
<td>14.0</td>
<td>+ 2.5</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1579.833M</td>
<td>19.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.4</td>
<td>14.0</td>
<td>+2.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>30</td>
<td>1597.442M</td>
<td>18.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.1</td>
<td>14.0</td>
<td>+2.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>31</td>
<td>1598.880M</td>
<td>18.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.1</td>
<td>14.0</td>
<td>+2.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>32</td>
<td>1598.823M</td>
<td>18.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.0</td>
<td>14.0</td>
<td>+2.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>33</td>
<td>1580.382M</td>
<td>18.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.8</td>
<td>14.0</td>
<td>+1.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>34</td>
<td>1558.994M</td>
<td>18.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.7</td>
<td>14.0</td>
<td>+1.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>35</td>
<td>1580.421M</td>
<td>18.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.2</td>
<td>14.0</td>
<td>+1.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>36</td>
<td>1580.571M</td>
<td>17.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.9</td>
<td>14.0</td>
<td>+0.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>37</td>
<td>1558.568M</td>
<td>17.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.2</td>
<td>14.0</td>
<td>+0.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>38</td>
<td>1558.541M</td>
<td>16.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>14.0</td>
<td>+0.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>39</td>
<td>1581.043M</td>
<td>16.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.0</td>
<td>14.0</td>
<td>+0.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>40</td>
<td>1597.391M</td>
<td>16.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.9</td>
<td>14.0</td>
<td>-0.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>41</td>
<td>1558.670M</td>
<td>16.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.7</td>
<td>14.0</td>
<td>-0.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>42</td>
<td>1558.610M</td>
<td>16.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.6</td>
<td>14.0</td>
<td>-0.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>43</td>
<td>1598.232M</td>
<td>16.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.6</td>
<td>14.0</td>
<td>-0.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>44</td>
<td>1598.267M</td>
<td>16.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.6</td>
<td>14.0</td>
<td>-0.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>45</td>
<td>1558.408M</td>
<td>16.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.5</td>
<td>14.0</td>
<td>-0.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>46</td>
<td>1561.574M</td>
<td>16.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.4</td>
<td>14.0</td>
<td>-0.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>47</td>
<td>1558.360M</td>
<td>16.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>48</td>
<td>1596.598M</td>
<td>16.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>49</td>
<td>1558.580M</td>
<td>16.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.2</td>
<td>14.0</td>
<td>-0.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>50</td>
<td>1561.865M</td>
<td>16.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.2</td>
<td>14.0</td>
<td>-0.8</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.2</td>
<td>14.0</td>
<td>-0.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>51</td>
<td>1579.403M</td>
<td>16.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.2</td>
<td>14.0</td>
<td>-0.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>52</td>
<td>1551.835M</td>
<td>16.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.1</td>
<td>14.0</td>
<td>-0.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>53</td>
<td>1561.429M</td>
<td>15.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>14.0</td>
<td>-1.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>54</td>
<td>1598.010M</td>
<td>15.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>14.0</td>
<td>-1.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>55</td>
<td>1562.072M</td>
<td>15.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.9</td>
<td>14.0</td>
<td>-1.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>56</td>
<td>1598.137M</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.9</td>
<td>14.0</td>
<td>-1.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>57</td>
<td>1557.670M</td>
<td>15.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.8</td>
<td>14.0</td>
<td>-1.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>58</td>
<td>1575.060M</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.8</td>
<td>14.0</td>
<td>-1.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>59</td>
<td>1558.192M</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.7</td>
<td>14.0</td>
<td>-1.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>60</td>
<td>1557.505M</td>
<td>15.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>61</td>
<td>1557.868M</td>
<td>15.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>62</td>
<td>1594.523M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>63</td>
<td>1565.610M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.5</td>
<td>14.0</td>
<td>-1.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>64</td>
<td>1579.328M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.5</td>
<td>14.0</td>
<td>-1.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>65</td>
<td>1591.157M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.5</td>
<td>14.0</td>
<td>-1.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>66</td>
<td>1597.629M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.5</td>
<td>14.0</td>
<td>-1.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>67</td>
<td>1597.767M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.5</td>
<td>14.0</td>
<td>-1.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>68</td>
<td>1555.246M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>69</td>
<td>1558.063M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>70</td>
<td>1579.157M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>71</td>
<td>1591.547M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>72</td>
<td>1597.571M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>1597.785M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1555.279M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1557.469M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>1557.973M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1574.535M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>1595.178M</td>
<td>15.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>1597.514M</td>
<td>15.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1563.835M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.2</td>
<td>14.0</td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>1595.565M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.2</td>
<td>14.0</td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>1550.024M</td>
<td>15.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>1566.739M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>1595.103M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>1555.129M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>1562.787M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>1582.581M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>1553.021M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>1562.664M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1579.082M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>1583.202M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1583.932M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>1551.964M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>1552.799M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>1553.835M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>96</td>
<td>1565.087M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>97</td>
<td>1578.923M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>98</td>
<td>1581.325M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>99</td>
<td>1573.808M</td>
<td>14.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>100</td>
<td>1576.457M</td>
<td>14.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
<td>Horiz</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/23/2005
Test Type: Radiated Scan
Time: 5:12:48 PM
Sequence#: 15
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLBL41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table dBµV/m</th>
<th>Corr dBµV/m</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1600.383M</td>
<td>50.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>47.4</td>
<td>88.0</td>
<td>-40.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>2</td>
<td>1619.991M</td>
<td>45.3</td>
<td>-30.3</td>
<td>+25.7</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>42.7</td>
<td>88.1</td>
<td>-45.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>3</td>
<td>1654.827M</td>
<td>44.2</td>
<td>-30.3</td>
<td>+25.8</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>41.7</td>
<td>88.3</td>
<td>-46.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>4</td>
<td>1616.431M</td>
<td>43.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>41.1</td>
<td>88.1</td>
<td>-47.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>5</td>
<td>1640.475M</td>
<td>43.6</td>
<td>-30.3</td>
<td>+25.7</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>41.0</td>
<td>88.2</td>
<td>-47.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>6</td>
<td>1739.653M</td>
<td>43.1</td>
<td>-30.0</td>
<td>+26.1</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>41.4</td>
<td>88.8</td>
<td>-47.4</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
<td>Frequency [MHz]</td>
<td>dBu/V/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>1659.755M</td>
<td>42.5</td>
<td>-30.2</td>
<td>+25.8</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>40.1</td>
<td>88.4</td>
<td>-48.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>8</td>
<td>1690.004M</td>
<td>42.3</td>
<td>-30.1</td>
<td>+25.9</td>
<td>+1.1</td>
<td>+1.0</td>
<td>+0.0</td>
<td>40.2</td>
<td>88.5</td>
<td>-48.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>9</td>
<td>1679.638M</td>
<td>42.2</td>
<td>-30.1</td>
<td>+25.9</td>
<td>+1.1</td>
<td>+1.0</td>
<td>+0.0</td>
<td>40.1</td>
<td>88.5</td>
<td>-48.4</td>
<td>Horiz</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/23/2005 Time: 5:12:48 PM Stanford Linear Accelerator Center WO#: 82640 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence#: 15

![Graph of frequency vs. dBu/V/m](chart.png)

Sweep Data

1 - RE102 10KHz-18GHz
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/23/2005
Test Type: Radiated Scan
Time: 5:14:57 PM
Equipment: TEM/TPS
Sequence#: 16
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

<table>
<thead>
<tr>
<th>T1=AMP</th>
<th>AN00941A 50GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2=Horn Antenna 4660 (Fremont)</td>
<td></td>
</tr>
<tr>
<td>T3=ANP5200 1-40GHz</td>
<td></td>
</tr>
<tr>
<td>T4=ANP5201 1-40GHz</td>
<td></td>
</tr>
</tbody>
</table>

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table</th>
<th>Corr dBµV/m</th>
<th>Spec dBµV/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1797.117M</td>
<td>28.3</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>26.6</td>
<td>25.0</td>
<td>+1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>2</td>
<td>2100.000M</td>
<td>25.1</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>26.1</td>
<td>25.0</td>
<td>+1.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>3</td>
<td>2196.486M</td>
<td>25.2</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>26.0</td>
<td>25.0</td>
<td>+1.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>4</td>
<td>2019.880M</td>
<td>25.1</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>25.5</td>
<td>25.0</td>
<td>+0.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>5</td>
<td>2239.749M</td>
<td>24.3</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>25.0</td>
<td>25.0</td>
<td>+0.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>6</td>
<td>2239.769M</td>
<td>24.3</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>25.0</td>
<td>25.0</td>
<td>+0.0</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2100.300M</td>
<td>23.8</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.8</td>
<td>25.0</td>
<td>-0.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>8</td>
<td>2240.200M</td>
<td>24.0</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.7</td>
<td>25.0</td>
<td>-0.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>9</td>
<td>2100.140M</td>
<td>23.4</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.4</td>
<td>25.0</td>
<td>-0.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>10</td>
<td>1797.147M</td>
<td>25.7</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>24.0</td>
<td>25.0</td>
<td>-1.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>11</td>
<td>2099.820M</td>
<td>23.0</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>24.0</td>
<td>25.0</td>
<td>-1.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>12</td>
<td>2239.959M</td>
<td>23.2</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>23.9</td>
<td>25.0</td>
<td>-1.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>13</td>
<td>2240.500M</td>
<td>23.0</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>23.7</td>
<td>25.0</td>
<td>-1.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>14</td>
<td>2020.080M</td>
<td>23.2</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>23.6</td>
<td>25.0</td>
<td>-1.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>15</td>
<td>2020.320M</td>
<td>23.1</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>23.5</td>
<td>25.0</td>
<td>-1.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>16</td>
<td>2020.020M</td>
<td>23.0</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>23.4</td>
<td>25.0</td>
<td>-1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>17</td>
<td>2020.250M</td>
<td>23.0</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>23.4</td>
<td>25.0</td>
<td>-1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>18</td>
<td>2240.350M</td>
<td>22.7</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>23.4</td>
<td>25.0</td>
<td>-1.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>19</td>
<td>2280.480M</td>
<td>22.5</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>23.2</td>
<td>25.0</td>
<td>-1.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>20</td>
<td>2280.330M</td>
<td>22.2</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.9</td>
<td>25.0</td>
<td>-2.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>21</td>
<td>2100.380M</td>
<td>21.7</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.7</td>
<td>25.0</td>
<td>-2.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>22</td>
<td>2280.000M</td>
<td>22.0</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.7</td>
<td>25.0</td>
<td>-2.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>23</td>
<td>1819.870M</td>
<td>24.1</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>22.6</td>
<td>25.0</td>
<td>-2.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>24</td>
<td>1996.807M</td>
<td>22.4</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.6</td>
<td>25.0</td>
<td>-2.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>25</td>
<td>2119.699M</td>
<td>21.5</td>
<td>-28.8</td>
<td>+27.4</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.5</td>
<td>25.0</td>
<td>-2.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>26</td>
<td>2239.449M</td>
<td>21.8</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.5</td>
<td>25.0</td>
<td>-2.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>27</td>
<td>2239.579M</td>
<td>21.8</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.5</td>
<td>25.0</td>
<td>-2.5</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency [MHz]</td>
<td>dBrV/m</td>
<td>Sweep Data</td>
<td>1 - RE102 10kHz-18GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------</td>
<td>------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1770</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2200</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2239.419M</td>
<td></td>
<td>21.7</td>
<td>-29.5</td>
<td>+27.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2259.990M</td>
<td></td>
<td>21.6</td>
<td>-29.6</td>
<td>+27.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2280.220M</td>
<td></td>
<td>21.6</td>
<td>-29.7</td>
<td>+28.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539 (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/23/2005
Time: 5:18:02 PM
Equipment: TEM/TPS
Sequence#: 17
Manufacturer: Stanford Linear Accelerator Center
Model: TEM/TPS
S/N: GLA1754

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=APN05200 1-40GHz
T4=APN5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq Mhz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist dBµV/m</th>
<th>Corr dBµV/m</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2600.300M</td>
<td>42.8</td>
<td>-29.3</td>
<td>+29.0</td>
<td>+1.3</td>
<td>+1.3</td>
<td>45.1</td>
<td>91.1</td>
<td>-46.0</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10127.820M</td>
<td>39.0</td>
<td>-27.2</td>
<td>+39.7</td>
<td>+2.6</td>
<td>+3.0</td>
<td>57.1</td>
<td>103.7</td>
<td>-46.6</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10317.010M</td>
<td>39.2</td>
<td>-27.3</td>
<td>+39.4</td>
<td>+2.6</td>
<td>+3.0</td>
<td>56.9</td>
<td>103.9</td>
<td>-47.0</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13939.630M</td>
<td>40.4</td>
<td>-30.7</td>
<td>+43.4</td>
<td>+3.1</td>
<td>+3.4</td>
<td>59.6</td>
<td>106.6</td>
<td>-47.0</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14393.080M</td>
<td>40.6</td>
<td>-30.8</td>
<td>+43.4</td>
<td>+3.2</td>
<td>+3.5</td>
<td>59.9</td>
<td>106.9</td>
<td>-47.0</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5269.967M</td>
<td>40.1</td>
<td>-28.4</td>
<td>+34.4</td>
<td>+1.8</td>
<td>+2.0</td>
<td>49.9</td>
<td>97.7</td>
<td>-47.8</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13297.990M</td>
<td>39.7</td>
<td>-30.1</td>
<td>+42.5</td>
<td>+3.0</td>
<td>+3.3</td>
<td>+0.0</td>
<td>58.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3720.419M</td>
<td>41.1</td>
<td>-29.5</td>
<td>+31.8</td>
<td>+1.5</td>
<td>+1.6</td>
<td>+0.0</td>
<td>46.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9656.349M</td>
<td>37.5</td>
<td>-26.8</td>
<td>+39.2</td>
<td>+2.5</td>
<td>+2.8</td>
<td>+0.0</td>
<td>55.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17905.470M</td>
<td>38.0</td>
<td>-29.5</td>
<td>+44.7</td>
<td>+3.6</td>
<td>+4.2</td>
<td>+0.0</td>
<td>61.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3248.948M</td>
<td>40.3</td>
<td>-29.1</td>
<td>+30.7</td>
<td>+1.4</td>
<td>+1.5</td>
<td>+0.0</td>
<td>44.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12042.730M</td>
<td>39.0</td>
<td>-28.7</td>
<td>+40.6</td>
<td>+2.8</td>
<td>+3.2</td>
<td>+0.0</td>
<td>56.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8760.454M</td>
<td>37.1</td>
<td>-26.7</td>
<td>+38.4</td>
<td>+2.4</td>
<td>+2.6</td>
<td>+0.0</td>
<td>53.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10685.380M</td>
<td>37.5</td>
<td>-27.3</td>
<td>+39.2</td>
<td>+2.7</td>
<td>+3.1</td>
<td>+0.0</td>
<td>55.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11132.820M</td>
<td>38.3</td>
<td>-28.0</td>
<td>+39.5</td>
<td>+2.7</td>
<td>+3.1</td>
<td>+0.0</td>
<td>55.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6194.891M</td>
<td>38.7</td>
<td>-27.8</td>
<td>+34.9</td>
<td>+1.9</td>
<td>+2.1</td>
<td>+0.0</td>
<td>49.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17276.960M</td>
<td>38.6</td>
<td>-29.4</td>
<td>+41.6</td>
<td>+3.5</td>
<td>+4.0</td>
<td>+0.0</td>
<td>58.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7187.883M</td>
<td>37.7</td>
<td>-27.0</td>
<td>+34.7</td>
<td>+2.2</td>
<td>+2.3</td>
<td>+0.0</td>
<td>49.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8228.923M</td>
<td>36.5</td>
<td>-26.7</td>
<td>+36.0</td>
<td>+2.3</td>
<td>+2.5</td>
<td>+0.0</td>
<td>50.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>15368.050M</td>
<td>40.3</td>
<td>-30.8</td>
<td>+39.3</td>
<td>+3.3</td>
<td>+3.6</td>
<td>+0.0</td>
<td>55.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>21</td>
<td>16952.640M</td>
<td>39.1</td>
<td>-29.8</td>
<td>+39.9</td>
<td>+3.4</td>
<td>+4.0</td>
<td>+0.0</td>
<td>56.6</td>
<td>108.4</td>
<td>-51.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>22</td>
<td>16171.860M</td>
<td>39.4</td>
<td>-30.3</td>
<td>+37.9</td>
<td>+3.3</td>
<td>+3.7</td>
<td>+0.0</td>
<td>54.0</td>
<td>108.0</td>
<td>-54.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>23</td>
<td>16322.010M</td>
<td>38.5</td>
<td>-30.4</td>
<td>+37.6</td>
<td>+3.3</td>
<td>+3.8</td>
<td>+0.0</td>
<td>52.8</td>
<td>108.1</td>
<td>-55.3</td>
<td>Horiz</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/23/2005 Time: 6:18:02 PM Stanford Linear Accelerator Center WO# 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence#: 17
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/24/2005
Time: 9:50:47 AM
Test Type: Radiated Scan
Equipment: TEM/TPS
Sequence#: 18
Manufacturer: Stanford Linear Accelerator Center
Model: TEM/TPS
 Tested By: A. Brar
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DMH</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56".

