

Page 1 of 30
LAT-??-00???-01
 I&T Online System User’s Guide
Page 21 of 35

	
	Document #
	Date Effective

	
	LAT-??-00???-01 draft
	DRAFT 9/12/02

	
	Author(s)
	Supersedes

	
	Richard Claus
	

	LAT Interface Document
	
	

	
	Subsystem/Office

	
	Integration & Test/Online

	Document Title

	I&T Online System User’s Guide

This copy dated: 5/24/2004 11:35 AM
I&T Online System User’s Guide

CHANGE HISTORY LOG

	Revision
	Effective Date
	Description of Changes

	01
	
	Initial Release

	
	
	

	
	
	

	
	
	

	
	
	

TABLE OF CONTENTS
51.
Purpose

52.
Scope

53.
Acronyms

64.
Definitions

65.
Applicable Documents

76.
Introduction

77.
Requirements

78.
Architecture

79.
Commanding and monitoring: cmdSvr, cmdCli

710.
gNode and gAttr

710.1.
Description

710.2.
Constraints: gConstraint

710.3.
Engineering/Raw units conversions: gEGU

710.4.
Rules: gRule

711.
gLAT, etc.

1612.
gNAT

1613.
Schema

1714.
Configuration

1715.
Event data handling: evtSvr, evtCli

1715.1.
Current (pre-LCB) high rate problems

1716.
Event data parsing

1716.1.
Raw data format

1716.2.
Persistent data format

1817.
Command and Data telemetry

1817.1.
Database

1817.2.
Database documentation

1817.3.
Configuration management of database changes

1818.
Run Control

1918.1.
SETUP

1918.2.
TEARDOWN

1918.3.
START_RUN

1918.4.
STOP_RUN

1918.5.
PAUSE

1918.6.
RESUME

1918.7.
Event data processing

1918.8.
Usage

2119.
Message logging facility

2220.
Test report generation

2721.
Command audit trail

2722.
Multiple clients

2723.
GUI design tools

2723.1.
Qt

2723.2.
PyQt

2724.
Command/Monitoring GUI tools

3025.
Data visualization tool

3026.
Electronic logbook

3027.
Version control

3028.
Version configuration verification

3029.
Appendix

Purpose

This document …

1. Scope

The online system ...

2. Acronyms

ACD
LAT AntiCoincidence Detector subsystem

AEM
ACD Electronics Module

CAL
LAT Calorimeter subsystem

CCSDS
Consultative Committee for Space Data Systems

COTS
Commercial Off-The-Shelf
CU
Calibration Unit

EGSE
Electronics Ground Support Equipment

EM1
Engineering Model 1 EGSE

EM2
Engineering Model 2 EGSE

EPU
Event Processing Unit

FITS
Flexible Image Transport System

FSW
Flight SoftWare

FU
Flight Unit

GEM
Global trigger Electronics Module

GLT
GLobal Trigger

GUI
Graphical User Interface

I&T
Integration and Test

ICS
Interface Control Systems – makers of SCL
IDL
Interactive Data Language

LAN
Local Area Network

LAT
Large Area Telescope

ODBC
Open DataBase Connectivity

ROOT
Rene's (?) Object Oriented Tool

RPC
Remote Procedure Call

RTE
Run Time Engine

SAS
Science Analysis Software

SBC
Single Board Computer

SCADA
Supervisory Control And Data Acquisition

SCL
Spacecraft Control Language

SSR
Solid State Recorder

TBD
To Be Determined

TBR
To Be Resolved

TBS
To Be Supplied

TEM
Tower Electronics Module

TKR
LAT Tracker subsystem

3. Definitions

	1553

	MIL-STD-1553 – An electronics bus standard that is used in GLAST for communication between the Spacecraft and the LAT

	cPCI
	Compact PCI: an electronics bus specification used on the LAT

	Downstream
	Data-path direction toward the user interface and persistent storage

	Embedded system
	The processors and associated software embedded in some approximation of the LAT. For EM-1 this is typically a VME crate containing a VME SBC, although cPCI components can also be used.

	Just-in-time compilation
	A technique used by Python (and others) in which it detects whether or not a script needs compilation before executing it. If an up-to-date compiled version is available, it uses that and omits the compilation step.

