LSST Camera Electronics Overview

September 16, 2008

R. Van Berg for the LSST Electronics Team
Outline

- Current plan and schedule for delivery to the Integration and Test phase
- Key technical milestones
- Key technical development activities
- Test requirements/equipment at each phase
- Task interdependencies with other subsystems
- Electronics system self-protection plans and features
Current plan and schedule for delivery to I&T

<table>
<thead>
<tr>
<th>WBS</th>
<th>Task Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.8</td>
<td>Camera Electronics</td>
</tr>
<tr>
<td></td>
<td>Back End Electronics</td>
</tr>
<tr>
<td>3.5.8.1</td>
<td>BEB</td>
</tr>
<tr>
<td>3.5.8.1.2</td>
<td>RCB</td>
</tr>
<tr>
<td>3.5.8.1.3</td>
<td>RCM</td>
</tr>
<tr>
<td>3.5.8.1.4</td>
<td>RCC</td>
</tr>
<tr>
<td>3.5.8.2</td>
<td>Front End Electronics</td>
</tr>
<tr>
<td>3.5.8.2.1</td>
<td>ASICS</td>
</tr>
<tr>
<td>3.5.8.2.2</td>
<td>FEB</td>
</tr>
<tr>
<td>3.5.8.3</td>
<td>Electronics Infrastructure</td>
</tr>
<tr>
<td>3.5.8.4</td>
<td>Controllers & Interface</td>
</tr>
<tr>
<td>3.5.8.5</td>
<td>Electronics Systems Engineer</td>
</tr>
<tr>
<td>3.5.8.6</td>
<td>Camera electronics project management</td>
</tr>
<tr>
<td>3.5.8.7</td>
<td>Corner Raft Electronics</td>
</tr>
<tr>
<td>3.5.8.8</td>
<td>Systems Integration & Test</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
</tbody>
</table>

Work in progress……
Current plan and schedule for delivery to I&T

Still in progress....
Schedule Cheat Sheet

• Three “phases” of development
 – Early prototype (e.g. discrete FEB, single channel SCC)
 – Prototype (e.g. 8 channel ASPIC, 24 channel FEB)
 – Pre-production (e.g. nominally final design)

Where we are now

Where we need to be end of 2010

CCD Related Milestones:

Proto or Preprod FEBs (1/3 raft) to BNL March (?) 2010
Production FEBs to BNL end of October 2011
Last FEB/BEB to BNL by March 2013
Key technical milestones

- **ASIC development:**
 - ASPIC – noise, power, crosstalk
 - SCC – power, clock drive
- **Front End Board**
 - Crosstalk, thermal management, mechanical interfaces
- **Back End Board**
 - Power, density (e.g. connectors)
- **Back End Controller**
 - Power, density, high speed I/O
- **Infrastructure**
 - Power, cabling, cooling, space/mechanics in UT
- **Controllers**
 - TCM, Fiber interface, other controllers…
- **Corner Rafts**
 - Guider choice, space, space, space
- **Integration**
 - Real CCD readout at real LSST rates
Key technical development activities

- **ASIC development** –
 - **ASPIc**
 - Strong IN2P3 Group (LAL Orsay and LPHNE Paris) with some collaboration from Harvard and Penn
 - First version satisfies crosstalk requirement already, not quite on noise (understood)
 - Second version in design – review Oct. 6-8, Boston
 - **SCC**
 - Strong ORNL/UT group
 - First version (single channel of clock and bias) tests ok
 - Second version (full specification) in design – intend to submit in Dec. 08
- **Board development** –
 - **FEB – BEB version 1**
 - Discrete, non-compact 2 channel design demonstrated digitization performance (microVolts) at the level required for LSST
 - **FEB – BEB version 2**
 - Utilize prototype ASPIc / SCC devices, 8 channels (one CCD) – end of this year
 - **FEB – BEB version 3**
 - To use version 2 ASPIc and SCC, full density (24 channels) raft prototypes
Key technical development activities - II

- **Cabling** –
 - **Inside Cryostat**
 - Kapton CCD→FEB, capacitance, flexibility, connectors
 - Kapton FEB→BEB, flexibility, space
 - “Standard” cable RCM→Flange, routing, space, performance
 - **Outside Cryostat (mostly in Utility Trunk)**
 - Harness design, routing, maintenance

- **Power** –
 - Conditioning at entry to UT
 - **AC→DC conversion**
 - Space, noise, reliability, repairability
 - **DC→DC conversion**
 - Space, noise, reliability, repairability
Test requirements/equipment at each phase

• Early Prototype Phase –
 – Point test tools and equipment not yet integrated with CCS or BNL CCD test tools or much of anything else – standard lab equipment

• Prototype Phase –
 – Incorporate CCS tools as they become available (especially the SDS for data output) – lab equipment plus LSST specific test objects (e.g. CCD simulators) plus real CCD signals.

• Pre-Production Phase –
 – Full suite of CCS tools (control / monitor plus data flow)
 – Full raft / tower mechanical and cooling structures working with raft level CCD metrology and optical test
Task interdependencies with other subsystems

- CCDs
- CCS Control
- Cryostat Mechanics
- Cryostat Thermal
- SDS (Data Management)
- Electronics
Task interdependencies with other subsystems

• Electronics is driven by CCD (and science) requirements
 – Noise
 – Cross talk
 – Stray capacitance
 – Speed
 – CCD clock and bias specifications
 – Cleanliness (e.g. no outgassing of black gook)

• Electronics has to be compatible with:
 – Data Management -- high speed data output
 – Camera Control System – control registers, programming model
 – Cryostat mechanics – space, cabling, assembly and repair seq.
 – Cryostat thermal – magnitude of heat load, uniformity of load, heat flow
Electronics system self-protection plans and features

- Obvious dangers are:
 - Overvoltage – regulators to have clamps or OVP
 - Overcurrent – regulators to be current limited
 - Overheating – loss of cooling needs to cut power to electronics – this is a danger to the camera not really to the electronics (electronics fine at >100C) – an example of a cross task boundary problem

- What are the non-obvious dangers we need to protect against?