Transducer Legend:

| T1=AMP AN00941A 50GHz | T2=Horn Antenna 4660 (Fremont) |
| T3=ANP05200 1-40GHz | T4=ANP5201 1-40GHz |

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table dBµV/m</th>
<th>Corr dBµV/m</th>
<th>Spec dB µV/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1797.121M</td>
<td>27.1</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>25.4</td>
<td>25.0</td>
<td>+0.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>2</td>
<td>1825.761M</td>
<td>20.7</td>
<td>-30.0</td>
<td>+26.4</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>19.3</td>
<td>25.0</td>
<td>-5.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>3</td>
<td>1803.280M</td>
<td>20.8</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>19.1</td>
<td>25.0</td>
<td>-5.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>4</td>
<td>1819.998M</td>
<td>19.4</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>17.9</td>
<td>25.0</td>
<td>-7.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>5</td>
<td>1819.794M</td>
<td>18.8</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>17.3</td>
<td>25.0</td>
<td>-7.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>6</td>
<td>1819.968M</td>
<td>18.4</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>16.9</td>
<td>25.0</td>
<td>-8.1</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>1899.931M</td>
<td>17.2</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>16.7</td>
<td>25.0</td>
<td>-8.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>8</td>
<td>1819.637M</td>
<td>17.9</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>16.4</td>
<td>25.0</td>
<td>-8.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>9</td>
<td>1899.986M</td>
<td>16.8</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>16.3</td>
<td>25.0</td>
<td>-8.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>10</td>
<td>1819.686M</td>
<td>17.7</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>16.2</td>
<td>25.0</td>
<td>-8.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>11</td>
<td>1819.665M</td>
<td>17.6</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>16.1</td>
<td>25.0</td>
<td>-8.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>12</td>
<td>1899.968M</td>
<td>16.6</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>16.1</td>
<td>25.0</td>
<td>-8.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>13</td>
<td>1819.589M</td>
<td>17.5</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>16.0</td>
<td>25.0</td>
<td>-9.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>14</td>
<td>1825.782M</td>
<td>17.2</td>
<td>-30.0</td>
<td>+26.4</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.8</td>
<td>25.0</td>
<td>-9.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>15</td>
<td>1899.859M</td>
<td>16.2</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.7</td>
<td>25.0</td>
<td>-9.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>16</td>
<td>1899.739M</td>
<td>16.0</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.5</td>
<td>25.0</td>
<td>-9.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>17</td>
<td>1899.806M</td>
<td>16.0</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.5</td>
<td>25.0</td>
<td>-9.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>18</td>
<td>1797.003M</td>
<td>17.1</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.4</td>
<td>25.0</td>
<td>-9.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>19</td>
<td>1899.706M</td>
<td>15.9</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.4</td>
<td>25.0</td>
<td>-9.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>20</td>
<td>1899.956M</td>
<td>15.8</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.3</td>
<td>25.0</td>
<td>-9.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>21</td>
<td>1899.888M</td>
<td>15.7</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.2</td>
<td>25.0</td>
<td>-9.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>22</td>
<td>1820.557M</td>
<td>16.6</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.1</td>
<td>25.0</td>
<td>-9.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>23</td>
<td>1899.913M</td>
<td>15.6</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.1</td>
<td>25.0</td>
<td>-9.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>24</td>
<td>1899.905M</td>
<td>15.5</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.0</td>
<td>25.0</td>
<td>-10.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>25</td>
<td>1859.948M</td>
<td>15.9</td>
<td>-29.7</td>
<td>+26.5</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>14.9</td>
<td>25.0</td>
<td>-10.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>26</td>
<td>1899.678M</td>
<td>15.4</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>14.9</td>
<td>25.0</td>
<td>-10.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>27</td>
<td>1899.622M</td>
<td>15.2</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>14.7</td>
<td>25.0</td>
<td>-10.3</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1819.442M</td>
<td>16.1</td>
<td>-30.0</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1889.647M</td>
<td>15.1</td>
<td>-29.4</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1899.462M</td>
<td>15.0</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph Details:
- **Date:** 2/24/2006
- **Time:** 9:50:47 AM
- **Test Distance:** 1 Meter
- **Sequence:** 18
- **Test Equipment:** RE102 10KHz-18GHz

Graph Description:
- **Sweep Data**
- **1 - RE102 10KHz-18GHz**
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center

Specification: RE102 10KHz-18GHz

Work Order #: 82840

Test Type: Radiated Scan

Test Date: 2/24/2005

Test Time: 10:10:15 AM

Test Equipment: TEM/TPS

Test Manufacturer: Stanford Linear Accelerator Center

Test Model: TEM/TPS

Test S/N: GLA1754

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DITM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

| T1=AMP_an00941A 50GHz | T2=Horn Antenna 4660 (Fremont) | T3=ANP05200 1-40GHz | T4=ANP5201 1-40GHz |

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table</th>
<th>Corr dBµV/m</th>
<th>Spec dBµV/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2020.173</td>
<td>22.0</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.4</td>
<td>25.0</td>
<td>-2.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>2</td>
<td>2020.011</td>
<td>20.8</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.2</td>
<td>25.0</td>
<td>-3.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>3</td>
<td>1996.800</td>
<td>18.9</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.1</td>
<td>25.0</td>
<td>-5.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>4</td>
<td>2020.654</td>
<td>17.7</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>18.1</td>
<td>25.0</td>
<td>-6.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>5</td>
<td>1991.740</td>
<td>17.0</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.2</td>
<td>25.0</td>
<td>-7.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>6</td>
<td>2019.104</td>
<td>16.8</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.2</td>
<td>25.0</td>
<td>-7.8</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2000.257M</td>
<td>16.0</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.2</td>
<td>25.0</td>
<td>-8.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>8</td>
<td>1999.882M</td>
<td>15.9</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.1</td>
<td>25.0</td>
<td>-8.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>9</td>
<td>2000.464M</td>
<td>15.9</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.1</td>
<td>25.0</td>
<td>-8.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>10</td>
<td>2000.065M</td>
<td>15.8</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.0</td>
<td>25.0</td>
<td>-9.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>11</td>
<td>2019.026M</td>
<td>15.6</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.0</td>
<td>25.0</td>
<td>-9.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>12</td>
<td>2000.152M</td>
<td>15.5</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.7</td>
<td>25.0</td>
<td>-9.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>13</td>
<td>2000.587M</td>
<td>15.4</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.6</td>
<td>25.0</td>
<td>-9.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>14</td>
<td>2000.395M</td>
<td>15.3</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.5</td>
<td>25.0</td>
<td>-9.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>15</td>
<td>1900.033M</td>
<td>15.8</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.3</td>
<td>25.0</td>
<td>-9.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>16</td>
<td>2000.188M</td>
<td>15.1</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.3</td>
<td>25.0</td>
<td>-9.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>17</td>
<td>1990.392M</td>
<td>15.0</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.2</td>
<td>25.0</td>
<td>-9.8</td>
<td>Horiz</td>
</tr>
<tr>
<td>18</td>
<td>1900.000M</td>
<td>15.6</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>15.1</td>
<td>25.0</td>
<td>-9.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>19</td>
<td>1980.286M</td>
<td>15.1</td>
<td>-29.1</td>
<td>+26.8</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.1</td>
<td>25.0</td>
<td>-9.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>20</td>
<td>1980.500M</td>
<td>15.1</td>
<td>-29.1</td>
<td>+26.8</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.1</td>
<td>25.0</td>
<td>-9.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>21</td>
<td>2018.873M</td>
<td>14.7</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.1</td>
<td>25.0</td>
<td>-9.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>22</td>
<td>2021.200M</td>
<td>14.7</td>
<td>-28.9</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.1</td>
<td>25.0</td>
<td>-9.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>23</td>
<td>1995.939M</td>
<td>14.8</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.0</td>
<td>25.0</td>
<td>-10.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>24</td>
<td>2014.717M</td>
<td>14.7</td>
<td>-29.0</td>
<td>+27.0</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>15.0</td>
<td>25.0</td>
<td>-10.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>25</td>
<td>1980.656M</td>
<td>14.7</td>
<td>-29.1</td>
<td>+26.8</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>14.7</td>
<td>25.0</td>
<td>-10.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>26</td>
<td>1982.575M</td>
<td>14.7</td>
<td>-29.1</td>
<td>+26.8</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>14.7</td>
<td>25.0</td>
<td>-10.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>27</td>
<td>1996.719M</td>
<td>14.5</td>
<td>-29.0</td>
<td>+26.9</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>14.7</td>
<td>25.0</td>
<td>-10.3</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 28 | 1998.182M | 14.5 | -29.0 | +26.9 | +1.1 | +1.2 | +0.0 | 14.7 | 25.0 | -10.3 | Horiz-
| 29 | 1998.329M | 14.3 | -29.0 | +26.9 | +1.1 | +1.2 | +0.0 | 14.5 | 25.0 | -10.5 | Horiz-
| 30 | 2028.834M | 14.1 | -28.9 | +27.0 | +1.1 | +1.2 | +0.0 | 14.5 | 25.0 | -10.5 | Horiz-

![Graph](image-url)
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/24/2005
Time: 10:29:00 AM
Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N545-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table dBi/m</th>
<th>Corr dBi/m</th>
<th>Spec dBi/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2100.002M</td>
<td>19.7</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>20.7</td>
<td>25.0</td>
<td>-4.3</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2100.047M</td>
<td>19.7</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>20.7</td>
<td>25.0</td>
<td>-4.3</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2099.846M</td>
<td>19.6</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>20.6</td>
<td>25.0</td>
<td>-4.4</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2099.903M</td>
<td>19.2</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>20.2</td>
<td>25.0</td>
<td>-4.8</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2099.771M</td>
<td>19.1</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>20.1</td>
<td>25.0</td>
<td>-4.9</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2103.840M</td>
<td>19.1</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>20.1</td>
<td>25.0</td>
<td>-4.9</td>
<td>Horiz</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>2099.924M</td>
<td>18.9</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.9</td>
<td>25.0</td>
<td>-5.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>8</td>
<td>2099.963M</td>
<td>18.8</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.8</td>
<td>25.0</td>
<td>-5.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>9</td>
<td>2100.675M</td>
<td>17.4</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>18.4</td>
<td>25.0</td>
<td>-6.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>10</td>
<td>2119.912M</td>
<td>16.9</td>
<td>-28.8</td>
<td>+27.4</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.9</td>
<td>25.0</td>
<td>-7.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>11</td>
<td>2120.092M</td>
<td>16.9</td>
<td>-28.8</td>
<td>+27.4</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.9</td>
<td>25.0</td>
<td>-7.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>12</td>
<td>2120.648M</td>
<td>16.7</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.7</td>
<td>25.0</td>
<td>-7.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>13</td>
<td>2099.323M</td>
<td>16.6</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.6</td>
<td>25.0</td>
<td>-7.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>14</td>
<td>2039.970M</td>
<td>17.0</td>
<td>-28.9</td>
<td>+27.1</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.5</td>
<td>25.0</td>
<td>-7.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>15</td>
<td>2060.556M</td>
<td>16.8</td>
<td>-28.8</td>
<td>+27.1</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.5</td>
<td>25.0</td>
<td>-7.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>16</td>
<td>2060.096M</td>
<td>16.7</td>
<td>-28.8</td>
<td>+27.1</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.4</td>
<td>25.0</td>
<td>-7.6</td>
<td>Horiz</td>
</tr>
<tr>
<td>17</td>
<td>2120.674M</td>
<td>16.3</td>
<td>-28.8</td>
<td>+27.4</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.3</td>
<td>25.0</td>
<td>-7.7</td>
<td>Horiz</td>
</tr>
<tr>
<td>18</td>
<td>2099.375M</td>
<td>16.1</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.1</td>
<td>25.0</td>
<td>-7.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>19</td>
<td>2159.508M</td>
<td>16.3</td>
<td>-29.1</td>
<td>+27.5</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.1</td>
<td>25.0</td>
<td>-7.9</td>
<td>Horiz</td>
</tr>
<tr>
<td>20</td>
<td>2039.898M</td>
<td>16.5</td>
<td>-28.9</td>
<td>+27.1</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.0</td>
<td>25.0</td>
<td>-8.0</td>
<td>Horiz</td>
</tr>
<tr>
<td>21</td>
<td>2040.216M</td>
<td>16.4</td>
<td>-28.9</td>
<td>+27.1</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.9</td>
<td>25.0</td>
<td>-8.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>22</td>
<td>2159.999M</td>
<td>16.1</td>
<td>-29.1</td>
<td>+27.5</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.9</td>
<td>25.0</td>
<td>-8.1</td>
<td>Horiz</td>
</tr>
<tr>
<td>23</td>
<td>2059.937M</td>
<td>16.1</td>
<td>-28.8</td>
<td>+27.1</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.8</td>
<td>25.0</td>
<td>-8.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>24</td>
<td>2099.401M</td>
<td>15.8</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.8</td>
<td>25.0</td>
<td>-8.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>25</td>
<td>2159.992M</td>
<td>16.0</td>
<td>-29.1</td>
<td>+27.5</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.8</td>
<td>25.0</td>
<td>-8.2</td>
<td>Horiz</td>
</tr>
<tr>
<td>26</td>
<td>2040.333M</td>
<td>16.2</td>
<td>-28.9</td>
<td>+27.1</td>
<td>+1.1</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.7</td>
<td>25.0</td>
<td>-8.3</td>
<td>Horiz</td>
</tr>
<tr>
<td>27</td>
<td>2099.245M</td>
<td>15.6</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.6</td>
<td>25.0</td>
<td>-8.4</td>
<td>Horiz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2159.803M</td>
<td>15.8</td>
<td>-29.1</td>
<td>+27.5</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.6</td>
<td>25.0</td>
<td>-8.4</td>
<td>Horiz</td>
</tr>
<tr>
<td>29</td>
<td>2159.929M</td>
<td>15.7</td>
<td>-29.1</td>
<td>+27.5</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.5</td>
<td>25.0</td>
<td>-8.5</td>
<td>Horiz</td>
</tr>
<tr>
<td>30</td>
<td>2100.867M</td>
<td>15.4</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.4</td>
<td>25.0</td>
<td>-8.6</td>
<td>Horiz</td>
</tr>
</tbody>
</table>

Graph Details:

- **Data Source:** CKC Laboratories, Inc.
- **Date:** 2/24/2006
- **Time:** 10:20:00 AM
- **Location:** Stanford Linear Accelerator Center
- **Work Order:** 82940
- **Test Distance:** 1 Meter
- **Sequence:** #20

Graph:

- **Graph Title:** Sweep Data
- **Graph Description:** 1 - RE102 10kHz-18GHz
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/24/2005
Time: 10:46:00 AM
Equipment: TEM/TPS
Sequence#: 21
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

T1=AMP_ AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table dBµV/m</th>
<th>Spec dBµV/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2239.995M</td>
<td>19.8</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>20.5</td>
<td>25.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>2</td>
<td>2239.878M</td>
<td>19.6</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>20.3</td>
<td>25.0</td>
<td>-4.7</td>
</tr>
<tr>
<td>3</td>
<td>2196.483M</td>
<td>19.2</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>20.0</td>
<td>25.0</td>
<td>-5.0</td>
</tr>
<tr>
<td>4</td>
<td>2280.156M</td>
<td>19.2</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.9</td>
<td>25.0</td>
<td>-5.1</td>
</tr>
<tr>
<td>5</td>
<td>2239.812M</td>
<td>19.0</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.7</td>
<td>25.0</td>
<td>-5.3</td>
</tr>
<tr>
<td>6</td>
<td>2279.817M</td>
<td>18.7</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>19.4</td>
<td>25.0</td>
<td>-5.6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>-----</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>2260.007M</td>
<td>18.1</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>18.8</td>
<td>25.0</td>
<td>-6.2</td>
</tr>
<tr>
<td>8</td>
<td>2259.926M</td>
<td>17.1</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.8</td>
<td>25.0</td>
<td>-7.2</td>
</tr>
<tr>
<td>9</td>
<td>2260.400M</td>
<td>17.1</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.8</td>
<td>25.0</td>
<td>-7.2</td>
</tr>
<tr>
<td>10</td>
<td>2208.290M</td>
<td>16.9</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.7</td>
<td>25.0</td>
<td>-7.3</td>
</tr>
<tr>
<td>11</td>
<td>2260.121M</td>
<td>17.0</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.7</td>
<td>25.0</td>
<td>-7.3</td>
</tr>
<tr>
<td>12</td>
<td>2279.462M</td>
<td>17.0</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.7</td>
<td>25.0</td>
<td>-7.3</td>
</tr>
<tr>
<td>13</td>
<td>2199.630M</td>
<td>16.8</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.6</td>
<td>25.0</td>
<td>-7.4</td>
</tr>
<tr>
<td>14</td>
<td>2200.098M</td>
<td>16.8</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.6</td>
<td>25.0</td>
<td>-7.4</td>
</tr>
<tr>
<td>15</td>
<td>2259.802M</td>
<td>16.9</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.6</td>
<td>25.0</td>
<td>-7.4</td>
</tr>
<tr>
<td>16</td>
<td>2280.529M</td>
<td>16.9</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.6</td>
<td>25.0</td>
<td>-7.4</td>
</tr>
<tr>
<td>17</td>
<td>2160.000M</td>
<td>16.7</td>
<td>-29.1</td>
<td>+27.5</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.5</td>
<td>25.0</td>
<td>-7.5</td>
</tr>
<tr>
<td>18</td>
<td>2259.727M</td>
<td>16.7</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.4</td>
<td>25.0</td>
<td>-7.6</td>
</tr>
<tr>
<td>19</td>
<td>2199.870M</td>
<td>16.5</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.3</td>
<td>25.0</td>
<td>-7.7</td>
</tr>
<tr>
<td>20</td>
<td>2279.420M</td>
<td>16.6</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.3</td>
<td>25.0</td>
<td>-7.7</td>
</tr>
<tr>
<td>21</td>
<td>2260.139M</td>
<td>16.5</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.2</td>
<td>25.0</td>
<td>-7.8</td>
</tr>
<tr>
<td>22</td>
<td>2299.922M</td>
<td>16.5</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>17.1</td>
<td>25.0</td>
<td>-7.9</td>
</tr>
<tr>
<td>23</td>
<td>2239.241M</td>
<td>16.2</td>
<td>-29.5</td>
<td>+27.8</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.9</td>
<td>25.0</td>
<td>-8.1</td>
</tr>
<tr>
<td>24</td>
<td>2280.616M</td>
<td>16.2</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.9</td>
<td>25.0</td>
<td>-8.1</td>
</tr>
<tr>
<td>25</td>
<td>2199.708M</td>
<td>16.0</td>
<td>-29.3</td>
<td>+27.7</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.8</td>
<td>25.0</td>
<td>-8.2</td>
</tr>
<tr>
<td>26</td>
<td>2260.421M</td>
<td>16.1</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.8</td>
<td>25.0</td>
<td>-8.2</td>
</tr>
<tr>
<td>27</td>
<td>2260.577M</td>
<td>16.0</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.7</td>
<td>25.0</td>
<td>-8.3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>28</td>
<td>2260.622M</td>
<td>15.8</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.5</td>
<td>25.0</td>
<td>-8.5</td>
</tr>
<tr>
<td>29</td>
<td>2280.754M</td>
<td>15.8</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.5</td>
<td>25.0</td>
<td>-8.5</td>
</tr>
<tr>
<td>30</td>
<td>2280.937M</td>
<td>15.7</td>
<td>-29.7</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>16.4</td>
<td>25.0</td>
<td>-8.6</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/24/2006 Time: 10:48:00 AM Stanford Linear Accelerator Center WO#: 82940 RE102 10kHz-18GHz Test Distance: 1 Meter Sequence#: 21
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center