	Qt
	A toolkit for building GUIs. See www.trolltech.com.

	PyQt
	A set of Python bindings for the Qt toolkit. See www.riverbankcomputing.co.uk/pyqt/

	SCADA system
	Typically, control systems used for manufacturing floor automation applications. Often, these systems are Programmable Logic Controller (PLC) based.

	Upstream
	Data-path direction toward instrument sensors

	VME
	An electronics bus specification

	XML
	Extensible Markup Language – a universal format for structured documents and data used on the Web and elsewhere

4. Applicable Documents

	LAT-TD-00426
	LAT Integration and Test Subsystem PDR Report

	LAT-TD-00456
	GLAST LAT I&T Online Requirements Document – Level 3

	LAT-??-?????
	Test Executive Reevaluation

5. Introduction

6. Requirements

7. Architecture

8. Commanding and monitoring: cmdSvr, cmdCli

9. gNode and gAttr

9.1. Description

9.2. Constraints: gConstraint

9.3. Engineering/Raw units conversions: gEGU

9.4. Rules: gRule

10. gLAT, etc.

Registers, Dataless commands.

Concept of registers “owned” by the System vs. registers “owned” by the Subsystem and those requiring access by both. Itemize in a table

Concept of the system’s state when registers are touched. Sweeping. Coordinated by RunControl.

GLAST LAT functional block hierarchy representation in Python. See the following documents for more info:

· The Tower Electronics Module (TEM) - Programming ICD specification (LAT-TD-00605-D1)

· ACD Electronics Module (AEM) - Programming ICD specification (LAT-TD-00639-D1)

· The Event Builder Module - Programming ICD specification (LAT-TD-01546)

· The GLT Electronics Module - Programming ICD specification (LAT-TD-01545)

· The Command/Response Unit - Programming ICD specification (LAT-TD-01547)

· The Power Distribution Unit - Programming ICD specification (LAT-TD-01543)
The gLAT module provides classes that are used as the building blocks for the LAT hierarchy. All classes inherit from Gnode class and add their own member methods and functions where necessary.

Here is a list of classes defined:

· GLAT: Root node for the hierarchy

· GPDU: Power Distribution Unit

· GPDUC: PDU Controller

· GPEQ: PDU Environmental Monitors

· GTWR: Tower

· GTEM: Tower Electronics Module

· GCCC: Calorimeter Cable Controller

· GCRC: Calorimeter Readout Controller

· GCFE: Calorimeter Front-end Controller

· GTCC: Tracker Cable Controller

· GTRC: Tracker Readout Controller

· GTFE: Tracker Front-end Controller

· GTIC: Trigger Interface Controller

· GAEM: ACD Common Controller

· GAEQ: ACD Environmental Monitors

· GARC: ACD Readout Controller

· GAFE: ACD Front-End Controller

· GGLT: Global Trigger

· GEBM: Event Builder Module

· GEBMC: Event Builder Module Controller

· GEBMST: Event Builder Module Statistics

· GGEM: GLT Electronics Module

· GGEMC: GLT Electronics Module Controller

· GGEMMG: GLT Electronics Module TAM generator

· GGEMST: GLT Electronics Module Statistics

· GGEMSC: GLT Electronics Module Scheduler

· GGEMVG: GLT Electronics Module ROI generator

· GGEMIE: GLT Electronics Module Input enables

· GGEMW: GLT Electronics Module Window

· GCRU: Command Response Unit
Each class (or block) consists of registers, dataless commands and various system and navigation methods. Register names match the ones specified in the ICD document and are owned by the subsystem. A block may contain additonal registers not specified in the ICD documents. These are “system owned” registers and do not map directly to a specific register of the subsystem hardware. They are provided to facilitate script writing and their functions are documented below wherever applicable. For each block there may be system methods which are associated with the block. They are implemented as methods rather than system owned registers because their signature may have required it that way (such as multiple input arguments, or a non-scalar result value). The navigation methods allow the script writer to navigate the block hieararchy within the hardware object model.
In addition, the following qualifiers exist for each register/dataless command:

· REG_VALID: A valid register.

· REG_DEPRECATED: A deprecated register.

