EAS Arrays

- Provide synoptic view of the sky
- See an entire hemisphere every day
- Large fov & high duty cycle
 - Gamma ray bursts
 - Transient astrophysics
 - Extended objects
 - New sources
- Excellent complement to GLAST
 - With >1000 sources need an all-sky instrument in VHE
- Current EAS arrays lack sensitivity to complement GLAST
- What can be done?
 - Need low threshold (GLAST overlap) < 100 GeV
 - High sensitivity
Existing Arrays

- **Milagro**
 - Dense sampling
 - Moderate altitude (2650m)
 - Background rejection

- **Tibet Array**
 - Sparse sampling
 - High altitude (4300m)
 - No background rejection

Gus Sinnis Los Alamos National Laboratory
Milagro TeV Sky Map

Gus Sinnis Los Alamos National Laboratory
5.9 σ detection at (79.8°, 26°) using 2.9° bin
Angular extent 0.8° ± 0.4°

5.5 σ detection at ~(308°, 42°) using 5.9° bin
Brightest region in Northern hemisphere (EGRET)
GRBs: High Energy Emission

GRB 970417a – Milagrito
10^{-3} chance probability
>650 GeV photons
HAWC
High Altitude Water Cherenkov

- 200m x 200m water Cherenkov detector
- Two layers of 8” PMTs on a 2.7 meter grid
 - Top layer under 1.5m water (trigger & angle)
 - Bottom layer under 6m water (energy & particle ID)
 - ~11,000 PMTs total (5,000 top and 5,000 bottom)
 - Trigger: >50 PMTs in top layer
- Two altitudes investigated
 - 4500 m (~Tibet, China)
 - 5200 m (Atacama desert Chile)
Event Reconstruction

Angular resolution ~0.75 degrees
Background Rejection Bottom Layer

Gammas

30 GeV (a)
70 GeV (b)
230 GeV (c)

Protons

20 GeV (d)
70 GeV (e)
270 GeV (f)

Gus Sinnis Los Alamos National Laboratory
Background Rejection

Uniformity Parameter
nTop/cxPE > 4.3
Reject 70% of protons
Accept 87% of gammas
1.6x improvement in sensitivity
D.C. Sensitivity: Galactic Sources

- Crab Spectrum: $\frac{dN}{dE} = 3.2 \times 10^{-7} E^{-2.49}$
 - Milagro 0.002 (0.001) Hz raw (cut) rate
 - HAWC 0.220 (0.19) Hz raw (cut) rate
 - Whipple 0.025 Hz
 - VERITAS 0.5 (0.12) Hz raw (cut) rate
- Background rate 80 (24) Hz raw (cut)
- $4 \sigma/\sqrt{\text{day}}$ raw data
- $6 \sigma/\sqrt{\text{day}}$ cut data
 - $120 \sigma/\sqrt{\text{year}}$
- 40 mCrab sensitivity (all sky) in one year
 - Whipple: 140 mCrab per source
 - VERITAS: 7 mCrab per source (15 sources/year)
Gamma Ray Burst Sensitivity

50 events

Gus Sinnis Los Alamos National Laboratory
Gamma Ray Burst Sensitivity

Gus Sinnis Los Alamos National Laboratory
Point Source Sensitivity

Flux Sensitivity of Gamma-Ray Telescopes

Gus Sinnis Los Alamos National Laboratory
Time Domain Sensitivity

Solid Angle/Sensitivity

FOV (sr) / Sensitivity (Crab Units)

COS-B EGRET GLAST Whipple Veritas Milagro HAWC

Gus Sinnis Los Alamos National Laboratory
Conclusions

- Water Cherenkov technology has been proven with Milagro
- An EAS array with > 20x the sensitivity of Milagro can be built
- A sensitive EAS array is needed to extend GLAST measurements to >100 GeV energies
- Detect prompt emission from GRBs above 100 GeV (~10/year)
 - Provide valuable information on maximum energy of GRB
 - Better sensitive than GLAST above 50 GeV
- Monitor AGN flaring above 100 GeV
- Explore time-domain astrophysics in VHE band
- Discover extended sources at VHE energies
- Discover new VHE sources
Gamma-Ray Telescopes

High Sensitivity
Whipple(1965)/VERITAS(2006, $18M)

Low Energy Threshold
EGRET/GLAST(2007 $330M)

Large Aperture/High Duty Cycle
Milagro(2000)/HAWC(2010?, $30M?)

Large Effective Area (~100,000 m²)
Excellent Background Rejection (>99%)
Low Duty Cycle/Small Aperture

Space-based (small area)
“Background Free”
Large Duty Cycle/Large Aperture

Sky Survey (<10 GeV)
1000’s of AGNs
Transients (GRBs) <100 GeV
Dark Matter & Quantum Gravity

Moderate Area/Large Area (HAWC)
Good Background Rejection
Large Duty Cycle/Large Area

Sky Survey > 3 TeV/100 GeV
New Sources
Transients (GRB’s) > 100 GeV/20 GeV
Time Domain VHE Astrophysics

Studies of known sources
Distribution of Excess in the Cygnus Region:

Gaussian Weighted Excess

2 regions of excess give rise to the observed signal.
Excess Coincident with EGRET source 3EG J0520+2556

3EG J0520+2556

Source Reported twice before by Milagro:

1) APS Meeting: April 2002
 Reported as a Hot Spot. A Larger than optimal bin size was used in that initial survey.

2) Location of one of the top excesses in our published point source All Sky search.

5.5 σ detection at (79.8°, 42°) using binsize= 2.9°

Gus Sinnis Los Alamos National Laboratory
EGRET Unidentified Source 3EG 0520+2556

Distribution of the significance of measured excesses for the entire northern sky (Crab and Mrk421 regions removed)
Tail due to excess coincident with 3EG J0520+2556.