Specification: RE102 10KHz-18GHz

Work Order #: 82840

Date: 2/24/2005

Test Type: Radiated Scan

Time: 11:21:20 AM

Equipment: TEM/TPS

Sequence #: 22

Manufacturer: Stanford Linear Accelerator Center

Tested By: A. Brar

Model: TEM/TPS

S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Measurement Data:

Reading listed by margin. Test Distance: 1 Meter

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table dBµV/m</th>
<th>Corr dB</th>
<th>Spec dBµV/m</th>
<th>Margin dB</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1060.244M</td>
<td>56.2</td>
<td>-29.7</td>
<td>+24.0</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>52.3</td>
<td>84.7</td>
<td>-32.4</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>1179.867M</td>
<td>55.8</td>
<td>-29.7</td>
<td>+24.0</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>52.3</td>
<td>85.6</td>
<td>-33.3</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>1000.000M</td>
<td>53.3</td>
<td>-29.7</td>
<td>+23.8</td>
<td>+0.8</td>
<td>+0.8</td>
<td>+0.0</td>
<td>49.0</td>
<td>84.2</td>
<td>-35.2</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>1139.835M</td>
<td>53.2</td>
<td>-29.7</td>
<td>+24.3</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>49.6</td>
<td>85.3</td>
<td>-35.7</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>1099.253M</td>
<td>51.9</td>
<td>-29.7</td>
<td>+24.1</td>
<td>+0.9</td>
<td>+0.8</td>
<td>+0.0</td>
<td>48.0</td>
<td>85.0</td>
<td>-37.0</td>
<td>Vert</td>
</tr>
<tr>
<td>6</td>
<td>1079.749M</td>
<td>51.5</td>
<td>-29.7</td>
<td>+24.1</td>
<td>+0.9</td>
<td>+0.8</td>
<td>+0.0</td>
<td>47.6</td>
<td>84.8</td>
<td>-37.2</td>
<td>Vert</td>
</tr>
<tr>
<td>7</td>
<td>1019.819M</td>
<td>49.8</td>
<td>-29.7</td>
<td>+23.9</td>
<td>+0.8</td>
<td>+0.8</td>
<td>+0.0</td>
<td>45.6</td>
<td>84.3</td>
<td>-38.7</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>1119.859M</td>
<td>49.7</td>
<td>-29.7</td>
<td>+24.2</td>
<td>+0.9</td>
<td>+0.8</td>
<td>+0.0</td>
<td>45.9</td>
<td>85.2</td>
<td>-39.3</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1219.733M</td>
<td>49.9</td>
<td>-29.7</td>
<td>+24.5</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>46.5</td>
<td>85.9</td>
<td>-39.4</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1199.345M</td>
<td>48.7</td>
<td>-29.7</td>
<td>+24.4</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>45.2</td>
<td>85.8</td>
<td>-40.6</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1260.145M</td>
<td>46.1</td>
<td>-29.7</td>
<td>+24.6</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>42.8</td>
<td>86.2</td>
<td>-43.4</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1159.661M</td>
<td>45.6</td>
<td>-29.7</td>
<td>+24.3</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>42.0</td>
<td>85.5</td>
<td>-43.5</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1339.963M</td>
<td>46.1</td>
<td>-29.7</td>
<td>+24.8</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>43.1</td>
<td>86.7</td>
<td>-43.6</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1300.193M</td>
<td>45.9</td>
<td>-29.7</td>
<td>+24.7</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>42.8</td>
<td>86.5</td>
<td>-43.7</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1039.953M</td>
<td>44.4</td>
<td>-29.7</td>
<td>+23.9</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>40.4</td>
<td>84.5</td>
<td>-44.1</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1133.386M</td>
<td>44.7</td>
<td>-29.7</td>
<td>+24.2</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>41.0</td>
<td>85.3</td>
<td>-44.3</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1240.303M</td>
<td>44.3</td>
<td>-29.7</td>
<td>+24.5</td>
<td>+0.9</td>
<td>+0.9</td>
<td>+0.0</td>
<td>40.9</td>
<td>86.0</td>
<td>-45.1</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1500.071M</td>
<td>45.6</td>
<td>-30.3</td>
<td>+25.2</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>42.5</td>
<td>87.7</td>
<td>-45.2</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1339.149M</td>
<td>44.4</td>
<td>-29.7</td>
<td>+24.8</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>41.4</td>
<td>86.7</td>
<td>-45.3</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1279.805M</td>
<td>43.9</td>
<td>-29.7</td>
<td>+24.7</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>40.8</td>
<td>86.3</td>
<td>-45.5</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1440.241M</td>
<td>44.9</td>
<td>-30.1</td>
<td>+25.1</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>41.9</td>
<td>87.4</td>
<td>-45.5</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1380.411M</td>
<td>43.2</td>
<td>-29.8</td>
<td>+24.9</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>40.3</td>
<td>87.0</td>
<td>-46.7</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1419.385M</td>
<td>43.5</td>
<td>-30.0</td>
<td>+25.0</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>40.5</td>
<td>87.2</td>
<td>-46.7</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1460.255M</td>
<td>43.6</td>
<td>-30.2</td>
<td>+25.1</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>40.5</td>
<td>87.5</td>
<td>-47.0</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>1328.045M</td>
<td>42.3</td>
<td>-29.7</td>
<td>+24.8</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>39.3</td>
<td>86.6</td>
<td>-47.3</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1397.686M</td>
<td>42.5</td>
<td>-29.8</td>
<td>+25.0</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>39.7</td>
<td>87.1</td>
<td>-47.4</td>
<td>Vert</td>
</tr>
<tr>
<td>27</td>
<td>1359.976M</td>
<td>42.3</td>
<td>-29.7</td>
<td>+24.9</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>39.4</td>
<td>86.9</td>
<td>-47.5</td>
<td>Vert</td>
</tr>
<tr>
<td>28</td>
<td>1320.581M</td>
<td>41.8</td>
<td>-29.7</td>
<td>+24.8</td>
<td>+1.0</td>
<td>+0.9</td>
<td>+0.0</td>
<td>38.8</td>
<td>86.6</td>
<td>-47.8</td>
<td>Vert</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/24/2006 Time: 11:21:20 AM Stanford Linear Accelerator Center WO#: 82940 RE102 10kHz-18GHz Test Distance: 1 Meter Sequence#: 22

![Graph](image-url)
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Time: 11:23:25 AM
Test Type: Radiated Scan
Date: 2/24/2005
Test Type: Radiated Scan
Sequence #: 23
Test Type: Radiated Scan
Manufacturer: Stanford Linear Accelerator Center
Test Type: Radiated Scan
Model: TEM/TPS
Test Type: Radiated Scan
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist dBµV/m</th>
<th>Corr dBµV/m</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1599.990M</td>
<td>26.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>24.1</td>
<td>14.0</td>
<td>+10.1</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>1599.703M</td>
<td>24.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>22.0</td>
<td>14.0</td>
<td>+8.0</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>1560.000M</td>
<td>22.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>19.4</td>
<td>14.0</td>
<td>+5.4</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>1599.461M</td>
<td>22.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>19.4</td>
<td>14.0</td>
<td>+5.4</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>1599.409M</td>
<td>20.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>18.0</td>
<td>14.0</td>
<td>+4.0</td>
<td>Vert</td>
</tr>
<tr>
<td>6</td>
<td>1580.025M</td>
<td>19.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.5</td>
<td>14.0</td>
<td>+2.5</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>1579.842M</td>
<td>18.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.1</td>
<td>14.0</td>
<td>+2.1</td>
<td>Vert</td>
</tr>
<tr>
<td>8</td>
<td>1579.932M</td>
<td>18.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.1</td>
<td>14.0</td>
<td>+2.1</td>
<td>Vert</td>
</tr>
<tr>
<td>9</td>
<td>1580.223M</td>
<td>18.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.6</td>
<td>14.0</td>
<td>+1.6</td>
<td>Vert</td>
</tr>
<tr>
<td>10</td>
<td>1580.036M</td>
<td>18.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.5</td>
<td>14.0</td>
<td>+1.5</td>
<td>Vert</td>
</tr>
<tr>
<td>11</td>
<td>1580.082M</td>
<td>17.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.0</td>
<td>14.0</td>
<td>+1.0</td>
<td>Vert</td>
</tr>
<tr>
<td>12</td>
<td>1580.118M</td>
<td>17.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.0</td>
<td>14.0</td>
<td>+1.0</td>
<td>Vert</td>
</tr>
<tr>
<td>13</td>
<td>1597.439M</td>
<td>17.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.5</td>
<td>14.0</td>
<td>+0.5</td>
<td>Vert</td>
</tr>
<tr>
<td>14</td>
<td>1579.493M</td>
<td>17.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.4</td>
<td>14.0</td>
<td>+0.4</td>
<td>Vert</td>
</tr>
<tr>
<td>15</td>
<td>1598.857M</td>
<td>16.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.1</td>
<td>14.0</td>
<td>+0.1</td>
<td>Vert</td>
</tr>
<tr>
<td>16</td>
<td>1598.937M</td>
<td>16.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.1</td>
<td>14.0</td>
<td>+0.1</td>
<td>Vert</td>
</tr>
<tr>
<td>17</td>
<td>1599.063M</td>
<td>16.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.9</td>
<td>14.0</td>
<td>-0.1</td>
<td>Vert</td>
</tr>
<tr>
<td>18</td>
<td>1598.997M</td>
<td>16.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.7</td>
<td>14.0</td>
<td>-0.3</td>
<td>Vert</td>
</tr>
<tr>
<td>19</td>
<td>1598.979M</td>
<td>16.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.6</td>
<td>14.0</td>
<td>-0.4</td>
<td>Vert</td>
</tr>
<tr>
<td>20</td>
<td>1598.866M</td>
<td>16.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.5</td>
<td>14.0</td>
<td>-0.5</td>
<td>Vert</td>
</tr>
<tr>
<td>21</td>
<td>1579.418M</td>
<td>16.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7</td>
<td>Vert</td>
</tr>
<tr>
<td>22</td>
<td>1596.848M</td>
<td>16.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7</td>
<td>Vert</td>
</tr>
<tr>
<td>23</td>
<td>1598.976M</td>
<td>16.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7</td>
<td>Vert</td>
</tr>
<tr>
<td>24</td>
<td>1579.517M</td>
<td>15.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>14.0</td>
<td>-1.0</td>
<td>Vert</td>
</tr>
<tr>
<td>25</td>
<td>1597.893M</td>
<td>15.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>14.0</td>
<td>-1.0</td>
<td>Vert</td>
</tr>
<tr>
<td>26</td>
<td>1561.697M</td>
<td>15.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.9</td>
<td>14.0</td>
<td>-1.1</td>
<td>Vert</td>
</tr>
<tr>
<td>27</td>
<td>1594.061M</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.9</td>
<td>14.0</td>
<td>-1.1</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>28</td>
<td>1579.199M</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.8</td>
<td>14.0</td>
<td>-1.2</td>
<td>Vert</td>
</tr>
<tr>
<td>29</td>
<td>1587.854M</td>
<td>15.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.7</td>
<td>14.0</td>
<td>-1.3</td>
<td>Vert</td>
</tr>
<tr>
<td>30</td>
<td>1595.478M</td>
<td>15.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.7</td>
<td>14.0</td>
<td>-1.3</td>
<td>Vert</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/24/2005
Time: 11:30:49 AM
Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56".

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP05200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data:
Reading listed by margin. Test Distance: 1 Meter
<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table dBµV/m</th>
<th>Corr dBµV/m</th>
<th>Spec dB</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1639.982M</td>
<td>-30.3</td>
<td>+25.7</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>45.9</td>
<td>88.2</td>
<td>-42.3</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1679.808M</td>
<td>-30.1</td>
<td>+25.9</td>
<td>+1.1</td>
<td>+1.0</td>
<td>+0.0</td>
<td>44.2</td>
<td>88.5</td>
<td>-44.3</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1600.219M</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>42.9</td>
<td>88.0</td>
<td>-45.1</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1699.747M</td>
<td>-30.0</td>
<td>+25.9</td>
<td>+1.1</td>
<td>+1.0</td>
<td>+0.0</td>
<td>42.9</td>
<td>88.6</td>
<td>-45.7</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1660.095M</td>
<td>-30.2</td>
<td>+25.8</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>42.6</td>
<td>88.4</td>
<td>-45.8</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency [MHz]</td>
<td>dBµV/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>swept data</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------------</td>
</tr>
<tr>
<td>6</td>
<td>1740.063M</td>
<td>42.7</td>
<td>-30.0</td>
<td>+26.1</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>41.0</td>
<td>88.8</td>
<td>-47.8</td>
<td>Vert</td>
</tr>
<tr>
<td>7</td>
<td>1758.693M</td>
<td>42.2</td>
<td>-30.0</td>
<td>+26.1</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>40.5</td>
<td>88.9</td>
<td>-48.4</td>
<td>Vert</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Equipment: TEM/TPS
Date: 2/24/2005
Time: 11:33:01 AM
Sequence #: 25
Manufacturer: Stanford Linear Accelerator Center
Model: TEM/TPS
Tested By: A. Brar
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

- T1=AMP AN00941A 50GHz
- T2=Horn Antenna 4660 (Fremont)
- T3=ANP05200 1-40GHz
- T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq</th>
<th>Rdng</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>dBµV</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>Table dBµV/m</td>
<td>dBµV/m</td>
<td>dBµV/m</td>
<td>dB</td>
<td>dB</td>
</tr>
<tr>
<td>1</td>
<td>1779.940M</td>
<td>26.7</td>
<td>-30.1</td>
<td>+26.2</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>25.0</td>
<td>25.0</td>
<td>+0.0</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>1799.920M</td>
<td>26.0</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>24.3</td>
<td>25.0</td>
<td>-0.7</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>1779.840M</td>
<td>25.2</td>
<td>-30.1</td>
<td>+26.2</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>23.5</td>
<td>25.0</td>
<td>-1.5</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>1780.130M</td>
<td>24.8</td>
<td>-30.1</td>
<td>+26.2</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>23.1</td>
<td>25.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>1800.050M</td>
<td>24.8</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>23.1</td>
<td>25.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>6</td>
<td>1899.850M</td>
<td>23.6</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>23.1</td>
<td>25.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
</tbody>
</table>

Test Distance: 1 Meter

Page 155 of 224
Report No.: MIL05-015
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1799.970M</td>
<td>24.7</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>23.0</td>
</tr>
<tr>
<td>8</td>
<td>1800.020M</td>
<td>24.7</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>23.0</td>
</tr>
<tr>
<td>9</td>
<td>1825.756M</td>
<td>24.4</td>
<td>-30.0</td>
<td>+26.4</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>23.0</td>
</tr>
<tr>
<td>10</td>
<td>1780.030M</td>
<td>24.3</td>
<td>-30.1</td>
<td>+26.2</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>22.6</td>
</tr>
<tr>
<td>11</td>
<td>1900.270M</td>
<td>23.0</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>22.5</td>
</tr>
<tr>
<td>12</td>
<td>1779.710M</td>
<td>23.9</td>
<td>-30.1</td>
<td>+26.2</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>22.2</td>
</tr>
<tr>
<td>13</td>
<td>2179.729M</td>
<td>21.4</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.2</td>
</tr>
<tr>
<td>14</td>
<td>2180.531M</td>
<td>21.4</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.2</td>
</tr>
<tr>
<td>15</td>
<td>1899.419M</td>
<td>22.5</td>
<td>-29.3</td>
<td>+26.6</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>22.0</td>
</tr>
<tr>
<td>16</td>
<td>1940.130M</td>
<td>22.3</td>
<td>-29.2</td>
<td>+26.7</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>22.0</td>
</tr>
<tr>
<td>17</td>
<td>2179.829M</td>
<td>21.2</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.0</td>
</tr>
<tr>
<td>18</td>
<td>2299.517M</td>
<td>21.4</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>22.0</td>
</tr>
<tr>
<td>19</td>
<td>1797.127M</td>
<td>23.6</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>21.9</td>
</tr>
<tr>
<td>20</td>
<td>2260.581M</td>
<td>21.2</td>
<td>-29.6</td>
<td>+27.9</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.9</td>
</tr>
<tr>
<td>21</td>
<td>2180.040M</td>
<td>21.0</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.8</td>
</tr>
<tr>
<td>22</td>
<td>1799.530M</td>
<td>23.4</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>21.7</td>
</tr>
<tr>
<td>23</td>
<td>2299.697M</td>
<td>21.0</td>
<td>-29.8</td>
<td>+28.0</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.6</td>
</tr>
<tr>
<td>24</td>
<td>1799.620M</td>
<td>23.1</td>
<td>-30.2</td>
<td>+26.3</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>21.4</td>
</tr>
<tr>
<td>25</td>
<td>2180.090M</td>
<td>20.6</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.4</td>
</tr>
<tr>
<td>26</td>
<td>1840.010M</td>
<td>22.5</td>
<td>-29.9</td>
<td>+26.4</td>
<td>+1.1</td>
<td>+1.1</td>
<td>+0.0</td>
<td>21.2</td>
</tr>
<tr>
<td>27</td>
<td>2179.589M</td>
<td>20.4</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2099.719M</td>
<td>20.1</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vert</td>
</tr>
<tr>
<td>29</td>
<td>2100.110M</td>
<td>20.1</td>
<td>-28.7</td>
<td>+27.3</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vert</td>
</tr>
<tr>
<td>30</td>
<td>2180.460M</td>
<td>20.3</td>
<td>-29.2</td>
<td>+27.6</td>
<td>+1.2</td>
<td>+1.2</td>
<td>+0.0</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vert</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/24/2006 Time: 11:33:01 AM Stanford Linear Accelerator Center WO#: 82940
RE102 10kHz-18GHz Test Distance: 1 Meter Sequence#: 25

![Graph showing frequency and dBuV/m readings](image-url)
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840 Date: 2/24/2005
Test Type: Radiated Scan Time: 11:36:14 AM
Equipment: TEM/TPS Sequence#: 26
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-4IR-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLF41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”.

