

Page 1 of 13
LAT-TD-07066-01
 I&T Online System Science Data Format
Page 13 of 13

	
	Document #
	Date Effective

	
	LAT-TD-07066-01
	March 26, 2004

	
	Author(s)
	Supersedes

	
	Richard Claus
	

	LAT Interface Document
	
	

	
	Subsystem/Office

	
	Integration & Test/Online

	Document Title

	LAT I&T Online System Science Data Format: LDF

This copy dated: 10/3/2005 11:29 AM
LAT I&T Online System Science Data Format: LDF

CHANGE HISTORY LOG

	Revision
	Effective Date
	Description of Changes

	01
	March 29, 2004
	Preliminary release of incomplete document to FSW

	
	
	

	
	
	

	
	
	

	
	
	

TABLE OF CONTENTS
41.
Purpose

42.
Scope

43.
Acronyms

64.
Definitions

65.
Applicable Documents

76.
The LAT Data Format

76.1.
lat Datagram

76.1.1.
The Identity word

96.1.2.
The Length word

96.2.
lat Datagram contribution

96.3.
ebf events

97.
Summary

118.
Parsing LDF data

118.1.
C++ API

118.1.1.
Mapping between electronics and detector space

118.1.2.
Accessing data elements

128.1.2.1.
Time

128.1.2.2.
Trigger

128.1.2.3.
ACD

128.1.2.4.
CAL

128.1.2.5.
TKR

128.1.2.6.
Errors

128.1.3.
Contributions

128.1.3.1.
Event Builder Format (EBF)

138.1.4.
Iterators

138.2.
Python API

Purpose

This document describes the data format used to store LAT science data.
1. Scope

The online system ...

2. Acronyms

ACD
LAT AntiCoincidence Detector subsystem

AEM
ACD Electronics Module

CAL
LAT Calorimeter subsystem

CCSDS
Consultative Committee for Space Data Systems

COTS
Commercial Off-The-Shelf
CU
Calibration Unit

EGSE
Electronics Ground Support Equipment

EM1
Engineering Model 1 EGSE

EM2
Engineering Model 2 EGSE

EPU
Event Processing Unit

FITS
Flexible Image Transport System

FSW
Flight SoftWare

FU
Flight Unit

GEM
Global trigger Electronics Module

GLT
GLobal Trigger

GUI
Graphical User Interface

I&T
Integration and Test

ICS
Interface Control Systems – makers of SCL
IDL
Interactive Data Language

LAN
Local Area Network

LAT
Large Area Telescope

ODBC
Open DataBase Connectivity

ROOT
Rene's (?) Object Oriented Tool

RPC
Remote Procedure Call

RTE
Run Time Engine

SAS
Science Analysis Software

SBC
Single Board Computer

SCADA
Supervisory Control And Data Acquisition

SCL
Spacecraft Control Language

SSR
Solid State Recorder

TBD
To Be Determined

TBR
To Be Resolved

TBS
To Be Supplied

TEM
Tower Electronics Module

TKR
LAT Tracker subsystem
3. Definitions

	1553

	MIL-STD-1553 – An electronics bus standard that is used in GLAST for communication between the Spacecraft and the LAT

	cPCI
	Compact PCI: an electronics bus specification used on the LAT

	Downstream
	Data-path direction toward the user interface and persistent storage

	Embedded system
	The processors and associated software embedded in some approximation of the LAT. For EM-1 this is typically a VME crate containing a VME SBC, although cPCI components can also be used.

	Upstream
	Data-path direction toward instrument sensors

	VME
	An electronics bus specification

	XML
	Extensible Markup Language – a universal format for structured documents and data used on the Web and elsewhere

4. Applicable Documents

	LAT-TD-00606
	LAT Inter-module Communications

	LAT-TD-00639
	ACD Electronics Module (AEM)

	LAT-TD-00605
	The Tower Electronics Module (TEM)

	LAT-TD-01545
	The GLT Electronics Module (GEM)

	LAT-TD-01546
	The Event Builder Module (EBM)

The LAT Data Format
Data produced by the glast lat is stored in a format called the LAT Data Format (ldf). ldf data contains ebf (Event Builder Format) data, amongst other contributions, in the native format of the ppc. The lat uses the big endian mode of the ppc, and that has been allowed to drive the endianness of the rest of the ldf. A software package called LDF has been created to parse ldf data.
4.1. lat Datagram

An ldf record consists of a structure with several layers. The outermost layer is called a LATdatagram. A LATdatagram consists of two data members: the identity field and the length field. Both are 32 bit longwords (Figure 1).