Growth of Excess vs days of exposure.
No evidence of flaring or episodic emission.

Binsize = 2.9°

Distribution of sigmas with Crab and Mrk 421 regions removed. The E0520 excess contributes the tail to the Gaussian distribution.

Gus Sinnis Los Alamos National Laboratory
3EG 0520_2556 Before and After Initial Report

(465 days of exposure)

Before: 4.4σ
After: 3.7σ peak at 4.4σ

12/10/2001 – 05/05/2004
(840 days of exposure)

Data reported on at April 2002 APS Meeting.

Independent data set collected since the 2002 report.

Gus Sinnis Los Alamos National Laboratory
GRB 941017 (pre-Milagro)

- This burst is the first observation of a distinct higher energy spectral component in a GRB
- Lower energy component decays faster than higher energy component
- Peak of higher energy component is above the energy range of the detector
- Power released in higher energy component is more than twice the lower energy component
Theories of the High Energy Component of GRB941017

- Requires GRBs to more energetic phenomena
- Different timescale of low and high energy implies an evolving source environment or different high energy particles
- Shape of high energy component applies tight constraints to ambient densities and magnetic fields
- Or evidence of origin of Ultra High Energy Cosmic Rays
- More high energy observations are needed

Gus Sinnis Los Alamos National Laboratory

Pe’er & Waxman (astroph/0310836) constrain source parameters for Inverse Compton emission of GRB941017

Milagro Sensitivity

\(z = 0.2 \)

\(z = 0.02 \)
The Need for HAWC

• GLAST
 – Will discover 1000’s of sources
 – Many variable
 – ACTs can monitor ~15/year at stated sensitivity
• GRBs
 – Detect highest energy photons in prompt phase
• AGNs
 – Detect/Monitor AGN at redshift < 0.3
 – Study AGN transients in VHE regime
 – Populations studies
• Fundamental Physics
 – Lorentz violation at high energies (quantum gravity?)
 – Dark matter
• VHE sky surveyed to 40% of Crab flux
 – Sensitive Sky Survey < 1% of Crab flux
• Time Domain Astrophysics in the VHE Regime
 – Extreme states of extreme systems
Effect of Altitude

Approximation B

Low Energy Threshold Requires High Altitude

Gus Sinnis Los Alamos National Laboratory
Energy Distribution After EBL
AGN Sensitivity

1 Year

Gus Sinnis Los Alamos National Laboratory
Site Visit: YBG 4/1-6

- Excellent location
 - Land available
 - many km² available at 4300m
 - Room at ~4800m
 - Power available (3 MWatts generated in YBJ)
 - Water available
 - Dormitories (“Western rooms”)
- Existing gamma ray detectors
 - ASγ array
 - ARGO detector
Site Visit: IHEP Beijing

- Scientists excited by project (IHEP and Tibet University)
 - Would like full-scale collaboration
 - Have experience with ASγ and ARGO
- IHEP Director Hesheng Chen enthusiastic about project
 - Committed to provide land, power, water, and people
 - Will provide letter to NSF on request
 - Funds for infrastructure (building, etc) can not be promised at this time
 - They paid ~$2M for ARGO building/infrastructure
CORSIKA: Energy Resolution

Primary Energy vs. Number of Particles

Gus Sinnis Los Alamos National Laboratory
CORSIKA: Energy Resolution

Gus Sinnis Los Alamos National Laboratory
CORSIKA: Energy Resolution

Delta E/E (>50 GeV)

- ede50
 - Entries: 5098
 - Mean: 0.006335
 - RMS: 0.4522
 - χ^2 / ndf: 139.9 / 26
 - Constant: 3862 ± 79.5
 - MPV: -0.2811 ± 0.0042
 - Sigma: 0.137 ± 0.002

Delta E/E (>300 GeV)

- ede300
 - Entries: 343
 - Mean: -0.04854
 - RMS: 0.2725
 - χ^2 / ndf: 36.03 / 14
 - Constant: 349.1 ± 27.0
 - MPV: -0.2289 ± 0.0123
 - Sigma: 0.09641 ± 0.00565

Gus Sinnis Los Alamos National Laboratory
Background Rejection

Gus Sinnis Los Alamos National Laboratory
EAS Particle Content

Low Energy Threshold Requires Detection of Gamma Rays in EAS

Gus Sinnis Los Alamos National Laboratory
Detecting Extensive Air Showers

Air Cherenkov Telescope
- Low energy threshold (300 GeV)
- Good background rejection (99.7%)
- Small field of view (2 msr)
- Small duty cycle (< 10 %)

Extensive Air Shower Array
- High energy threshold (100 TeV)
- Moderate background rejection (50%)
- Large field of view (~2 sr)
- High duty cycle (>90%)

Gus Sinnis Los Alamos National Laboratory
HAWC Performance Requirements

- Energy Threshold < 50 GeV
 - GRBs visible to redshift ~1
 - Near known GRB energy
 - AGN to redshift ~0.3
- Large fov (~2 sr) / High duty cycle (~100%)
 - GRBs prompt emission
 - AGN transients
 - Time domain astrophysics in VHE regime
- Large Area / Good Background Rejection
 - High signal rate
 - Ability to detect Crab Nebula in single transit
- Moderate Energy Resolution (~40%)
 - Measure GRB spectra
 - Measure AGN flaring spectra
Event Reconstruction

Particle Arrival Time Distribution vs. Core Distance

Particle Arrival Time Distribution vs. Energy

Gus Sinnis Los Alamos National Laboratory
Angular Resolution
Energy Distribution of Fit Events

Median Energy 180 GeV
(Milagro ~3 TeV)
Effect of EBL on Distant Sources

Gus Sinnis Los Alamos National Laboratory