· REG_READ_WRITE: A read/write register.

· REG_WRITE_ONLY: A write only register.

· REG_NO_DIRECT_ACCESS: A register that should only be accessed through its bit fields.

Each class defines a member variable called _valid_regs. This is a list of tuples containing the register/dataless command name, register no and size in bytes as defined in the ICD document. An optional tuple item contains the qualifier as specified above. Currently only REG_DEPRECATED qualifier can be combined with the other qualifiers. In order to combine multiple qualifers, they should be bitwise ORed together (eg. REG_DEPRECATED | REG_WRITE_ONLY).
Below is the reference for register block definitions. Only system owned registers, system methods and navigation methods have been documented. For subsystem owned registers please refer to the corresponding ICD document.

10.1. Register Block Definitions
10.1.1. The GLAST Large Area Telescope (GLAT) record type
	Register
	No
	Size
	Type
	Access
	Description

	PARITY_LATP_CELL_HEADER
	0
	2
	System
	R/W
	Cell Header Parity

	PARITY_LATP_CELL_BODY
	1
	2
	System
	R/W
	Cell Body Parity

	PARITY_TEM_CMD_STR
	2
	2
	System
	R/W
	TEM Command String Parity

	parity_tem_access_desc
	3
	2
	System
	R/W
	TEM Access Descriptor Parity

	parity_tem_cmd_payload
	4
	2
	System
	R/W
	TEM Command Payload Parity

	PARITY_TEM_CMD_STR
	5
	2
	System
	R/W
	AEM Command String Parity

	parity_tem_access_desc
	6
	2
	System
	R/W
	AEM Access Descriptor Parity

	parity_tem_cmd_payload
	7
	2
	System
	R/W
	AEM Command Payload Parity

	stats_failed_events
	8
	2
	System
	R/W
	Event statistics

	stats_failed_event_SENDS
	9
	2
	System
	R/W
	Event statistics

	stats_valid_events
	10
	2
	System
	R/W
	Event statistics

	stats_discarded_event_sends
	11
	2
	System
	R/W
	Event statistics

	stats_length_mismatch_count
	12
	2
	System
	R/W
	Event statistics

	stats_events_not_sent
	13
	2
	System
	R/W
	Event statistics

Parity manipulation registers:

· PARITY_LATP_CELL_HEADER Sets or returns the current LATp cell header parity setting. If the value is non-zero then all out going LATp packets will have their cell header parity inverted. This is used for testing parity errors. The default value is 0.
FSW equivalent: get/setCellHeaderParity, get/setCellHeaderParityAEM.
· PARITY_LATP_CELL_BODY Sets or returns the current LATp cell body parity setting. If the value is non-zero then all out going LATp packets will have their cell body parity inverted. This is used for testing parity errors. The default value is 0.
FSW equivalent: get/setCellBodyParity, get/setCellBodyParityAEM.
· PARITY_TEM_CMD_STR Sets or returns the current TEM command string parity. If the value is non-zero then all out going TEM commands will have their command string parity inverted. This is used for testing parity errors. The default value is 0.
FSW equivalent: get/setCmdStrParityTEM.
· PARITY_TEM_ACCESS_DESC Sets or returns the current TEM access descriptor parity. If the value is non-zero then all out going TEM commands will have their access descriptor parity inverted. This is used for testing parity errors. The default value is 0.
FSW equivalent: get/setAccessDescParityTEM.
· PARITY_TEM_CMD_PAYLOAD Sets or returns the current TEM command payload parity. If the value is non-zero then all out going TEM commands will have their command payload parity inverted. This is used for testing parity errors. The default value is 0.
FSW equivalent: get/setCmdPayloadParityTEM.
· PARITY_AEM_CMD_STR Sets or returns the current AEM command string parity. If the value is non-zero then all out going AEM commands will have their command string parity inverted. This is used for testing parity errors. The default value is 0.
FSW equivalent: get/setCmdStrParityAEM.
· PARITY_AEM_ACCESS_DESC Sets or returns the current AEM access descriptor parity. If the value is non-zero then all out going AEM commands will have their access descriptor parity inverted. This is used for testing parity errors. The default value is 0.
FSW equivalent: get/setAccessDescParityAEM.
· PARITY_AEM_CMD_PAYLOAD Sets or returns the current AEM command payload parity. If the value is non-zero then all out going AEM commands will have their command payload parity inverted. This is used for testing parity errors. The default value is 0.
FSW equivalent: get/setCmdPayloadParityAEM.
Event statistics:

 The following statistics registers are initialized when the VxWorks startup script is executed. They can also be set from within a script.

