





# **Calorimeter Subsystem**

# **Status and Issues**

W. Neil Johnson Naval Research Laboratory

neil.johnson@nrl.navy.mil



W N Johnson



# Outline

- □ Introduction
- **D** Engineering Model GSI Beam Test
- Flight Manufacturing Status
- □ The Future
- Issues and Concerns
- □ Summary

Collaboration Meeting Sep 27 – 29, 2004

**Calorimeter Subsystem Status** 



# **Calorimeter Module**





# **CAL EM - Heavy Ion Beam Test**

- □ Proposal PI: Benoît Lott, CEN Bordeaux-Gradignan
- **Gesellschaft für Schwerionenforschung, Darmstadt, Germany** 
  - Relativistic heavy ions
    - Pure and "Cocktail" beams of A = 2Z daughters
    - Tagged with t, Z, A, E, direction
- □ Goals of test
  - Develop CAL cosmic ray calibration algorithms
    - Measure scintillation "saturation", "quenching" in Csl(Tl)
    - Develop algorithms to identify charge, mass-changing nuclear interactions
  - Test performance of EM CAL
  - Compare performance with MiniCAL

### Analyses: IN2P3/CENBG (Benoît, et al.) IN2P3/GAM (Frédéric Piron, et al.)

Collaboration Meeting Sep 27 – 29, 2004



# **EM Calorimeter at GSI**

□ GLAST setup in FRS cave

EM CAL on translation, lift, and pitch table looking up at muons



<sup>58</sup>Ni, <sup>28</sup>Si, <sup>12</sup>C up to 1.7 GeV/n

MiniCAL on lift table





# **GSI's Fragment Separator (FRS)**



**W N Johnson** 



# **Ion selection**

### No Z selection applied



### Z selection applied (Z=14)



#### **W N Johnson**

Collaboration Meeting Sep 27 – 29, 2004



# **Quenching factors**



Quenching factor = measured/calculated deposited energy= dL/dE

- Z=6 (C): dL/dE=1.23 Z=14 (Si): dL/dE=1.08 Z=26 (Fe): dL/dE=0.90
- « Quenching »: dL/dE <1 « Antiquenching »: dL/dE>1



# Flight Hardware Manufacture and Test

Collaboration Meeting Sep 27 – 29, 2004



### Crystal Detector Elements (CDE) Swales Aerospace



**W N Johnson** 

Collaboration Meeting Sep 27 – 29, 2004

**GLAST LAT Project** 



### Carbon Composite Structures IN2P3 Ecole Polytechnique



Vacuum bag assembly for autoclave curing



Hot out of the oven – a completed structure

Each one is assembled w/ dummy CDE for vibration strength testing

Collaboration Meeting Sep 27 – 29, 2004



### PreElectronics Module (PEM) Assembly Naval Research Lab

#### **CDE Insertion into structure**





Even Eric can do it

Closeout plates keep CDEs in place Finished PEM awaiting test





Connect test electronics for muon testing

7 PEM awaiting AFEE installation

**W N Johnson** 



# **PEM Checkout – Light Yield**



### □ Using cosmic muons

- Verify PIN diode bonds end vs end, big vs small
- Check light yield
- Map light asymmetry

Collaboration Meeting Sep 27 – 29, 2004

### CAL Front End Electronics Naval Research Lab



**W N Johnson** 

Collaboration Meeting Sep 27 – 29, 2004



### **CAL FMA Final Assembly Naval Research Lab**

#### Installation of SLAC's EM2 TEM/TPS



FMA CAL tower complete!

Installation of EMI Side Panels – lots of fasteners



CAL clean room and shipping containers **Calorimeter Subsystem Status** 

**W N Johnson** 

Collaboration Meeting Sep 27 – 29, 2004



### FMA Environmental Testing Naval Research Lab



Comprehensive performance test takes careful monitoring



Remove FMA from shipping container for vibration testing



FMA on vibe slip table for lateral test

#### **W N Johnson**









# **FMA Cosmic Muon Testing**





# **LEX8 Noise Measurement**



Distribution of 192 pedestal widths (rms)

expected.



### **Calorimeter Assembly Flow and Build Status**



**W N Johnson** 



# **Near Term Schedule**

| Flight Module A |                                         | Completion  |
|-----------------|-----------------------------------------|-------------|
|                 | 2 week Thermal Vacuum Test              | 13-Oct-2004 |
|                 | Final Calibration and Performance Tests | 27-Oct-2004 |
|                 | Ship to SLAC I&T                        | 1-Nov 2004  |
|                 | Ready for Integration                   | 4-Nov-2004  |
| Flight Module B |                                         |             |
|                 | Assembly Complete                       | 1-Oct-2004  |
|                 | Environmental Tests Complete            | 5-Nov-2004  |
|                 | Ready for Integration                   | 2-Dec-2004  |
| Flight Module 1 |                                         |             |
|                 | Assembly Complete                       | 8-Oct-2004  |
|                 | Environmental Tests Complete            | 5-Nov-2004  |
|                 | Ready for Integration                   | 8-Dec-2004  |



# Issues

### □ Performance

- Higher than expected CDE Light Yield
  - Too much gain, max energy measurement in single Crystal ~50 GeV rather than required 100 GeV
- Power consumption at -30 deg C is ~ 8 watts over allocation of 65 watts.
- □ Manufacturing and Test
  - CAL ASICs have significant ESD vulnerabilities
    - Care in handling and interconnect of AFEE cards is needed to avoid electrostatic discharge damage to board interface signal lines.



# Summary

- CAL subsystem is well into production of flight hardware.
- The first flight module has been completely assembled and is in environmental test. No issues to date.
- First delivery to SLAC I&T is scheduled for early November.