Transducer Legend:

- T1 = AMP AN00941A 50GHz
- T2 = Horn Antenna 4660 (Fremont)
- T3 = ANP5200 1-40GHz
- T4 = ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq</th>
<th>Rdng</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>dBµV</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>dB/m</td>
<td>dB/m</td>
<td>dB/m</td>
<td>dB</td>
<td>dB</td>
</tr>
<tr>
<td>1</td>
<td>14070.760M</td>
<td>41.0</td>
<td>-30.7</td>
<td>+43.4</td>
<td>+3.1</td>
<td>+3.4</td>
<td>+0.0</td>
<td>60.2</td>
<td>106.7</td>
<td>-46.5</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>13563.250M</td>
<td>40.3</td>
<td>-30.4</td>
<td>+43.4</td>
<td>+3.0</td>
<td>+3.4</td>
<td>+0.0</td>
<td>59.7</td>
<td>106.4</td>
<td>-46.7</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>8736.430M</td>
<td>38.9</td>
<td>-26.7</td>
<td>+38.3</td>
<td>+2.4</td>
<td>+2.6</td>
<td>+0.0</td>
<td>55.5</td>
<td>102.3</td>
<td>-46.8</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>10270.960M</td>
<td>39.2</td>
<td>-27.3</td>
<td>+39.5</td>
<td>+2.6</td>
<td>+3.0</td>
<td>+0.0</td>
<td>57.0</td>
<td>103.8</td>
<td>-46.8</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>14562.250M</td>
<td>40.6</td>
<td>-30.8</td>
<td>+43.2</td>
<td>+3.2</td>
<td>+3.5</td>
<td>+0.0</td>
<td>59.7</td>
<td>107.0</td>
<td>-47.3</td>
<td>Vert</td>
</tr>
<tr>
<td>6</td>
<td>10320.010M</td>
<td>38.8</td>
<td>-27.3</td>
<td>+39.4</td>
<td>+2.6</td>
<td>+3.0</td>
<td>+0.0</td>
<td>56.5</td>
<td>103.9</td>
<td>-47.4</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3069.769M</td>
<td>40.9</td>
<td>-29.0</td>
<td>+30.3</td>
<td>+1.4</td>
<td>+1.5</td>
<td>+0.0</td>
<td>45.1</td>
<td>92.7</td>
<td>-47.6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9775.468M</td>
<td>37.3</td>
<td>-26.8</td>
<td>+39.5</td>
<td>+2.6</td>
<td>+2.9</td>
<td>+0.0</td>
<td>55.5</td>
<td>103.4</td>
<td>-47.9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12053.740M</td>
<td>39.4</td>
<td>-28.7</td>
<td>+40.6</td>
<td>+2.8</td>
<td>+3.2</td>
<td>+0.0</td>
<td>57.3</td>
<td>105.3</td>
<td>-48.0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13237.930M</td>
<td>39.2</td>
<td>-30.0</td>
<td>+42.3</td>
<td>+3.0</td>
<td>+3.3</td>
<td>+0.0</td>
<td>57.8</td>
<td>106.2</td>
<td>-48.4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>17986.300M</td>
<td>37.3</td>
<td>-29.6</td>
<td>+45.1</td>
<td>+3.6</td>
<td>+4.2</td>
<td>+0.0</td>
<td>60.6</td>
<td>109.0</td>
<td>-48.4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5255.953M</td>
<td>39.2</td>
<td>-28.4</td>
<td>+34.3</td>
<td>+1.8</td>
<td>+2.0</td>
<td>+0.0</td>
<td>48.9</td>
<td>97.6</td>
<td>-48.7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11169.860M</td>
<td>38.5</td>
<td>-28.0</td>
<td>+39.5</td>
<td>+2.7</td>
<td>+3.1</td>
<td>+0.0</td>
<td>55.8</td>
<td>104.6</td>
<td>-48.8</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4282.981M</td>
<td>39.9</td>
<td>-29.4</td>
<td>+32.7</td>
<td>+1.7</td>
<td>+1.8</td>
<td>+0.0</td>
<td>46.7</td>
<td>95.7</td>
<td>-49.0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6196.893M</td>
<td>39.0</td>
<td>-27.8</td>
<td>+34.9</td>
<td>+1.9</td>
<td>+2.1</td>
<td>+0.0</td>
<td>50.1</td>
<td>99.2</td>
<td>-49.1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6337.033M</td>
<td>38.6</td>
<td>-27.6</td>
<td>+35.0</td>
<td>+2.0</td>
<td>+2.2</td>
<td>+0.0</td>
<td>50.2</td>
<td>99.4</td>
<td>-49.2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17308.990M</td>
<td>38.3</td>
<td>-29.3</td>
<td>+41.8</td>
<td>+3.5</td>
<td>+4.0</td>
<td>+0.0</td>
<td>58.3</td>
<td>108.6</td>
<td>-50.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency [MHz]</td>
<td>dBu/Vm</td>
<td>Sweep Data</td>
<td>1 - RE102 10kHz-18GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--------</td>
<td>------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>15245.930M</td>
<td>41.0</td>
<td>40.2</td>
<td>+3.2 +3.5 +0.0 57.0 107.5 -50.5 Vert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8214.909M</td>
<td>37.2</td>
<td>35.8</td>
<td>+2.3 +2.5 +0.0 51.1 101.8 -50.7 Vert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>15351.040M</td>
<td>39.4</td>
<td>39.4</td>
<td>+3.3 +3.6 +0.0 54.9 107.5 -52.6 Vert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/24/2006 Time: 11:36:14 AM Stanford Linear Accelerator Center WO#: 82940 RE102 10kHz-18GHz Test Distance: 1 Meter Sequence#: 26
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz

Work Order #: 82840 Date: 2/24/2005
Test Type: Radiated Scan Time: 1:11:08 PM
Equipment: TEM/TPS Sequence#: 27
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”. Placed foil around JS1 connector slot. Refer to photos.

Transducer Legend:
T1=AMP AN00941A 50GHz
T3=ANP05200 1-40GHz
T2=Horn Antenna 4660 (Fremont)
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdnɡ dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Corr</th>
<th>Spec dBµV/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1559.928M</td>
<td>26.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>23.1</td>
<td>14.0</td>
<td>+9.1 Vert</td>
</tr>
<tr>
<td>2</td>
<td>1560.234M</td>
<td>23.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>20.1</td>
<td>14.0</td>
<td>+6.1 Vert</td>
</tr>
<tr>
<td>3</td>
<td>1559.544M</td>
<td>21.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>19.0</td>
<td>14.0</td>
<td>+5.0 Vert</td>
</tr>
<tr>
<td>4</td>
<td>1559.523M</td>
<td>21.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>18.1</td>
<td>14.0</td>
<td>+4.1 Vert</td>
</tr>
<tr>
<td>5</td>
<td>1579.941M</td>
<td>19.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.5</td>
<td>14.0</td>
<td>+2.5 Vert</td>
</tr>
<tr>
<td></td>
<td>Distance (M)</td>
<td>Length</td>
<td>Width</td>
<td>Height</td>
<td>Width</td>
<td>Height</td>
<td>Width</td>
<td>Height</td>
<td>Width</td>
<td>Height</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>6</td>
<td>1580.112</td>
<td>18.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.9</td>
<td>14.0</td>
<td>+1.9</td>
</tr>
<tr>
<td>7</td>
<td>1599.957</td>
<td>18.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.7</td>
<td>14.0</td>
<td>+1.7</td>
</tr>
<tr>
<td>8</td>
<td>1597.442</td>
<td>18.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.6</td>
<td>14.0</td>
<td>+1.6</td>
</tr>
<tr>
<td>9</td>
<td>1560.742</td>
<td>17.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.6</td>
<td>14.0</td>
<td>+0.6</td>
</tr>
<tr>
<td>10</td>
<td>1599.733</td>
<td>17.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.5</td>
<td>14.0</td>
<td>+0.5</td>
</tr>
<tr>
<td>11</td>
<td>1559.249</td>
<td>17.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.2</td>
<td>14.0</td>
<td>+0.2</td>
</tr>
<tr>
<td>12</td>
<td>1580.262</td>
<td>16.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.1</td>
<td>14.0</td>
<td>+0.1</td>
</tr>
<tr>
<td>13</td>
<td>1580.409</td>
<td>16.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.1</td>
<td>14.0</td>
<td>+0.1</td>
</tr>
<tr>
<td>14</td>
<td>1560.907</td>
<td>16.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.9</td>
<td>14.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>15</td>
<td>1579.511</td>
<td>16.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.6</td>
<td>14.0</td>
<td>-0.4</td>
</tr>
<tr>
<td>16</td>
<td>1580.364</td>
<td>16.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.5</td>
<td>14.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>17</td>
<td>1558.799</td>
<td>16.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7</td>
</tr>
<tr>
<td>18</td>
<td>1560.766</td>
<td>16.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.2</td>
<td>14.0</td>
<td>-0.8</td>
</tr>
<tr>
<td>19</td>
<td>1568.622</td>
<td>15.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.1</td>
<td>14.0</td>
<td>-0.9</td>
</tr>
<tr>
<td>20</td>
<td>1555.883</td>
<td>15.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.8</td>
<td>14.0</td>
<td>-1.2</td>
</tr>
<tr>
<td>21</td>
<td>1565.574</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.8</td>
<td>14.0</td>
<td>-1.2</td>
</tr>
<tr>
<td>22</td>
<td>1599.331</td>
<td>15.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.8</td>
<td>14.0</td>
<td>-1.2</td>
</tr>
<tr>
<td>23</td>
<td>1578.340</td>
<td>15.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.7</td>
<td>14.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>24</td>
<td>1587.256</td>
<td>15.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.7</td>
<td>14.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>25</td>
<td>1558.934</td>
<td>15.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>26</td>
<td>1561.748</td>
<td>15.5</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>27</td>
<td>1579.535</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.5</td>
<td>14.0</td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>Distance</td>
<td>Ref</td>
<td>Adj</td>
<td>Dist</td>
<td>Power</td>
<td>R_IN</td>
<td>R_OUT</td>
<td>Loss</td>
<td>Vert</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>28</td>
<td>1585.067M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
</tr>
<tr>
<td>29</td>
<td>1592.124M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
</tr>
<tr>
<td>30</td>
<td>1594.686M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

Graph:
- **Sweep Data**
- 1 - RE102 10kHz-18GHz

Note:
- CKC Laboratories, Inc. Date: 2/24/2005
- Time: 1:11:08 PM
- Stanford Linear Accelerator Center
- VVO#: 82840
- RE102 10kHz-18GHz Test Distance: 1 Meter
- Sequence#: 27
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/24/2005
Test Type: Radiated Scan
Time: 2:12:22 PM
Equipment: TEM/TPS
Sequence#: 28
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56". UUT and support equipment shut off.

Transducer Legend:
T1=AMP AN00941A 50GHz
T2=Horn Antenna 4660 (Fremont)
T3=ANP5200 1-40GHz
T4=ANP5201 1-40GHz

Measurement Data: Reading listed by margin.

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table</th>
<th>Corr dBµV/m</th>
<th>Spec dBµV/m</th>
<th>Margin dB</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1560.000M</td>
<td>21.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>18.4</td>
<td>14.0</td>
<td>+4.4</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>1599.959M</td>
<td>17.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.8</td>
<td>14.0</td>
<td>+0.8</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>1584.208M</td>
<td>16.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.9</td>
<td>14.0</td>
<td>-0.1</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>1575.000M</td>
<td>15.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>14.0</td>
<td>-1.0</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>1559.976M</td>
<td>15.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.9</td>
<td>14.0</td>
<td>-1.1</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>----</td>
</tr>
<tr>
<td>6</td>
<td>1592.676M</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.9</td>
<td>14.0</td>
<td>-1.1</td>
<td>Vert</td>
</tr>
<tr>
<td>7</td>
<td>1570.664M</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.8</td>
<td>14.0</td>
<td>-1.2</td>
<td>Vert</td>
</tr>
<tr>
<td>8</td>
<td>1591.704M</td>
<td>15.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.7</td>
<td>14.0</td>
<td>-1.3</td>
<td>Vert</td>
</tr>
<tr>
<td>9</td>
<td>1566.084M</td>
<td>15.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
<td>Vert</td>
</tr>
<tr>
<td>10</td>
<td>1591.845M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
<td>Vert</td>
</tr>
<tr>
<td>11</td>
<td>1597.442M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.6</td>
<td>14.0</td>
<td>-1.4</td>
<td>Vert</td>
</tr>
<tr>
<td>12</td>
<td>1591.406M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Vert</td>
</tr>
<tr>
<td>13</td>
<td>1593.665M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Vert</td>
</tr>
<tr>
<td>14</td>
<td>1562.886M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td>Vert</td>
</tr>
<tr>
<td>15</td>
<td>1589.253M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td>Vert</td>
</tr>
<tr>
<td>16</td>
<td>1596.403M</td>
<td>15.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td>Vert</td>
</tr>
<tr>
<td>17</td>
<td>1554.384M</td>
<td>15.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>18</td>
<td>1555.501M</td>
<td>15.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>19</td>
<td>1564.640M</td>
<td>15.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>20</td>
<td>1592.064M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>21</td>
<td>1594.136M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>22</td>
<td>1596.040M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>23</td>
<td>1599.684M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.1</td>
<td>14.0</td>
<td>-1.9</td>
<td>Vert</td>
</tr>
<tr>
<td>24</td>
<td>1550.874M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td>25</td>
<td>1554.700M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td>26</td>
<td>1573.150M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td>27</td>
<td>1598.537M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1592.034M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1598.781M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1599.938M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/24/2005
Test Type: Radiated Scan
Time: 2:44:33 PM
Equipment: TEM/TPS
Sequence#: 29
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (*= UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:
- T1=AMP AN00941A 50GHz
- T2=Horn Antenna 4660 (Fremont)
- T3=ANP05200 1-40GHz
- T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 dB</th>
<th>T2 dB</th>
<th>T3 dB</th>
<th>T4 dB</th>
<th>Dist Table</th>
<th>Corr dB</th>
<th>Spec dBµV/m</th>
<th>Margin dBµV/m</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1559.955M</td>
<td>27.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+10.5</td>
<td>Vert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1560.000M</td>
<td>27.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+10.5</td>
<td>Vert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1559.910M</td>
<td>26.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+9.1</td>
<td>Vert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1560.357M</td>
<td>23.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+7.0</td>
<td>Vert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1579.998M</td>
<td>20.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+4.1</td>
<td>Vert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1560.526M</td>
<td>20.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.8</td>
<td>14.0</td>
<td>+3.8 Vert</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1580.127M</td>
<td>20.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>17.4</td>
<td>14.0</td>
<td>+3.4 Vert</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1579.938M</td>
<td>19.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.8</td>
<td>14.0</td>
<td>+2.8 Vert</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1599.957M</td>
<td>19.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.4</td>
<td>14.0</td>
<td>+2.4 Vert</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1580.076M</td>
<td>19.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>16.2</td>
<td>14.0</td>
<td>+2.2 Vert</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1580.277M</td>
<td>18.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.9</td>
<td>14.0</td>
<td>+1.9 Vert</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1560.760M</td>
<td>18.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>15.7</td>
<td>14.0</td>
<td>+1.7 Vert</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1592.133M</td>
<td>17.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.6</td>
<td>14.0</td>
<td>+0.6 Vert</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1560.886M</td>
<td>17.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.4</td>
<td>14.0</td>
<td>+0.4 Vert</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1580.496M</td>
<td>16.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.8</td>
<td>14.0</td>
<td>-0.2 Vert</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1584.205M</td>
<td>16.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.6</td>
<td>14.0</td>
<td>-0.4 Vert</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1559.174M</td>
<td>16.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.5</td>
<td>14.0</td>
<td>-0.5 Vert</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1599.510M</td>
<td>16.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.4</td>
<td>14.0</td>
<td>-0.6 Vert</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1558.925M</td>
<td>16.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7 Vert</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1558.982M</td>
<td>16.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.2</td>
<td>14.0</td>
<td>-0.8 Vert</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1558.024M</td>
<td>16.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.1</td>
<td>14.0</td>
<td>-0.9 Vert</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1579.361M</td>
<td>15.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.1</td>
<td>14.0</td>
<td>-0.9 Vert</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1579.475M</td>
<td>15.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.1</td>
<td>14.0</td>
<td>-0.9 Vert</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1580.535M</td>
<td>15.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.1</td>
<td>14.0</td>
<td>-0.9 Vert</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1594.695M</td>
<td>15.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>14.0</td>
<td>-1.0 Vert</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1559.042M</td>
<td>15.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.9</td>
<td>14.0</td>
<td>-1.1 Vert</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1562.108M</td>
<td>15.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.5</td>
<td>14.0</td>
<td>-1.5 Vert</td>
<td></td>
</tr>
</tbody>
</table>
28 1585.905M 15.3 -30.3 +25.5 +1.0 +1.0 +0.0 12.5 14.0 -1.5 Vert
29 1597.442M 15.2 -30.3 +25.6 +1.0 +1.0 +0.0 12.5 14.0 -1.5 Vert
30 1597.635M 15.2 -30.3 +25.6 +1.0 +1.0 +0.0 12.5 14.0 -1.5 Vert

C&K Laboratories, Inc. Date: 2/24/2005 Time: 2:44:33 PM Stanford Linear Accelerator Center VWO# 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence#: 29 Copper tape on top, right and left side of the JST1 connector.
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840 Date: 2/24/2005
Test Type: Radiated Scan Time: 3:05:47 PM
Equipment: TEM/TPS Sequence#: 30
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56". Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:
T1=AMP AN00941A 50GHz
T3=ANP05200 1-40GHz
T2=Horn Antenna 4660 (Fremont)
T4=ANP5201 1-40GHz