[image: image1]
Figure 1 Datagram format
4.1.1. The Identity word

The identity word is an encoded field containing two components. The first component is the structure type identifier. The least significant 20 bits are reserved for this field. It is also sometimes called the Primary ID. The remaining 12 bits form the Secondary ID and are used to store a version number of the type identifier. Thus, identity words look like what’s shown in Figure 2.

[image: image2]
Figure 2 Identity word format
TypeIds are uniquely assigned to data structures they describe. The range of allowed values is broken up in sections of 0x1000 types. This allows for 256 major blocks. Blocks are assigned according to major disparate types, e.g. subsystems. The currently defined type base values are shown in Table 1. Base values were chosen to provide a characteristic appearance to facilitate their recognition in hexadecimal dumps of the data and also to avoid simple values like 0x00000000. Specific type values are determined by offsets from a type base value. All these values are kept in a file in the LDF package called LATidentity.h.
Table 1 TypeId (PrimaryID) block assignments

	Major Block
	Name
	Value

	Flight Software
	BASE_FSW
	0xF0000

	Online Event Format
	BASE_OEF
	0xF1000

	AntiCoincidence Detector
	BASE_ACD
	0xF2000

	Calorimeter
	BASE_CAL
	0xF3000

	Tracker
	BASE_TKR
	0xF4000

	Online SoftWare
	BASE_OSW
	0xF5000

	Scratch
	BASE_SCRATCH
	0xFF000

Some specific typeIds are show in Table 2.
Table 2 TypeIds for specific data structures

	Major Block
	Name
	Value

	Event Builder Format
	ID_EBF
	0xF0010

	EBF from Monte Carlos
	ID_EBF_MC
	0xF0020

	LATdatagram
	ID_Datagram
	0xF1010

	Unrecognized buffer
	ID_UnrecBuf
	0xF1020

	OSW time structure
	ID_Time
	0xF5010

The version space was similarly broken up in 0x100 chunks. This allows for 256 versions of each typeId. To further make the identity words easily recognizable, the initial version numbers assigned to the major blocks above start with the major block nibble, as shown in Table 2. These values are also maintained in the LATidentity.h file of the LDF package.
Table 3 Initial version number (SecondaryID) assignments

	Major Block
	Name
	Value

	Flight Software
	BASE_FSW
	0x000

	Online Event Format
	BASE_OEF
	0x100

	AntiCoincidence Detector
	BASE_ACD
	0x200

	Calorimeter
	BASE_CAL
	0x300

	Tracker
	BASE_TKR
	0x400

	Online SoftWare
	BASE_OSW
	0x500

	Scratch
	BASE_SCRATCH
	0xF00

Care must be taken to keep these identity values unique so that software can recognize which particular structure type it is dealing with. A typical identity word value therefore looks like 0x102F0010, in this case describing the second version of the EBF event data format.

4.1.2. The Length word
The length field contains the length of the datagram in units of bytes. The length is inclusive of the identity and length words themselves. It also includes the size of the LATdatagram payload, also called a LATcontribution. This simplifies navigation by software from one LATdatagram to the next since a char pointer to a LATdatagram only needs to be incremented by the length value to find the next LATdatagram in the list.
4.2. lat Datagram contribution

The payload of a LATdatagram is called a LATcontribution. The form of a LATcontribution is shown in Figure 3.

[image: image3]
Figure 3 The form of a LATcontribution
The identity word in the LATcontribution is the same form as described above in 6.1.1. Currently, only two specific types of LATcontributions exist: ebf event data and Monte Carlo generated ebf event data. Several other kinds of LATcontribution are envisioned for the future, for example, subsystem test application supplied opaque data, instrument configuration records, etc.
The second longword after the identity word contains the LATcontribution’s length and potentially some application dependent opaque data. The two items are treated as unsigned shorts, in other words, 16 bits. This implies that the maximum length of a LATcontribution is 64 Kbytes.
A particular type of LATcontribution is an EBFevent. It uses the opaque word to store an acquisition status value.

4.3. ebf events

The topology of ebf events is described in LAT-TD-00606: “LAT Inter-module Communications” and LAT-TD-01546: “The Event Builder Module (EBM)”. ebf events are made up of contributions from individual Electronics Modules. The description of these contributions can be found in the corresponding documents:

· LAT-TD-01545: “The GLT Electronics Module (GEM)” for the GEM contribution,

· LAT-TD-00605: “The Tower Electronics Module (TEM)” for the TEM contribution (which covers both Calorimeter an Tracker data)

· LAT-TD-00639: “ACD Electronics Module (AEM)” for the AEM contribution
5. Summary

Figure 1 shows the generic layout of a LAT data event.