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdnng dBµV</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec dBµV/m</th>
<th>Margin dBµV/m</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1560.115M</td>
<td>17.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.2</td>
<td>14.0</td>
<td>+0.2</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>1560.000M</td>
<td>17.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>14.1</td>
<td>14.0</td>
<td>+0.1</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>1560.146M</td>
<td>16.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.5</td>
<td>14.0</td>
<td>-0.5</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>1559.929M</td>
<td>16.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>1560.129M</td>
<td>16.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.3</td>
<td>14.0</td>
<td>-0.7</td>
<td>Vert</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>6</td>
<td>1559.992M</td>
<td>15.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>13.0</td>
<td>14.0</td>
<td>-1.0</td>
<td>Vert</td>
</tr>
<tr>
<td>7</td>
<td>1559.917M</td>
<td>15.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.8</td>
<td>14.0</td>
<td>-1.2</td>
<td>Vert</td>
</tr>
<tr>
<td>8</td>
<td>1559.997M</td>
<td>15.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.7</td>
<td>14.0</td>
<td>-1.3</td>
<td>Vert</td>
</tr>
<tr>
<td>9</td>
<td>1559.906M</td>
<td>15.4</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.5</td>
<td>14.0</td>
<td>-1.5</td>
<td>Vert</td>
</tr>
<tr>
<td>10</td>
<td>1559.977M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Vert</td>
</tr>
<tr>
<td>11</td>
<td>1560.035M</td>
<td>15.3</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.4</td>
<td>14.0</td>
<td>-1.6</td>
<td>Vert</td>
</tr>
<tr>
<td>12</td>
<td>1559.986M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td>Vert</td>
</tr>
<tr>
<td>13</td>
<td>1560.134M</td>
<td>15.2</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.3</td>
<td>14.0</td>
<td>-1.7</td>
<td>Vert</td>
</tr>
<tr>
<td>14</td>
<td>1560.139M</td>
<td>15.1</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.2</td>
<td>14.0</td>
<td>-1.8</td>
<td>Vert</td>
</tr>
<tr>
<td>15</td>
<td>1559.783M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td>16</td>
<td>1559.872M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td>17</td>
<td>1559.940M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td>18</td>
<td>1560.077M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td>19</td>
<td>1560.163M</td>
<td>14.9</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>12.0</td>
<td>14.0</td>
<td>-2.0</td>
<td>Vert</td>
</tr>
<tr>
<td>20</td>
<td>1559.868M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td>Vert</td>
</tr>
<tr>
<td>21</td>
<td>1559.926M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td>Vert</td>
</tr>
<tr>
<td>22</td>
<td>1560.057M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td>Vert</td>
</tr>
<tr>
<td>23</td>
<td>1560.093M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td>Vert</td>
</tr>
<tr>
<td>24</td>
<td>1560.227M</td>
<td>14.8</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.9</td>
<td>14.0</td>
<td>-2.1</td>
<td>Vert</td>
</tr>
<tr>
<td>25</td>
<td>1559.812M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
<td>Vert</td>
</tr>
<tr>
<td>26</td>
<td>1560.217M</td>
<td>14.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.8</td>
<td>14.0</td>
<td>-2.2</td>
<td>Vert</td>
</tr>
<tr>
<td>27</td>
<td>1559.846M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1559.989M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
<td>Vert</td>
</tr>
<tr>
<td>29</td>
<td>1560.106M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
<td>Vert</td>
</tr>
<tr>
<td>30</td>
<td>1560.169M</td>
<td>14.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>11.7</td>
<td>14.0</td>
<td>-2.3</td>
<td>Vert</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/24/2005 Time: 3:05:47 PM Stanford Linear Accelerator Center VWO#: 82840
RE102 10KHz-18GHz Test Distance: 1 Meter Sequence#: 30
Copper tape on top, right and left side of the JST connector.
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center

Specification: RE102 10KHz-18GHz

Work Order #: 82840

Test Type: Radiated Scan

Equipment: TEM/TPS

Manufacturer: Stanford Linear Accelerator Center

Model: TEM/TPS

S/N: GLA1754

Equipment Under Test (*= UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:

T1=AMP AN00941A 50GHz
T3=ANP05200 1-40GHz

T2=Horn Antenna 4660 (Fremont)
T4=ANP5201 1-40GHz

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdng dBµV</th>
<th>T1 db</th>
<th>T2 db</th>
<th>T3 db</th>
<th>T4 db</th>
<th>Dist Table</th>
<th>Corr dB</th>
<th>Spec dBµV/m</th>
<th>Margin dBµV/m</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1575.000M</td>
<td>7.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>5.1</td>
<td>14.0</td>
<td>-8.9</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>1574.943M</td>
<td>5.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.1</td>
<td>14.0</td>
<td>-10.9</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>1565.073M</td>
<td>5.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.0</td>
<td>14.0</td>
<td>-11.0</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>1573.150M</td>
<td>5.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>2.7</td>
<td>14.0</td>
<td>-11.3</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>1570.682M</td>
<td>5.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>2.5</td>
<td>14.0</td>
<td>-11.5</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
<td>Elevation</td>
<td>Incidence</td>
<td>Altitude</td>
<td>Temperature</td>
<td>Vert</td>
<td>Longitude</td>
<td>Latitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1565.250M</td>
<td>5.1</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>2.3</td>
<td>14.0</td>
<td>-11.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1566.067M</td>
<td>5.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>2.2</td>
<td>14.0</td>
<td>-11.8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1564.672M</td>
<td>5.0</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>2.1</td>
<td>14.0</td>
<td>-11.9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1565.588M</td>
<td>4.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>2.1</td>
<td>14.0</td>
<td>-11.9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1567.736M</td>
<td>4.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.9</td>
<td>14.0</td>
<td>-12.1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1563.440M</td>
<td>4.7</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.8</td>
<td>14.0</td>
<td>-12.2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1564.451M</td>
<td>4.6</td>
<td>-30.3</td>
<td>+25.4</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.7</td>
<td>14.0</td>
<td>-12.3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1566.060M</td>
<td>4.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.7</td>
<td>14.0</td>
<td>-12.3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1567.644M</td>
<td>4.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.7</td>
<td>14.0</td>
<td>-12.3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1567.167M</td>
<td>4.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.6</td>
<td>14.0</td>
<td>-12.4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1567.400M</td>
<td>4.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.6</td>
<td>14.0</td>
<td>-12.4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1567.919M</td>
<td>4.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.6</td>
<td>14.0</td>
<td>-12.4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1570.269M</td>
<td>4.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.6</td>
<td>14.0</td>
<td>-12.4</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1571.141M</td>
<td>4.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.6</td>
<td>14.0</td>
<td>-12.4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1571.861M</td>
<td>4.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.6</td>
<td>14.0</td>
<td>-12.4</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1572.144M</td>
<td>4.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.6</td>
<td>14.0</td>
<td>-12.4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1565.132M</td>
<td>4.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.5</td>
<td>14.0</td>
<td>-12.5</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1566.644M</td>
<td>4.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.5</td>
<td>14.0</td>
<td>-12.5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1566.764M</td>
<td>4.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.5</td>
<td>14.0</td>
<td>-12.5</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1570.290M</td>
<td>4.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.5</td>
<td>14.0</td>
<td>-12.5</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1571.511M</td>
<td>4.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.5</td>
<td>14.0</td>
<td>-12.5</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1565.890M</td>
<td>4.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.4</td>
<td>14.0</td>
<td>-12.6</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1566.180M</td>
<td>4.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.4</td>
<td>14.0</td>
<td>-12.6</td>
<td>Vert</td>
</tr>
<tr>
<td>29</td>
<td>1573.286M</td>
<td>4.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.4</td>
<td>14.0</td>
<td>-12.6</td>
<td>Vert</td>
</tr>
<tr>
<td>30</td>
<td>1574.194M</td>
<td>4.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>1.4</td>
<td>14.0</td>
<td>-12.6</td>
<td>Vert</td>
</tr>
</tbody>
</table>

C&K Laboratories, Inc. Date: 2/24/2005 Time: 3:23:53 PM Stanford Linear Accelerator Center VWO#: 82840
RE102:10KHz-18GHz Test Distance: 1 Meter Sequence#: 31
Copper tape on top, right and left side of the JST connector.

![Graph](attachment:image.png)

Sweep Data **1 - RE102 10KHz-18GHz**
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840 Date: 2/24/2005
Test Type: Radiated Scan Time: 3:41:11 PM
Equipment: TEM/TPS Sequence#: 32
Manufacturer: Stanford Linear Accelerator Center Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (* = UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:
T1=AMP AN00941A 50GHz
T3=ANP05200 1-40GHz
T2=Horn Antenna 4660 (Fremont)
T4=ANP5201 1-40GHz

Measurement Data: Reading listed by margin. Test Distance: 1 Meter

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rding dBµV</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1579.982</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
<td>Vert</td>
</tr>
<tr>
<td>2</td>
<td>1580.051</td>
<td>13.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.2</td>
<td>14.0</td>
<td>-3.8</td>
<td>Vert</td>
</tr>
<tr>
<td>3</td>
<td>1584.208</td>
<td>12.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>-3.9</td>
<td>Vert</td>
</tr>
<tr>
<td>4</td>
<td>1580.102</td>
<td>12.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>10.0</td>
<td>14.0</td>
<td>-4.0</td>
<td>Vert</td>
</tr>
<tr>
<td>5</td>
<td>1579.929</td>
<td>12.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.9</td>
<td>14.0</td>
<td>-4.1</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1580.046M</td>
<td>12.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.8</td>
<td>14.0</td>
<td>-4.2</td>
<td>Vert</td>
</tr>
<tr>
<td>7</td>
<td>1579.964M</td>
<td>12.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.7</td>
<td>14.0</td>
<td>-4.3</td>
<td>Vert</td>
</tr>
<tr>
<td>8</td>
<td>1579.933M</td>
<td>12.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.6</td>
<td>14.0</td>
<td>-4.4</td>
<td>Vert</td>
</tr>
<tr>
<td>9</td>
<td>1579.891M</td>
<td>12.3</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.5</td>
<td>14.0</td>
<td>-4.5</td>
<td>Vert</td>
</tr>
<tr>
<td>10</td>
<td>1579.968M</td>
<td>12.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.4</td>
<td>14.0</td>
<td>-4.6</td>
<td>Vert</td>
</tr>
<tr>
<td>11</td>
<td>1580.017M</td>
<td>12.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.4</td>
<td>14.0</td>
<td>-4.6</td>
<td>Vert</td>
</tr>
<tr>
<td>12</td>
<td>1580.181M</td>
<td>12.2</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.4</td>
<td>14.0</td>
<td>-4.6</td>
<td>Vert</td>
</tr>
<tr>
<td>13</td>
<td>1579.957M</td>
<td>12.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.2</td>
<td>14.0</td>
<td>-4.8</td>
<td>Vert</td>
</tr>
<tr>
<td>14</td>
<td>1580.095M</td>
<td>11.9</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.1</td>
<td>14.0</td>
<td>-4.9</td>
<td>Vert</td>
</tr>
<tr>
<td>15</td>
<td>1579.791M</td>
<td>11.8</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>9.0</td>
<td>14.0</td>
<td>-5.0</td>
<td>Vert</td>
</tr>
<tr>
<td>16</td>
<td>1579.975M</td>
<td>11.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.9</td>
<td>14.0</td>
<td>-5.1</td>
<td>Vert</td>
</tr>
<tr>
<td>17</td>
<td>1580.018M</td>
<td>11.7</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.9</td>
<td>14.0</td>
<td>-5.1</td>
<td>Vert</td>
</tr>
<tr>
<td>18</td>
<td>1579.747M</td>
<td>11.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.8</td>
<td>14.0</td>
<td>-5.2</td>
<td>Vert</td>
</tr>
<tr>
<td>19</td>
<td>1579.810M</td>
<td>11.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.8</td>
<td>14.0</td>
<td>-5.2</td>
<td>Vert</td>
</tr>
<tr>
<td>20</td>
<td>1579.846M</td>
<td>11.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.8</td>
<td>14.0</td>
<td>-5.2</td>
<td>Vert</td>
</tr>
<tr>
<td>21</td>
<td>1579.940M</td>
<td>11.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.8</td>
<td>14.0</td>
<td>-5.2</td>
<td>Vert</td>
</tr>
<tr>
<td>22</td>
<td>1580.052M</td>
<td>11.6</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.8</td>
<td>14.0</td>
<td>-5.2</td>
<td>Vert</td>
</tr>
<tr>
<td>23</td>
<td>1579.945M</td>
<td>11.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.7</td>
<td>14.0</td>
<td>-5.3</td>
<td>Vert</td>
</tr>
<tr>
<td>24</td>
<td>1579.988M</td>
<td>11.5</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.7</td>
<td>14.0</td>
<td>-5.3</td>
<td>Vert</td>
</tr>
<tr>
<td>25</td>
<td>1579.946M</td>
<td>11.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.6</td>
<td>14.0</td>
<td>-5.4</td>
<td>Vert</td>
</tr>
<tr>
<td>26</td>
<td>1580.035M</td>
<td>11.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.6</td>
<td>14.0</td>
<td>-5.4</td>
<td>Vert</td>
</tr>
<tr>
<td>27</td>
<td>1580.106M</td>
<td>11.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.6</td>
<td>14.0</td>
<td>-5.4</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
<td>Frequency (MHz)</td>
<td>Diff (MHz)</td>
<td>Vert (mV/m)</td>
<td>Cur (mV/m)</td>
<td>Ref (mV/m)</td>
<td>Vpp (mV/m)</td>
<td>Vpp (mV/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1580.121M</td>
<td>11.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.6</td>
<td>14.0</td>
<td>-5.4</td>
<td>Vert</td>
</tr>
<tr>
<td>29</td>
<td>1580.179M</td>
<td>11.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.6</td>
<td>14.0</td>
<td>-5.4</td>
<td>Vert</td>
</tr>
<tr>
<td>30</td>
<td>1580.236M</td>
<td>11.4</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>8.6</td>
<td>14.0</td>
<td>-5.4</td>
<td>Vert</td>
</tr>
</tbody>
</table>

C&K Laboratories, Inc. Date: 2/24/2005 Time: 3:41:11 PM Stanford Linear Accelerator Center WO#: 82840
RE102 10KHz-18GHz Test Distance: 1 Meter Sequence#: 32
Copper tape on top, right and left side of the JST connector.

![Graph](image)

- Sweep Data
- 1 - RE102 10KHz-18GHz
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Test Type: Radiated Scan
Date: 2/24/2005
Time: 3:57:54 PM
Test Conditions / Notes:
UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56". Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:
T1=AMP AN00941A 50GHz
T3=ANP05200 1-40GHz
T2=Horn Antenna 4660 (Fremont)
T4=ANP5201 1-40GHz

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S/N</th>
<th>Property Tag: GLAT0404</th>
<th>69557-492-6014557-20350</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TH-04N454-37171-399-5494</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN-05Y232-71616-41R-B363</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HXNLB41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S240500299</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment Under Test (* = UUT):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>TEM/TPS*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading listed by margin.</td>
</tr>
<tr>
<td>Test Distance: 1 Meter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Freq MHz</th>
<th>Rdn</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1600.000M</td>
<td>14.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>11.4</td>
<td>14.0</td>
<td>-2.6</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1597.442M</td>
<td>11.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>8.7</td>
<td>14.0</td>
<td>-5.3</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1599.957M</td>
<td>8.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>6.1</td>
<td>14.0</td>
<td>-7.9</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1599.813M</td>
<td>8.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>5.5</td>
<td>14.0</td>
<td>-8.5</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1599.919M</td>
<td>7.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>4.7</td>
<td>14.0</td>
<td>-9.3</td>
<td>Vert</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>1599.951M</td>
<td>7.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.7</td>
<td>14.0</td>
<td>-9.3</td>
<td>Vert</td>
</tr>
<tr>
<td>7</td>
<td>1599.869M</td>
<td>7.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.6</td>
<td>14.0</td>
<td>-9.4</td>
<td>Vert</td>
</tr>
<tr>
<td>8</td>
<td>1599.944M</td>
<td>7.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.5</td>
<td>14.0</td>
<td>-9.5</td>
<td>Vert</td>
</tr>
<tr>
<td>9</td>
<td>1599.883M</td>
<td>7.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.4</td>
<td>14.0</td>
<td>-9.6</td>
<td>Vert</td>
</tr>
<tr>
<td>10</td>
<td>1599.883M</td>
<td>7.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.3</td>
<td>14.0</td>
<td>-9.7</td>
<td>Vert</td>
</tr>
<tr>
<td>11</td>
<td>1599.914M</td>
<td>7.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.3</td>
<td>14.0</td>
<td>-9.7</td>
<td>Vert</td>
</tr>
<tr>
<td>12</td>
<td>1589.261M</td>
<td>7.0</td>
<td>-30.3</td>
<td>+25.5</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.2</td>
<td>14.0</td>
<td>-9.8</td>
<td>Vert</td>
</tr>
<tr>
<td>13</td>
<td>1599.937M</td>
<td>6.9</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.2</td>
<td>14.0</td>
<td>-9.8</td>
<td>Vert</td>
</tr>
<tr>
<td>14</td>
<td>1599.832M</td>
<td>6.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.1</td>
<td>14.0</td>
<td>-9.9</td>
<td>Vert</td>
</tr>
<tr>
<td>15</td>
<td>1599.969M</td>
<td>6.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.1</td>
<td>14.0</td>
<td>-9.9</td>
<td>Vert</td>
</tr>
<tr>
<td>16</td>
<td>1599.976M</td>
<td>6.8</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.1</td>
<td>14.0</td>
<td>-9.9</td>
<td>Vert</td>
</tr>
<tr>
<td>17</td>
<td>1599.666M</td>
<td>6.7</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>4.0</td>
<td>14.0</td>
<td>-10.0</td>
<td>Vert</td>
</tr>
<tr>
<td>18</td>
<td>1599.923M</td>
<td>6.5</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.8</td>
<td>14.0</td>
<td>-10.2</td>
<td>Vert</td>
</tr>
<tr>
<td>19</td>
<td>1599.860M</td>
<td>6.4</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.7</td>
<td>14.0</td>
<td>-10.3</td>
<td>Vert</td>
</tr>
<tr>
<td>20</td>
<td>1599.897M</td>
<td>6.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.6</td>
<td>14.0</td>
<td>-10.4</td>
<td>Vert</td>
</tr>
<tr>
<td>21</td>
<td>1599.972M</td>
<td>6.3</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.6</td>
<td>14.0</td>
<td>-10.4</td>
<td>Vert</td>
</tr>
<tr>
<td>22</td>
<td>1599.857M</td>
<td>6.2</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.5</td>
<td>14.0</td>
<td>-10.5</td>
<td>Vert</td>
</tr>
<tr>
<td>23</td>
<td>1599.769M</td>
<td>6.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.4</td>
<td>14.0</td>
<td>-10.6</td>
<td>Vert</td>
</tr>
<tr>
<td>24</td>
<td>1599.901M</td>
<td>6.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.4</td>
<td>14.0</td>
<td>-10.6</td>
<td>Vert</td>
</tr>
<tr>
<td>25</td>
<td>1599.905M</td>
<td>6.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.4</td>
<td>14.0</td>
<td>-10.6</td>
<td>Vert</td>
</tr>
<tr>
<td>26</td>
<td>1599.945M</td>
<td>6.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.4</td>
<td>14.0</td>
<td>-10.6</td>
<td>Vert</td>
</tr>
<tr>
<td>27</td>
<td>1599.947M</td>
<td>6.1</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.4</td>
<td>14.0</td>
<td>-10.6</td>
<td>Vert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1599.998M</td>
<td>6.0</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.3</td>
<td>14.0</td>
<td>-10.7</td>
<td>Vert</td>
</tr>
<tr>
<td>29</td>
<td>1599.949M</td>
<td>5.9</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.2</td>
<td>14.0</td>
<td>-10.8</td>
<td>Vert</td>
</tr>
<tr>
<td>30</td>
<td>1599.968M</td>
<td>5.9</td>
<td>-30.3</td>
<td>+25.6</td>
<td>+1.0</td>
<td>+1.0</td>
<td>+0.0</td>
<td>3.2</td>
<td>14.0</td>
<td>-10.8</td>
<td>Vert</td>
</tr>
</tbody>
</table>
Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Stanford Linear Accelerator Center
Specification: RE102 10KHz-18GHz
Work Order #: 82840
Date: 2/25/2005
Test Type: Radiated Scan
Time: 9:49:15 AM
Equipment: TEM/TPS
Sequence #: 34
Manufacturer: Stanford Linear Accelerator Center
Tested By: A. Brar
Model: TEM/TPS
S/N: GLA1754

Equipment Under Test (UUT):

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM/TPS*</td>
<td>Stanford Linear Accelerator Center</td>
<td>TEM/TPS</td>
<td>GLA1754</td>
</tr>
</tbody>
</table>

Support Devices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME Processor</td>
<td>DAWN VME</td>
<td>Not Listed</td>
<td>Property Tag: GLAT0404</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dell</td>
<td>P/N X09-13962</td>
<td>69557-492-6014557-20350</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Dell</td>
<td>RT7D20</td>
<td>TH-04N454-37171-399-5494</td>
</tr>
<tr>
<td>Monitor</td>
<td>Dell</td>
<td>1901FP</td>
<td>CN-05Y232-71616-41R-B363</td>
</tr>
<tr>
<td>PC</td>
<td>Dell</td>
<td>DHM</td>
<td>HXNLB41</td>
</tr>
<tr>
<td>Power Supply</td>
<td>BK Precision</td>
<td>1697</td>
<td>S240500299</td>
</tr>
</tbody>
</table>

Test Conditions / Notes:

UUT is grounded to the copper table. UUT is running the FuncTest.py. Power cable is running along the front side of the table to the 10uF feed through caps and from there to the equipment outside of the chamber. I/O cable is routed along the power cable, 2cms from the power cable. Exposed cable lengths on the test table at 56”. Copper tape on top, right and left side of the JS1 connector.

Transducer Legend:

T1	AN 01579	Rod Antenna
T2	20’ Cable Male N to Male N AN None	
T3	Cable 2410	

Measurement Data:

<table>
<thead>
<tr>
<th>#</th>
<th>Freq</th>
<th>Rdng</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Dist</th>
<th>Corr</th>
<th>Spec</th>
<th>Margin</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>dBµV</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
<td>dBµV/m</td>
<td>µV/m</td>
<td>dBµV/m</td>
<td>dB</td>
<td>Ant</td>
</tr>
<tr>
<td>1</td>
<td>19.998M</td>
<td>30.3</td>
<td>+8.1</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>38.9</td>
<td>64.0</td>
<td>-25.1</td>
<td>Rod A</td>
</tr>
<tr>
<td>2</td>
<td>27.518M</td>
<td>16.9</td>
<td>+10.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>27.6</td>
<td>64.0</td>
<td>-36.4</td>
<td>Rod A</td>
</tr>
<tr>
<td>3</td>
<td>1.168M</td>
<td>26.6</td>
<td>+4.2</td>
<td>+0.0</td>
<td>+0.1</td>
<td>+0.0</td>
<td>30.9</td>
<td>67.7</td>
<td>-36.8</td>
<td>Rod A</td>
</tr>
<tr>
<td>4</td>
<td>29.761M</td>
<td>15.6</td>
<td>+10.8</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>26.9</td>
<td>64.0</td>
<td>-37.1</td>
<td>Rod A</td>
</tr>
<tr>
<td>5</td>
<td>28.516M</td>
<td>15.8</td>
<td>+10.5</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>26.8</td>
<td>64.0</td>
<td>-37.2</td>
<td>Rod A</td>
</tr>
</tbody>
</table>

Page 182 of 224
Report No.: MIL05-015
<table>
<thead>
<tr>
<th></th>
<th>RPM</th>
<th>MAF</th>
<th>AFE</th>
<th>AFE</th>
<th>TPS</th>
<th>AFR</th>
<th>Rod</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>29.138M</td>
<td>15.6</td>
<td>+10.6</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>26.7</td>
</tr>
<tr>
<td>7</td>
<td>29.968M</td>
<td>15.3</td>
<td>+10.9</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>26.7</td>
</tr>
<tr>
<td>8</td>
<td>27.023M</td>
<td>15.6</td>
<td>+10.1</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>26.2</td>
</tr>
<tr>
<td>9</td>
<td>29.864M</td>
<td>14.6</td>
<td>+10.9</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>26.0</td>
</tr>
<tr>
<td>10</td>
<td>29.912M</td>
<td>14.4</td>
<td>+10.9</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.8</td>
</tr>
<tr>
<td>11</td>
<td>28.149M</td>
<td>14.9</td>
<td>+10.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.7</td>
</tr>
<tr>
<td>12</td>
<td>29.441M</td>
<td>14.5</td>
<td>+10.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.7</td>
</tr>
<tr>
<td>13</td>
<td>29.808M</td>
<td>14.4</td>
<td>+10.8</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.7</td>
</tr>
<tr>
<td>14</td>
<td>27.893M</td>
<td>14.8</td>
<td>+10.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.6</td>
</tr>
<tr>
<td>15</td>
<td>29.505M</td>
<td>14.3</td>
<td>+10.8</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.6</td>
</tr>
<tr>
<td>16</td>
<td>29.657M</td>
<td>14.2</td>
<td>+10.8</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.5</td>
</tr>
<tr>
<td>17</td>
<td>27.271M</td>
<td>14.7</td>
<td>+10.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.4</td>
</tr>
<tr>
<td>18</td>
<td>28.771M</td>
<td>14.4</td>
<td>+10.5</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.4</td>
</tr>
<tr>
<td>19</td>
<td>29.601M</td>
<td>13.9</td>
<td>+10.8</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.2</td>
</tr>
<tr>
<td>20</td>
<td>29.705M</td>
<td>13.9</td>
<td>+10.8</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.2</td>
</tr>
<tr>
<td>21</td>
<td>28.412M</td>
<td>14.1</td>
<td>+10.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>25.0</td>
</tr>
<tr>
<td>22</td>
<td>28.205M</td>
<td>13.8</td>
<td>+10.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.7</td>
</tr>
<tr>
<td>23</td>
<td>29.402M</td>
<td>13.5</td>
<td>+10.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.7</td>
</tr>
<tr>
<td>24</td>
<td>29.553M</td>
<td>13.4</td>
<td>+10.8</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.7</td>
</tr>
<tr>
<td>25</td>
<td>28.260M</td>
<td>13.7</td>
<td>+10.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.6</td>
</tr>
<tr>
<td>26</td>
<td>28.827M</td>
<td>13.6</td>
<td>+10.5</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.6</td>
</tr>
<tr>
<td>27</td>
<td>28.875M</td>
<td>13.5</td>
<td>+10.6</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>28</td>
<td>27.845M</td>
<td>13.6</td>
<td>+10.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.4</td>
</tr>
<tr>
<td>29</td>
<td>27.949M</td>
<td>13.6</td>
<td>+10.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.4</td>
</tr>
<tr>
<td>30</td>
<td>28.300M</td>
<td>13.5</td>
<td>+10.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.4</td>
</tr>
<tr>
<td>31</td>
<td>28.356M</td>
<td>13.5</td>
<td>+10.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.4</td>
</tr>
<tr>
<td>32</td>
<td>28.572M</td>
<td>13.3</td>
<td>+10.5</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.3</td>
</tr>
<tr>
<td>33</td>
<td>28.619M</td>
<td>13.3</td>
<td>+10.5</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.3</td>
</tr>
<tr>
<td>34</td>
<td>28.667M</td>
<td>13.3</td>
<td>+10.5</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.3</td>
</tr>
<tr>
<td>35</td>
<td>28.987M</td>
<td>13.2</td>
<td>+10.6</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.3</td>
</tr>
<tr>
<td>36</td>
<td>29.242M</td>
<td>13.1</td>
<td>+10.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.3</td>
</tr>
<tr>
<td>37</td>
<td>29.186M</td>
<td>13.0</td>
<td>+10.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.2</td>
</tr>
<tr>
<td>38</td>
<td>20.168M</td>
<td>15.4</td>
<td>+8.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.1</td>
</tr>
<tr>
<td>39</td>
<td>27.582M</td>
<td>13.4</td>
<td>+10.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.1</td>
</tr>
<tr>
<td>40</td>
<td>29.338M</td>
<td>12.9</td>
<td>+10.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.1</td>
</tr>
<tr>
<td>41</td>
<td>28.931M</td>
<td>12.9</td>
<td>+10.6</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.0</td>
</tr>
<tr>
<td>42</td>
<td>29.026M</td>
<td>12.9</td>
<td>+10.6</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>24.0</td>
</tr>
<tr>
<td>43</td>
<td>28.468M</td>
<td>13.0</td>
<td>+10.4</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>23.9</td>
</tr>
<tr>
<td>44</td>
<td>27.151M</td>
<td>13.2</td>
<td>+10.1</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>23.8</td>
</tr>
<tr>
<td>45</td>
<td>27.638M</td>
<td>13.1</td>
<td>+10.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>23.8</td>
</tr>
<tr>
<td>46</td>
<td>27.686M</td>
<td>13.1</td>
<td>+10.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>23.8</td>
</tr>
<tr>
<td>47</td>
<td>27.734M</td>
<td>13.1</td>
<td>+10.2</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>48</td>
<td>27.790M</td>
<td>13.0</td>
<td>+10.3</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>23.8</td>
</tr>
<tr>
<td>49</td>
<td>29.090M</td>
<td>12.7</td>
<td>+10.6</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>23.8</td>
</tr>
<tr>
<td>50</td>
<td>29.298M</td>
<td>12.5</td>
<td>+10.7</td>
<td>+0.2</td>
<td>+0.3</td>
<td>+0.0</td>
<td>23.7</td>
</tr>
</tbody>
</table>

CKC Laboratories, Inc. Date: 2/25/2005 Time: 9:43:15 AM Stanford Linear Accelerator Center W/O # 82840 RE102 10KHz-18GHz Test Distance: 1 Meter Sequence #: 34

![Graph](Image)
CS06- Conducted Susceptibility, Spikes on Power Leads

Test Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>Serial #</th>
<th>Asset #</th>
<th>Cal Date</th>
<th>Cal Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient Pulse Generator</td>
<td>Solar</td>
<td>8282-1</td>
<td>881811</td>
<td>00366</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>HP</td>
<td>54615B</td>
<td>US35420829</td>
<td>00697</td>
<td>8/29/03</td>
<td>8/29/05</td>
</tr>
<tr>
<td>5 Ohms Resistor</td>
<td>Solar</td>
<td>TYPE 7144-5.0</td>
<td>CKC#1 00141</td>
<td>CNR</td>
<td>01739</td>
<td>6/2/03</td>
</tr>
<tr>
<td>10uF Capacitor</td>
<td>Solar</td>
<td>6512-106R</td>
<td>01737</td>
<td>01737</td>
<td>6/2/03</td>
<td>6/2/05</td>
</tr>
</tbody>
</table>

CNR = Calibration not required.

Test Procedure

Calibration: The test Engineer connected the source’s output across a 5 ohm load and connected an oscilloscope across the load. The output level was increased until 12Vp was displayed on the Oscilloscope and the output level was recorded. Plots were captured to show the pulse time and amplitude.

Test: Test Engineer connected the output of the source to the 28VDC Line and 28VDC Return within 5cm of the UUT. The Oscilloscope was also connected across the 28VDC Line and 28V DC Return. The source was powered on with the output set to calibration level and spikes were injected into the power line of the UUT. The test was performed for 5 minutes in positive polarity and then for 5 minutes in negative polarity.
10 pps

Negative Pulse
Positive Pulse

Time duration and Amplitude
CS102 - Conducted Susceptibility, Power Leads, 10kHz to 10MHz

Test Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>Serial #</th>
<th>Asset #</th>
<th>Cal Date</th>
<th>Cal Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillator</td>
<td>General Radio</td>
<td>1310-B</td>
<td>4004</td>
<td>01730</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Power Amplifier</td>
<td>Techron</td>
<td>7570</td>
<td>8059</td>
<td>054333</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>HP</td>
<td>54615B</td>
<td>US354208</td>
<td>00697</td>
<td>8/29/03</td>
<td>8/29/05</td>
</tr>
<tr>
<td>Transformer</td>
<td>Solar Electronics</td>
<td>6220-1A</td>
<td>00481</td>
<td>---</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>AMP</td>
<td>Techron</td>
<td>7570</td>
<td>054333</td>
<td>2546</td>
<td>4/7/03</td>
<td>4/7/05</td>
</tr>
<tr>
<td>Coupling Transformer</td>
<td>Solar</td>
<td>6220-1A</td>
<td>None</td>
<td>481</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>RF Coupler</td>
<td>Solar</td>
<td>7415-3</td>
<td>925134</td>
<td>00620</td>
<td>1/27/03</td>
<td>1/24/05</td>
</tr>
<tr>
<td>Oscillator</td>
<td>General Radio</td>
<td>1310-B</td>
<td>925134</td>
<td>1703</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>50 ohms Load</td>
<td>Bird Electronics</td>
<td>8134</td>
<td>01453</td>
<td>25632</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Resistor</td>
<td>NTE</td>
<td>.5Ohm</td>
<td>None</td>
<td>None</td>
<td>Measured before use</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Werlatone</td>
<td>C2630</td>
<td>3804</td>
<td>0744</td>
<td>10/16/03</td>
<td>10/16/05</td>
</tr>
<tr>
<td>Signal Generator</td>
<td>Marconi</td>
<td>2022D</td>
<td>119229/01</td>
<td>00687</td>
<td>9/16/03</td>
<td>9/16/05</td>
</tr>
<tr>
<td>AMP</td>
<td>AR</td>
<td>150A100A</td>
<td>18240</td>
<td>1211</td>
<td>CNR</td>
<td></td>
</tr>
</tbody>
</table>

CNR = Calibration not required.

Test Procedure

10-150kHz: Calibration: The Oscillator’s output was connected to input of the Techron DC amplifier. The amplifier’s output was connected to the primary side of the Audio Isolation Transformer. A .5 ohm resistor was connected across the secondary side of the Audio Isolation Transformer. The Oscillator was set to 10kHz and the amplitude was brought up until the spectrum analyzer showed voltage corresponding to the calibration limit. Then Test Engineer swept though the range of 10-150kHz and recorded the necessary output levels to obtain the power limit.

10-150kHz test: The Audio Isolation Transformer was connected in series with the DC power line. A 10uF capacitor was connected across 28VDC Line and 28VDC Return. The Current measurement probe was clamped over the 28VDC Line between the UUT and the Audio Isolation Transformer. The current measurement probe was connected to the Spectrum Analyzer. The test Engineer set the frequency to 10kHz and increased the levels until the required voltage or the power limit was reached and swept though the frequency range of 10-150kHz.
150kHz-10MHz Calibration: The Signal Generator’s output was connected to the input of the amplifier. The amplifier’s output was connected to a RF coupler, which had 50 ohms load across the output. A current measurement probe was clamped around the lead going from the output of the RF coupler to the 50 ohms load. The Signal Generator was set to 150kHz and the amplitude was brought up until the spectrum analyzer indicated the voltage corresponding to the calibration limit. The test Engineer swept though the range of 10 – 150kHz and recorded the necessary output levels to obtain the power limit.