[image: image4]
Figure 4 LAT datagram shape
6. Parsing LDF data

There is a software package by the name of LDF that can be used to parse buffers conforming to the ldf structure. Both a C++ and a Python API are presented. The APIs are documented using the doxygen (http://www.doxygen.org/index.html) in-line documentation method. The resulting web pages from the C++ code are stored at http://www-glast.slac.stanford.edu/IntegrationTest/ONLINE/docs/LDF/ in folders corresponding to the package release number. Thus, the main web page for release v5.6.2 is at http://www-glast.slac.stanford.edu/IntegrationTest/ONLINE/docs/LDF/doxygen_v05-06-02/html/index.html, for example. The python API is not separately presented since it is the same as the C++ one, with the exception of syntax details. The link for the version in use should be consulted for the API details. What’s described in the sections below is the general philosophy of the package, and may not be correct in detail with respect to the version in use.
The active portion of LDF is generic C++ code. It is compliable on both UNIX and Windows operating systems. For UNIX, an automake/autoconf-style set of configuration and makefile files are provided. For Windows a Visual Studio project file is used to build the package.
LDF is written to handle all byte ordering issues in the data without application intervention. This can only work if the convention that the data is stored in big-endian format is adhered to. The decision to store the data in big-endian format comes from the desire to not put extra load on the processors that produce it (PowerPCs). The code is compiled according to the endianness of the CPU on which it is compiled.

The LDF package is basically a collection of classes providing accessor methods and iterators.
6.1. C++ API

6.1.1. Mapping between electronics and detector space
The following classes are used to map between electronics and detector space.
· ACDmap

· TWRmap

· CALmap

· TKRmap
6.1.2. Accessing data elements

· EventSummary

· Identifiers

· LATPcellHeader

· LATprimaryId

· LATsecondaryId

· LATtypeId

· LDFversion

6.1.2.1. Time

· OSWtimeBase

· OSWtimeSpec

6.1.2.2. Trigger

· GEMcondArrivalTime

· GEMcontribution::sent_condArr

· GEMonePPStime

· GEMtileList

6.1.2.3. ACD

· ACDpha

· ACDtileSide

· AEMheader

6.1.2.4. CAL

· CALlog

· CALlogEnd

· CALdiagnostic

6.1.2.5. TKR

· TKRstrip

· TKRdiagnostic

6.1.2.6. Errors

· ErrorSummary

· GCCCerror

· GTCCerror

· GTRCerror

6.1.3. Contributions

· LATdatagram

· LATcontribution

· EBFevent

6.1.3.1. Event Builder Format (EBF)

The Event Builder Format is made up of a bunch of contributions of type EBFcontribution.
· OSWcontribution

· OSWtimeContribution

· GEMcontribution

· GLTcontribution

· AEMcontribution

· TEMcontribution

· CALcontribution

· TKRcontribution

6.1.4. Iterators

· LATdataBufferIterator

· LATdatagramIterator

· LDBI_LATdatagramIterator

· LATcontributionIterator

· LDBI_LATcontributionIterator

· EBFeventIterator

· LDBI_EBFeventIterator

· EBFcontributionIterator

· LATcomponentIterator

· OSWcontributionIterator

· AEMcontributionIterator

· CALcontributionIterator

· TKRcontributionIterator

· DIAGcontributionIterator

· ERRcontributionIterator

· TEMcontributionIterator

· LATcomponentIterator

6.2. Python API

Other than syntactical details, the Python API is essentially the same as the C++ one.
19

20

31

0

Version

TypeId

Increasing Address

31

0

Length

Identity

Increasing Address

31

0

LATcontribution Identity

Increasing Address

Opaque

Length

Identity

EBFcontribution

EBFcontribution

LATdatagram Length

LATdatagram Identity

LATcontribution Opaque

LATcontribution Length

LATcontribution Opaque

LATcontribution Length

LATcontribution Identity

LATdatagram Length

LATdatagram Identity

LATcontribution Opaque

LATcontribution Length

LATcontribution Identity

EBF event

…

…

Hard copies of this document are for REFERENCE ONLY and should not be

considered the latest revision beyond.
Form # LAT-FS-00005-01

Hard copies of this document are for REFERENCE ONLY and should not be

considered the latest revision.