150kHz - 10MHz test: The RF coupler’s output was connected to 28VDC power Line, 5cm from the UUT. The Current measurement probe was clamped over the 28VDC Line between the UUT and the RF coupler. The current measurement probe was connected to the Spectrum Analyzer. The test Engineer set the frequency to 150kHz increasing the levels until the required voltage on the Spectrum Analyzer was indicated or the power limit was reached. Then the entire frequency range of 150kHz - 10MHz was swept.
CS02 Calibration

CS02 Closeup
CS02 Test Equipment

CS102 Pre-Cal 10 - 150kHz
CS102 Pre-Cal 10 - 150kHz Closeup

CS102 Calibration
CS102 Calibration

CS102 Overall View of Test Setup
CS102 10 - 150kHz Test Setup

CS102 Closeup
CS102 Test Equipment Closeup
CSCM- Conducted Susceptibility, Common Mode, 30Hz to 150MHz

Test Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>Serial #</th>
<th>Asset #</th>
<th>Cal Date</th>
<th>Cal Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscilloscope</td>
<td>HP</td>
<td>54615B</td>
<td>US35420829</td>
<td>697</td>
<td>8/29/03</td>
<td>8/29/05</td>
</tr>
<tr>
<td>10uF Capacitor</td>
<td>Solar</td>
<td>6512-106R</td>
<td>None</td>
<td>01740</td>
<td>6/2/03</td>
<td>6/2/05</td>
</tr>
<tr>
<td>AMP</td>
<td>Techron</td>
<td>757012</td>
<td>054333</td>
<td>2546</td>
<td>4/7/03</td>
<td>4/7/05</td>
</tr>
<tr>
<td>Coupling Transformer</td>
<td>Solar</td>
<td>6220-1A</td>
<td>None</td>
<td>481</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>RF Coupler</td>
<td>Solar</td>
<td>7415-3</td>
<td>925134</td>
<td>00620</td>
<td>1/27/03</td>
<td>1/24/05</td>
</tr>
<tr>
<td>Oscillator</td>
<td>General Radio</td>
<td>1310-B</td>
<td>None</td>
<td>1703</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Arbitrary Waveform Generator</td>
<td>HP</td>
<td>33120A</td>
<td>US36037746</td>
<td>02561</td>
<td>10/16/04</td>
<td>10/16/06</td>
</tr>
<tr>
<td>50 ohms Load Resistor</td>
<td>Bird Electronics</td>
<td>8134</td>
<td>01453</td>
<td>25632</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Resistor</td>
<td>NTE</td>
<td>.5Ohm</td>
<td>None</td>
<td>None</td>
<td>Measured before use</td>
<td></td>
</tr>
<tr>
<td>Signal Generator</td>
<td>Marconi</td>
<td>2022D</td>
<td>119229/016</td>
<td>00687</td>
<td>9/16/03</td>
<td>9/16/05</td>
</tr>
<tr>
<td>AMP</td>
<td>AR</td>
<td>150A100A</td>
<td>18240</td>
<td>1211</td>
<td>CNR</td>
<td></td>
</tr>
</tbody>
</table>

CNR = Calibration not required.

Test Procedure 30Hz to 150kHz

A 0.5Ω load was placed across the secondary windings of the audio isolation transformer. The function generator was connected to the amplifier and the output of the sweep generator was connected across the primary of the audio isolation transformer. The generator's output was increased until 80 Watts were obtained. The test engineer recorded the drive levels while manually sweeping through the frequency range. The generator output was adjusted as necessary to maintain the required power level into the 0.5Ω load.

The Input Power was connected from a 10μF RF capacitor mounted on the EMI ground plane to one side of the secondary winding of the audio isolation transformer. The other side of the secondary winding was connected to the UUT. A 500MHz digital oscilloscope was connected across the +28VDC Return Lead referenced to the ground plane and configured for AC coupling. The generator's output was increased until the necessary voltage level as specified in MIL-STD 461E Figure CS101-1 was achieved, while ensuring the 80 Watt calibration drive levels were not exceeded. The test engineer manually swept through the frequency range from 30Hz to 150kHz adjusting the output voltage as necessary to maintain the test levels. The functionality of the unit was monitored throughout the sweep.
Test Procedure 150kHz – 150MHz

Calibration Signal Generator’s output was connected to input of the amplifier. The amplifier’s output was connected to RF coupler, which had 50 ohms load across the output. The Oscilloscope was connected across the 50 ohms load to measure the voltage to obtain the 1 watt power limit. The Signal Generator was set to 150kHz and the amplitude was brought up until the Oscilloscope indicated the necessary voltage to obtain 1 watt. The test Engineer swept though the range of 150kHz to 150MHz and recorded the necessary output levels to obtain the power limit.

Test The RF coupler’s output was connected to 28VDC Power Line, within 5cm from the UUT. The Oscilloscope was connected from 28VDC line to Ground between the UUT and the RF coupler. The test Engineer set the frequency to 150KHz and increased the output level until 400mVpp was reached or the power limit was reached and swept though the range of 150kHz to 150MHz.

CSCM Calibration
CSCM Calibration Equipment

CSCM Calibration Closeup
CSCM Calibration Closeup #2

CSCM Test Equipment
CSCM Test Setup

CSCM Test Setup Closeup
RS101 - Radiated Susceptibility, Magnetic Field, 30Hz to 100kHz

Test Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>Serial #</th>
<th>Asset #</th>
<th>Cal Date</th>
<th>Cal Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Probe</td>
<td>Fischer</td>
<td>F-304</td>
<td>19</td>
<td>01573</td>
<td>8/20/03</td>
<td>8/20/05</td>
</tr>
<tr>
<td>RF Probe</td>
<td>Fischer</td>
<td>F-305</td>
<td>19</td>
<td>01574</td>
<td>8/20/03</td>
<td>8/20/05</td>
</tr>
<tr>
<td>SA – Display</td>
<td>HP</td>
<td>8568A</td>
<td>2237A04350</td>
<td>00446</td>
<td>10/25/04</td>
<td>10/25/06</td>
</tr>
<tr>
<td>SA – RF</td>
<td>HP</td>
<td>8568A</td>
<td>2235A02391</td>
<td>00447</td>
<td>10/25/04</td>
<td>10/25/06</td>
</tr>
<tr>
<td>SA</td>
<td>Agilent</td>
<td>E4446A</td>
<td>US44300408</td>
<td>02668</td>
<td>1/13/05</td>
<td>1/13/07</td>
</tr>
<tr>
<td>Arbitrary Waveform Generator</td>
<td>HP</td>
<td>33120A</td>
<td>US36037746</td>
<td>02561</td>
<td>10/16/04</td>
<td>10/16/06</td>
</tr>
<tr>
<td>Power Amplifier</td>
<td>Techron</td>
<td>7570</td>
<td>8059054333</td>
<td>02546</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Current Probe</td>
<td>Fischer</td>
<td>F-10</td>
<td>37</td>
<td>02142</td>
<td>4/23/03</td>
<td>4/23/05</td>
</tr>
</tbody>
</table>

Calibration not required.

Test Procedure

A calibration of the test setup was performed per the method specified in MIL-STD 461E Paragraph 5.18.3.4.

The function generator was connected to the amplifier and the output of the amplifier was connected to the transmit loop. A digital multimeter was placed in line between the amplifier and the transmit loop to monitor the current applied to the loop. For testing from 30Hz to 200Hz, the input to the transmit loop was set at 15Amps. The transmit loop was placed 5cm from the front face of the UUT. The test engineer manually increased the frequency from 30Hz to 200Hz while he maintained the 15Amp input current. Testing was repeated on the back, right side, left side, bottom and top faces of the UUT.

At 100Hz, the transmit loop was placed 5cm from the reference loop antenna. The reference loop was connected to the spectrum analyzer. The current applied to the transmitting loop was increased until the resulting magnetic field was 6dB above the required level. The test levels and corresponding input currents were verified throughout the frequency range from 100Hz to 100kHz. The transmit loop was then placed 5cm from the front of the UUT and the input currents obtained during the calibration were applied to the loop. A full sweep was performed from 200Hz to 100kHz. Testing was repeated on the remaining faces of the UUT. The functionality of the UUT was monitored throughout the testing.
Radiated Susceptibility Calibration

Radiated Susceptibility Test Setup
Radiated Susceptibility Test Equipment
RS103 - Radiated Susceptibility, Electric Field, 10kHz to 18GHz

Test Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>Serial #</th>
<th>Asset #</th>
<th>Cal Date</th>
<th>Cal Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Generator</td>
<td>Marconi</td>
<td>2022D</td>
<td>119229/016</td>
<td>00687</td>
<td>9/16/03</td>
<td>9/16/05</td>
</tr>
<tr>
<td>Signal Generator</td>
<td>HP</td>
<td>8673C</td>
<td>2447A00198</td>
<td>02547</td>
<td>8/8/04</td>
<td>8/8/06</td>
</tr>
<tr>
<td>Function Generator</td>
<td>BK Precision</td>
<td>4011</td>
<td>9902 0294</td>
<td>02237</td>
<td>4/8/03</td>
<td>4/8/05</td>
</tr>
<tr>
<td>Amplifier</td>
<td>AR</td>
<td>30W1000M7</td>
<td>18691</td>
<td>01209</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Amplifier</td>
<td>AR</td>
<td>10S1G4A</td>
<td>24375</td>
<td>02160</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>TWT Amplifier</td>
<td>Hughes</td>
<td>1277H002F000</td>
<td>177</td>
<td>01461</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>TWT Amplifier</td>
<td>Hughes</td>
<td>8010H</td>
<td>150</td>
<td>---</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>HP</td>
<td>54615B</td>
<td>US35420829</td>
<td>00697</td>
<td>8/29/03</td>
<td>8/29/05</td>
</tr>
<tr>
<td>Biconical Antenna</td>
<td>Ailtech</td>
<td>94455-1</td>
<td>0968</td>
<td>00382</td>
<td>1/5/05</td>
<td>1/5/07</td>
</tr>
<tr>
<td>DRG Antenna</td>
<td>EMCO</td>
<td>3115</td>
<td>9602-4660</td>
<td>02113</td>
<td>2/24/03</td>
<td>2/24/05</td>
</tr>
<tr>
<td>Standard Gain Horn</td>
<td>None</td>
<td>900MHz – 2GHz</td>
<td>19</td>
<td>02632</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Field Monitor</td>
<td>AR</td>
<td>FM 2000</td>
<td>18327</td>
<td>00951A</td>
<td>CNR</td>
<td></td>
</tr>
<tr>
<td>Field Probe</td>
<td>AR</td>
<td>FP 2000</td>
<td>18676</td>
<td>01207</td>
<td>11/12/03</td>
<td>11/12/05</td>
</tr>
<tr>
<td>Field Probe</td>
<td>AR</td>
<td>FP 2080</td>
<td>24792</td>
<td>00870</td>
<td>6/25/04</td>
<td>6/25/06</td>
</tr>
</tbody>
</table>

Calibration not required.

Test Procedure

RS103 Test Levels and polarities:
30MHz to 18GHz – 1 V/M vertical and horizontal polarities.

The output of the signal generator was connected to the amplifier. The amplifier was connected to the E/H Field antenna. The antenna was brought in and placed in front of the UUT in vertical polarization. The field probe was placed next to the UUT 30cm above the ground plane.

RS103 Test Sweep:
The field probe was located in front of the Tx antenna, 1kHz squarewave modulation was applied to the threat signal with a 40dB On/Off ratio and a sweep was performed. The field strength values were recorded at each frequency in the sweep from 30MHz to 18GHz at 1V/m. The functionality of the UUT was monitored throughout the sweep.
Antenna Polarities:
For all testing, two transmit antenna polarities were used, Vertical and Horizontal. The antenna was set to horizontal polarity and the test was performed, and then the antenna was set to vertical polarity and the test was performed. There were 4 antennas used; 30-200MHz, 200-1000MHz, 1-2GHz and 2-18GHz.

30 to 200MHz Testing:
The bi-conical antenna was brought in and placed 1 meter from the UUT. The sweep was performed using a 1kHz squarewave modulation. The field probe was used to measure the field strength. The UUT was monitored throughout the testing for any signs of degradation. The antenna was rotated to the vertical polarization and the sweep was repeated.

200 to 1000MHz Testing:
The DRG antenna was brought in and placed 1 meter away from the UUT. The sweep was performed using a 1kHz squarewave modulation. The field probe was used to measure the field strength. The UUT was monitored throughout the testing for any signs of degradation. The antenna was rotated to the vertical polarization and the sweep was repeated.

1 to 2GHz Testing:
The high frequency amplifier and signal generator were then added to the test setup. The horn antenna was placed 1 meter from the UUT in horizontal polarization. The field probe was placed in front of the antenna. The sweep was performed using a 1kHz squarewave modulation. The field probe was used to measure the field strength. The UUT was monitored throughout the testing for any signs of degradation. The antenna was rotated to the vertical polarization and the sweep was repeated.

2 to 18GHz Testing:
The DRG antenna was brought in and placed 1 meter from the UUT in horizontal polarization. The field probe was placed in front of the antenna. The sweep was performed using a 1kHz squarewave modulation. The field probe was used to measure the field strength. The UUT was monitored throughout the testing for any signs of degradation. The antenna was rotated to the vertical polarization and the sweep was repeated.
Bicon Antenna, 30 - 200MHz Horizontal Polarization Test Setup

Bicon Antenna, 30 - 200MHz Vertical Polarization Test Setup
Horn Antenna, 200 - 1000MHz Horizontal Polarization Test Setup

Horn Antenna, 200 - 1000MHz Vertical Polarization Test Setup
Horn Antenna, 1 - 2GHz Horizontal Polarization Test Setup

Horn Antenna, 1 - 18GHz Vertical Polarization Test Setup
RS103 Measured Field Strength
Horizontal Polarity, 4 - 18GHz

RS103 Measured Field Strength
Vertical Polarity, 4 - 18GHz
<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/21/2005</td>
<td>C. Nicklas</td>
<td>0800</td>
<td>Dave Nelson of SLAC arrives with the support equipment and a “Golden” unit to verify operation. The UUT was delivered Friday afternoon.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0900</td>
<td>Dave is setting up the “Golden” unit with the test cables and support equipment to ensure the support equipment and test cables are working properly. The power from the test cables is not yet connected through the 10uF capacitors to be used for testing. Once the support equipment and test cables have been verified, the power will be routed through the 10uF capacitors and using the “Golden” unit, the cables and support will be verified again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0950</td>
<td>Support equipment is having software problems. Going to get the UUT properly set-up while Dave is waiting for a call-back from SLAC on the software. The software is needed for emissions testing as well as immunity testing. The longest cable length in the platform is 51 inches, so we will expose 51 inches along the front edge of the table. The remainder will be serpentined along the back edge of the table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1020</td>
<td>Setup complete except for serpentine of excess cable. Puts too much stress on the power connections so going to wait until Dave is complete with his discussions on the software issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1050</td>
<td>Break for lunch as I have an early Dr.’s appointment. The support is still not talking to the system. Dave is having an engineer from SLAC come here with different parts to troubleshoot the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1215</td>
<td>Back from lunch. The SLAC engineer has not yet arrived so Dave and I are going over red-lines to the test procedure from his customer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240</td>
<td>The engineer from SLAC has arrived and Dave and Philip are troubleshooting the system. One of the cables was bad. The system is now working properly. Re-dressed the new cable and removed the old cable. Had Dave power down the system to untangle the power connections at the 10uF capacitors. The way the cables were twisted, there was too much strain on the power leads.</td>
</tr>
<tr>
<td>Time</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1305</td>
<td>Dave is re-powering up the “Golden” unit and verifying the software and support is working properly and verifying the voltages for all the voltage outputs are correct. Once that is done, Dave can remove the “Golden” unit and put the test article (UUT) in its place. We also need to strip the nylon covering from the shielded cables to ground the shields as they go through the access panel and shield over the access panel with aluminum foil.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1325</td>
<td>There are problems with the system again. Dave is calling back to SLAC to discuss and troubleshoot the issue. The software program he is running spits out errors. The error count is too high to even tell is the system is running. The other program he could run sends resets to the power supply and keeps turning the system off. Somebody from SLAC is working on fixing this problem and hopefully will have it working for tomorrow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1345</td>
<td>As the software is down, we are finishing the cables and room shield by removing the plastic mesh that is on top of the braid so we can ground it to the chamber wall and also cover the access panel opening with aluminum foil to shield the aperture.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1430</td>
<td>The shields of the cables have been grounded to the chamber wall with copper tape and the aperture has been shielded over with aluminum foil. Now waiting on the software engineer to arrive. He is slated to arrive between 1530 and 1600. While waiting for the software, we are continuing to go over the Red-lines to the document. All red-lines are complete except for the paragraph in each susceptibility test about testing each of the 7 voltage outputs separately. As doing this would add 24+ days to the testing, SLAC personnel are attempting to obtain more voltage meters to monitor either all 7 at once (preferred) or monitor 4 at one time and only have to do the testing twice. Will modify these sections once it is known exactly is to be done.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>The software has emailed a new software program. Dave has installed this new software and the errors are gone. He has verified the “Golden” system is correct and now is going to switch in the test article (UUT).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1620</td>
<td>When getting out the UUT, there were no connector protectors installed. These are needed before EMI testing can be started. The purpose of these connector protectors is to limit the connections to the connector on the UUT and to instead connect to the connector protector which is “disposable” at its end of life. We will continue tomorrow morning once Dave arrives with the connector protectors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>Testing complete.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/22/2005</td>
<td>A. Brar 800 Waiting for customer to arrive.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0830</td>
<td>Christine mentions that he will arrive sometime this morning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>Customer arrives from SLAC. We are continuing with CE102 pre-cal. All testing is to be per test procedure prepared by Chuck Kendall. TP# TP05-82840-0 under WO# 82840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>Fred arrives from SLAC. The procedure isn’t very accurate for CE102 pre-cal we will need to alter it. Measurement made with milliohm meter came out to be less than 1/0th of a milliohm from the UUT to copper table and from the copper table to the chamber wall.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1223</td>
<td>Lunch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1310</td>
<td>Back from lunch. Continuing with pre-cal sweeps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE102 PRE-CAL SWEEP 10kHz SEQ 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE102 PRE-CAL SWEEP 2MHz SEQ 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE102 PRE-CAL SWEEP 10MHz SEQ 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1343</td>
<td>Pre-cal sweeps complete. PASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit isn’t ready yet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1420</td>
<td>Unit is ready. Taking down UUT and support equipment information and putting it into emissions sheet. 0.1 m ohm is the resistance from UUT to copper table and it is the same from the copper table to the chamber wall.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1438</td>
<td>Begin testing to CE102.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE102 SEQ 1 POSITIVE LEAD PASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE102 SEQ 2 NEGATIVE LEAD PASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1455</td>
<td>Sweeps complete.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1504</td>
<td>Moving onto CECM test per test plan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1545</td>
<td>Begin testing to CECM.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634</td>
<td>Test complete. PASS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1637</td>
<td>Setting up to perform RE101.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1655</td>
<td>Shutting down.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>Log off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/23/2005</td>
<td>A. Brar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>Setting up for RE101 pre-cal and setting up limits per customer’s spec.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Begin RE101 path check sweep.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>830</td>
<td>Sweep is too far above the limit at 20Hz, I will have to swap the SA with E4446A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>845</td>
<td>E4446A is sweeping too fast working on Greg Johnson to resolve this problem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>I let the customer know of the situation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>930</td>
<td>I’m discussing this issue with Fred (the witness).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>935</td>
<td>Fred mentions that use the SA with faster sweep rates (E4446A) as long as the plot is well under the spec limit and he is aware that the sweep times are far off (too fast) with this SA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>940</td>
<td>Repeating the path check sweep.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>945</td>
<td>Complete. PASS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>955</td>
<td>Ready to test. Customer is on the phone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>Begin Re101 sweeps. SA Sweeps times and settings are listed below and are to be included in the report for RE101.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1st Band
Start: 20Hz
Stop: 272Hz
Sweep Time: 183.8ms
RBW: 10Hz
VBW: 30Hz

2nd Band
Start: 270Hz
Stop: 1kHz
Sweep Time: 185.8ms
RBW: 10Hz
VBW: 30Hz

3rd Band
Start: 1kHz
Stop: 9kHz
Sweep Time: 110.5ms
<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>RE101 complete. Setting up the unit to perform RE102, and then we will do the path check.</td>
</tr>
<tr>
<td>1200</td>
<td>Setup almost ready, but we will continue from 30MHz and above.</td>
</tr>
<tr>
<td>1235</td>
<td>Begin path check sweep at 200MHz. RE102 Path Check at 200MHz Seq 0 PASS</td>
</tr>
<tr>
<td>1245</td>
<td>Lunch break.</td>
</tr>
<tr>
<td>1255</td>
<td>Continuing with path checks.</td>
</tr>
<tr>
<td>1301</td>
<td>Begin path check sweep at 1000MHz. RE102 Path Check at 1000MHz Seq 0 PASS</td>
</tr>
<tr>
<td>1338</td>
<td>Path check sweeps complete. Setting up to test from 30-200MHz.</td>
</tr>
<tr>
<td>1342</td>
<td>Begin RE102 sweeps. RE102 Seq 9 - 30-200MHz – Vertical PASS RE102 Seq 10 - 30-200MHz – Horizontal PASS</td>
</tr>
</tbody>
</table>
1351 Complete. Pass. Setting up to test form 200-1000MHz.

1358 Begin testing from 200-1000MHz.
 RE102 Seq 11 - 200-1000MHz – Horizontal PASS
 RE102 Seq 12 - 200-1000MHz – Vertical PASS

1411 Sweeps complete. Now setting up to perform RE102 from 1-18GHz. PC and all of the test equipment has to be moved into the chamber.

1512 All of the equipment is inside the chamber. Setting up to perform path check at 18GHz.

1530 Due to the restriction bands, we need to setup the RBW very low, Fred approved 10kHz in the first band and 30kHz in the second band. Now we are also creating the spec to take the least amount of time when we perform runs, otherwise it comes out to be 92 increments and that will take over 30 minutes per sweep.

1610 Begin RE102 path check at 18GHz.

1655 Path check complete. PASS

1705 Begin testing to RE102 above 1GHz, in 5 segments.
 RE102 Seq 13 - 1-1.55GHz – Horizontal PASS
 RE102 Seq 14 - 1.55-1.6GHz – Horizontal FAIL
 RE102 Seq 15 - 1.6-1.77GHz – Horizontal PASS
 RE102 Seq 16 – 1.77-2.3GHz – Horizontal FAIL
 RE102 Seq 17 – 2.3-18GHz – Horizontal PASS

1723 Sweep complete. Shutting down for the day.

1730 Log off.

02/24/2005 A. Brar

800 Booting up system.

810 Discussing some of the failing data with customer.

815 Customer mentions that Fred would like us to try the failing range with lower RBW. seq 16 will be repeated and named as seq 18-21. This sweep will take 45minutes due to low RBW of 3kHz per customer.

830 Limit calculated. Begin sweep.

930 Sweep complete. calculating.

940 Freezes up, too much data for software to handle. We will repeat the sweep, and break it up into 4 segments.

945 Repeating sweep.
 RE102 Seq 18 – 1.77-1.9GHz – Horizontal FAIL
 RE102 Seq 19 – 1.9-2.03GHz – Horizontal PASS
 RE102 Seq 20 – 2.03-2.16GHz – Horizontal PASS
 RE102 Seq 21 – 2.16-2.3GHz – Horizontal PASS
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1108</td>
<td>1.77-2.3GHz sweep complete. Now moving onto Vertical from 1-18GHz, using original RBW settings.</td>
</tr>
</tbody>
</table>
| 1115 | Begin testing to RE102 from 1-18GHz using original RBW settings.
RE102 Seq 22 – 1-1.55GHz – Vertical **PASS**
RE102 Seq 23 – 1.55-1.6GHz – Vertical **FAIL**
RE102 Seq 24 – 1.6-1.77GHz – Vertical **PASS**
RE102 Seq 25 – 1.77-2.3GHz – Vertical **FAIL**
RE102 Seq 26 – 2.3-18GHz – Vertical **PASS** |
| 1140 | Complete. Troubleshooting at 1599.99MHz vertically. |
| 1230 | Lunch. |
| 1300 | Back from lunch. |
| 1305 | Begin scan with modification to JS1 connector.
RE102 Seq 27 – 1.55-1.6GHz – Vertical **FAIL** |
| 1315 | Complete. Waiting for Fred to arrive. |
| 1400 | Fred arrives. Continuing with troubleshooting. |
| 1411 | Realized that the SA being inside the chamber is causing one of the spikes in the spectrum. |
| 1412 | Repeating seq 28 with UUT and support equipment shut off.
RE102 Seq 28 – 1.55-1.6GHz – Vertical **FAIL** |
| 1420 | Complete. |
| 1447 | Begin scan from 1.55-1.6GHz.
RE102 Seq 29 – 1.55-1.6GHz – Vertical **FAIL** |
| 1455 | Complete. |
| 1505 | Begin sweep from 1.55-1.6GHz with 300Hz RBW.
RE102 Seq 30 – 1.55-1.563GHz – Vertical **PASS** seq 28 is ambient sweep
RE102 Seq 31 – 1.563-1.576GHz – Vertical **PASS**
RE102 Seq 32 – 1.576-1.589GHz – Vertical **PASS**
RE102 Seq 33 – 1.589-1.6GHz – Vertical **PASS** |
<p>| 1617 | Sweeps complete. 1-18GHz radiated emissions testing complete. With the support of the ambient sweeps, customer would like a report. Moving test equipment out of the chamber. |
| 1630 | Log off. |
| 02/25/2005 A. Brar 800 | Continuing with setup outside of the chamber. |
| 815 | Setup complete. Now setting up the rod antenna inside the chamber to make path check measurements. |
| 845 | Downloading photos. |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>Calculating the signal to be injected into rod antenna at .01, 15.005 and 30MHz.</td>
</tr>
<tr>
<td>910</td>
<td>Begin RE102 .01-30MHz path check sweeps.</td>
</tr>
<tr>
<td></td>
<td>RE102 PATH CHECK AT 10kHz SEQ 0 PASS</td>
</tr>
<tr>
<td></td>
<td>RE102 PATH CHECK AT 15.005MHz SEQ 0 PASS</td>
</tr>
<tr>
<td></td>
<td>RE102 PATH CHECK AT 30MHz SEQ 0 PASS</td>
</tr>
<tr>
<td>930</td>
<td>Path check sweeps complete. Setting up to perform testing.</td>
</tr>
<tr>
<td>945</td>
<td>Begin scans to RE102 from .01-30MHz.</td>
</tr>
<tr>
<td></td>
<td>RE102 Rod Antenna Seq 34 – .01-30MHz PASS</td>
</tr>
<tr>
<td>953</td>
<td>Sweep complete. Now looking into susceptibility testing. Customer has 4 monitoring meters at this time and prefers to perform the test that takes least amount of time.</td>
</tr>
<tr>
<td>1200</td>
<td>Create a cal file to perform this cal in accordance to customer’s spec and diagram using immunity software.</td>
</tr>
<tr>
<td>1220</td>
<td>Running CS102 .150-10MHz cal file.</td>
</tr>
<tr>
<td></td>
<td>From .150-1.69447MHz we are using the AR amp and 40dB Directional Coupler.</td>
</tr>
<tr>
<td></td>
<td>From 1.71141-10MHz, the AR amp wasn’t used, went directly from signal generator with a T junction at the signal generator, one side going to RF coupler’s input and other side connecting directly to SA (Directional Coupler and AR Amp were not Used).</td>
</tr>
<tr>
<td>1320</td>
<td>The levels are so low that the SA is having difficulty sampling readings, causing the cal to take lot longer.</td>
</tr>
<tr>
<td>1356</td>
<td>Cal complete.</td>
</tr>
<tr>
<td>1405</td>
<td>Unit isn’t functioning, drawing too much current, this happened once we connected the cable that we need for CS102 direct injection.</td>
</tr>
<tr>
<td>1500</td>
<td>Begin testing to CS102. Testing from .150-1.69447MHz. We need to perform the test twice, we can only monitor 4 ports at a time, and there are 7 to be tested.</td>
</tr>
<tr>
<td></td>
<td>Completed testing from .150-1.69447MHz. Pass.</td>
</tr>
<tr>
<td>1539</td>
<td>Begin testing to CS102 from 1.71141-10MHz. We need to perform the test twice, we can only monitor 4 ports at a time, and there are 7 to be tested.</td>
</tr>
<tr>
<td>1613</td>
<td>CS102 from .150 to 10MHz complete. PASS</td>
</tr>
<tr>
<td>1615</td>
<td>Log off.</td>
</tr>
<tr>
<td>02/28/2005</td>
<td>A. Brar</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1028</td>
<td></td>
</tr>
<tr>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>1045</td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td></td>
</tr>
<tr>
<td>1138</td>
<td></td>
</tr>
<tr>
<td>1217</td>
<td></td>
</tr>
<tr>
<td>1243</td>
<td></td>
</tr>
<tr>
<td>1430</td>
<td></td>
</tr>
<tr>
<td>1530</td>
<td></td>
</tr>
<tr>
<td>1555</td>
<td></td>
</tr>
<tr>
<td>1655</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>03/01/05</td>
<td>A. Brar</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1005</td>
<td>RS101 pre-cal setup complete. generating files to perform testing.</td>
</tr>
<tr>
<td>1156</td>
<td>Cal complete. Ready to test.</td>
</tr>
<tr>
<td>1205</td>
<td>Lunch.</td>
</tr>
<tr>
<td>1222</td>
<td>Back from lunch.</td>
</tr>
<tr>
<td>1234</td>
<td>Begin testing to RS101. Testing, top, front, back, left and right side. Side with cables is tested twice; once with the Tx loop facing the UUT and once with it facing the cables.</td>
</tr>
<tr>
<td>1402</td>
<td>RS101 complete. PASS</td>
</tr>
<tr>
<td>1455</td>
<td>RS103 setup complete. Generating test file for 1V/m and taking setup photos.</td>
</tr>
<tr>
<td>1525</td>
<td>Ready to test. Booting up system.</td>
</tr>
<tr>
<td>1534</td>
<td>Begin testing to RS103 from 30-200MHz Vertically. Customer is inside the chamber monitoring the unit, filed level is 1V/m. 1kHz PM, 50% duty cycle.</td>
</tr>
<tr>
<td>1538</td>
<td>Meters are susceptible to the field. Covering up the meter leads in foil.</td>
</tr>
<tr>
<td>1605</td>
<td>Stopped testing at 39.469MHz. Having problems with the meters.</td>
</tr>
<tr>
<td>1608</td>
<td>Log off. We took 30 minute lunch yesterday and today, that gives the customer 16 hours in the two days therefore we can call it a day now.</td>
</tr>
<tr>
<td>3/2/05</td>
<td>C. Nicklas 0800 Dave arrives and is building a cage for the meters out of aluminum foil and a cardboard box. I am setting the field at 1V/m at 39.469MHz where the meters started having problems yesterday. The power cords are all in the box and connected to a power strip in the box. The power cable of the power strip exits the back of the box and drops down behind the test table to power routed under the table. Windows are cut out to allow viewing of the meters and one hole is cut out to allow the coax’s out to connect to the UUT. The coax cables are laid along the copper table and additionally shielded with aluminum foil over them which is grounded to the table and the exit point of the box. When tested at the original problem frequency, this entire package seems to fix the problems.</td>
</tr>
<tr>
<td>0930</td>
<td>Continue with RS103 at 39.469MHz. Running Vertical polarization.</td>
</tr>
<tr>
<td>Time</td>
<td>Activity Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1010</td>
<td>Complete 30-200MHz Vertical. Pass. Switch to Horizontal</td>
</tr>
<tr>
<td>1110</td>
<td>Complete 30-200MHz Horizontal. Pass. Setup for 200-1000MHz frequency range.</td>
</tr>
<tr>
<td>1120</td>
<td>Start RS103, 200-1000MHz Horizontal.</td>
</tr>
<tr>
<td>1145</td>
<td>Complete 200-1000MHz Horizontal. Pass. Switch to Vertical</td>
</tr>
<tr>
<td>1215</td>
<td>Complete 200-1000MHz Vertical. Pass.</td>
</tr>
<tr>
<td>1215</td>
<td>Break for lunch.</td>
</tr>
<tr>
<td>1315</td>
<td>Back from lunch. Start setting up for the 1-18GHz testing. The 1-18GHz antennas are in Hollister for calibration. I have a 1-2ish GHz horn that I will use today to start testing. Will get the antenna from Hollister for the remainder of the testing tomorrow.</td>
</tr>
<tr>
<td>1430</td>
<td>Start 1-4 GHz testing Vertical polarity.</td>
</tr>
<tr>
<td>1520</td>
<td>Restarted 1-4 GHz Vertical. Removed a piece of copper tape that had been installed during radiated emissions to fix a leak from 1.55-1.6GHz.</td>
</tr>
<tr>
<td>1715</td>
<td>Completed 1-4GHz Vertical using the 900MHz – 2GHz Standard Gain Horn Antenna.</td>
</tr>
<tr>
<td>830</td>
<td>Begin testing from 1-4GHz in Horizontal polarity.</td>
</tr>
<tr>
<td>920</td>
<td>Dave is checking his e-mail. Testing stopped.</td>
</tr>
<tr>
<td>925</td>
<td>Continuing with testing.</td>
</tr>
<tr>
<td>1027</td>
<td>Complete 1-4GHz in horizontal polarity. Customer is taking a break, I will create the files to go up to 18GHz.</td>
</tr>
<tr>
<td>1105</td>
<td>Begin testing from 4-8GHz in horizontal polarity.</td>
</tr>
</tbody>
</table>

Amrinder,

I am going to pick up one of the DRG’s tomorrow from Hollister to continue the 4-18GHz immunity. You will need to run the 1-4GHz Horizontal immunity with the standard gain horn. The file is already set-up. In a few places, the sig gen could not level to get the 1V/m level with the setting of 90% in the sig gen column. When that happened I would change the setting to 6|DB and run 10-15 frequency places and then change it back to 90. I will see you around 9-9:30 AM with the 1-18GHz DRG. Thanks.

Christine

03/03/2005 A. Brar 800 Arrive, we will continue from where Christine left off yesterday.

830 Begin testing from 1-4GHz in Horizontal polarity.

920 Dave is checking his e-mail. Testing stopped.

925 Continuing with testing.

1027 Complete 1-4GHz in horizontal polarity. Customer is taking a break, I will create the files to go up to 18GHz.

1105 Begin testing from 4-8GHz in horizontal polarity.
<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1203</td>
<td>4-8GHz horizontal testing complete.</td>
</tr>
<tr>
<td>1210</td>
<td>Lunch. Customer prefers 30 minute lunch.</td>
</tr>
<tr>
<td>1235</td>
<td>Back from lunch. Waiting for customer to get back, he is on the phone with Fred.</td>
</tr>
<tr>
<td>1300</td>
<td>Fred mentions to make the step sizes twice as much and only dwell for 1 sec at each frequency. This is not per Table 3-3 in the test procedure. From 4-8GHz Vertically we will step through at .002f₀ and dwell for 1 sec at each step. From 8-18GHz Vertically we will step through at .001f₀ and dwell for 1 sec at each step. From 8-18GHz Horizontally we will step through at .001f₀ and dwell for 1 sec at each step.</td>
</tr>
<tr>
<td>1325</td>
<td>Customer is working on paperwork discussing issues with the upcoming project.</td>
</tr>
<tr>
<td>1400</td>
<td>Begin testing vertically from 4-8GHz.</td>
</tr>
<tr>
<td>1419</td>
<td>Testing stopped per customer, he is on the phone.</td>
</tr>
<tr>
<td>1431</td>
<td>Continuing with testing.</td>
</tr>
<tr>
<td>1434</td>
<td>4-8GHz complete vertically. Continuing with next setup.</td>
</tr>
<tr>
<td>1450</td>
<td>Begin testing from 8-18GHz vertically.</td>
</tr>
<tr>
<td>1550</td>
<td>Having difficulties obtaining 1V/m at 14.63096GHz. Troubleshooting.</td>
</tr>
<tr>
<td>1614</td>
<td>Replaced the connectors and it is fine now. Continuing with testing.</td>
</tr>
<tr>
<td>1630</td>
<td>Scan complete. We are done from 8-18GHz Vertically. We will continue with testing tomorrow.</td>
</tr>
<tr>
<td>03/04/05 0800</td>
<td>Booting up equipment.</td>
</tr>
<tr>
<td>0812</td>
<td>Waiting for customer, he is on the phone.</td>
</tr>
<tr>
<td>0819</td>
<td>Begin testing from 8-18GHz horizontally.</td>
</tr>
<tr>
<td>0930</td>
<td>1-18 GHz testing completed in Horizontal and Vertical polarities at 1V/m with 1kHz PM. PASS</td>
</tr>
<tr>
<td>0935</td>
<td>Tear down.</td>
</tr>
<tr>
<td>1000</td>
<td>Paperwork and procedures.</td>
</tr>
<tr>
<td>1100</td>
<td>Paperwork and procedures complete.</td>
</tr>
<tr>
<td>1330</td>
<td>Arranging data to be uploaded.</td>
</tr>
<tr>
<td>1427</td>
<td>Upload complete. Log off.</td>
</tr>
</tbody>
</table>