· Stats_failed_events Counts events where the eventHandler receives a bad status for the event.
OCS equivalent: get/setFailedEvents.
· stats_failed_event_SENDS Counts events where the socket send failed with an error other than EWOULDBLOCK.
OCS equivalent: get/setFailedEventSends.
· stats_valid_events Counts when a valid event has been successfully sent to the client.
OCS equivalent: get/setValidEvents.
· stats_discarded_event_sends Counts cases when an event send failed due to the fact that the end returned an EWOULDBLOCK error.
OCS equivalent: get/setDiscardedEventSends.
· stats_length_mismatch_count Counts cases when the length argument passed to the event handler did not match the length provided in the event header.
OCS equivalent: get/setLengthMismatchCount.
· stats_events_not_sent Counts when the event mode is set to DONOT_SEND_EVENTS where the incoming events will not be forwarded to the client over the socket.
OCS equivalent: get/setEventsNotSent.
System methods:
· getConfigurations(self): Return a list of configuration tuples where each tuple contains the configDOM, configName and configRelease.
· satCounterEnable(self, scId): Enable saturation counter.
· satCounterDisable(self, scId): Disable saturation counter.
· isSatCounterEnabled(self, scId): Check if the saturation counter is enabled.
· getCmd(self): Returns the command client associated with GLAT.
· setCmd(self, cmdCli, recurse=1): Assign the command client to the LAT optionally setting it to all sub-components.
Navigation methods:
· allTEM, downTEM, allAEM, downAEM, downGEM, downEBM, downCRU, TEMcnt, downPDU, existsTEM, existsPDU, existsAEM, existsGEM, existsEBM, existsCRU
10.1.2. The GLAST Power Distribution Unit (GPDU) record type
	Register
	No
	Size
	Type
	Access
	Description

	dac_tem_voltage
	0
	2
	System
	R/W
	TEM Voltage DAC

	dac_tkr_analog_2_5
	1
	2
	System
	R/W
	TKR Analog 2.5V DAC

	dac_tkr_digital_2_5
	2
	2
	System
	R/W
	TKR Digital 2.5V DAC

	dac_tkr_cal_analog
	3
	2
	System
	R/W
	TKR/CAL Analog DAC

	dac_cal_digital_3_3
	4
	2
	System
	R/W
	CAL Digital 3.3V DAC

	path_cmd_resp_reset
	5
	2
	System
	R/W
	Command/Response/Reset Path

	path_trigger
	6
	2
	System
	R/W
	Trigger Path

	path_event
	7
	2
	System
	R/W
	Event Path

	evt_flow_ctrl
	8
	2
	System
	R/W
	Event Flow Control

	Dataless Command
	No
	Size
	Type
	Access
	Description

	cmd_tem_hw_reset
	0
	0
	System
	W/O
	TEM Hardware Reset

· DAC acquisition registers (dac_tem_voltage, dac_tkr_analog_2_5, dac_tkr_digital_2_5, dac_tkr_cal_analog, dac_cal_digital_3_3): Reads or loads the specified DAC register.
FSW equivalent ggDACread/ggDACload
· path_cmd_resp_reset: Sets or returns the current A/B path for command, response and reset lines. path A is 0, path B is non-zero.
FSW equivalent: gtGetAB/gtSetAB.
· path_trigger: Sets or returns the A/B Select bit of the XBRD Test Features register. path A is 0, path B is non-zero.
FSW equivalent: ggGetTrgAB/ggSetTrgAB.
· path_EVENT: Sets or returns the A/B path for incoming event data. path A is 0, path B is non-zero.
FSW equivalent: ggEvtGetAB/ggEvtSetAB.
· evt_flow_ctrl: Raise or lower the event throttle line to the TEM. Controls the state of the event throttle (flow control) line, which throttles events coming from the TEM to the miniGLT. If throttle is non-zero then flow control is asserted, otherwise flow control is de-asserted.
FSW equivalent: ggEvtThrottleTEM.
· cmd_tem_hw_reset: Forces a reset of the TEM.
FSW equivalent: gtReset.
System methods:
· getCmd(self): Returns the command client associated with GLAT.
· setCmd(self, cmdCli): Assign the command client to the PDU.
Navigation methods:

· downTWR, existsTWR, downPDUC, existsPDUC, downPEQ, existsPEQ
10.1.3. The GLAST Power Distribution Unit Controller (GPDUC) record type
	Register
	No
	Size
	Type
	Access
	Description

	CONFIGURATION
	0
	4
	SubSys
	R/W
	Configuration and setup

	ADDRESS
	1
	4
	SubSys
	R/W
	LATp node address

	CR_STATISTICS
	2
	4
	SubSys
	R/W
	Command/response statistics

	CRATES
	3
	4
	SubSys
	R/W
	Power control for EPU crates

	TEMS
	4
	4
	SubSys
	R/W
	Power control for TEMs

	ACD
	5
	4
	SubSys
	R/W
	Power for the FREE boards of the ACD

	MONITOR
	6
	4
	SubSys
	R/W
	Selects environmental monitoring group and starts acquisition

	Dataless Command
	No
	Size
	Type
	Access
	Description

	CMD_NOP
	0
	0
	SubSys
	W/O
	No operation

	cmd_reset
	1
	0
	SubSys
	W/O
	Hard reset of the PDU

System methods:

None

Navigation methods:

None
10.1.4. The GLAST PDU Environmental Monitors (GPEQ) record type
	Register
	No
	Size
	Type
	Access
	Description

	ADCS_00_07
	0
	12
	SubSys
	R/O
	Conversion results for the first 8 members of a specified group

	ADCS_08_15
	1
	12
	SubSys
	R/O
	Conversion results for the second 8 members of a specified group

	ADCS_16_19
	2
	12
	SubSys
	R/O
	Conversion results for the last 4 members of a specified group

System methods:

None

Navigation methods:

None
10.1.5. The GLAST Tower (GTWR) record type

	Register
	No
	Size
	Type
	Access
	Description

	adc_ps_temp_0
	0
	4
	System
	R/W
	

	adc_ps_temp_1
	1
	4
	System
	R/W
	

	adc_tem_temp_0
	2
	4
	System
	R/W
	

	adc_tem_temp_1
	3
	4
	System
	R/W
	

	adc_tem_voltage_0
	4
	4
	System
	R/W
	

	adc_tem_voltage_1
	5
	4
	System
	R/W
	

System methods:

None

Navigation methods:

None
10.1.6. The GLAST TEM (GTEM) record type

	Register
	No
	Size
	Type
	Access
	Description

	configuration
	0
	4
	SubSys
	R/W
	Configuration and setup

	data_masks
	1
	4
	SubSys
	R/W
	Masks for data taking

	status
	2
	4
	SubSys
	R/W
	CSR latched values

	command_response
	3
	4
	SubSys
	R/W
	Command/response statistics

	tkr_trgseq
	4
	4
	SubSys
	R/W
	Tracker trigger sequencing

	cal_trgseq
	5
	4
	SubSys
	R/W
	Calorimeter trigger sequencing

	address
	6
	4
	SubSys
	R/W
	TEM LATp address

	Dataless Command
	No
	Size
	Type
	Access
	Description

	cmd_reset
	1
	0
	SubSys
	W/O
	Hard reset of the TEM

	cmd_look_at_me
	9
	0
	System
	W/O
	Look at me command

11. gNAT

12. Schema

12.1. Introduction

Schemas are XML documents which describe the configuration of one or more hardware components connected to a teststand. They get inputted to RunControl by the operator after the script selection. They can also be provided to RunControl with the –s command line switch. Below is a simple example of how a schema looks like:

<?xml version='1.0' encoding='UTF-8'?>
<LATdoc name='Simple TEM Schema'>
 <schema>
 <GLAT>
 <GTEM ID='0'>
 <GCCC ID='0-3'>
 <GCRC ID='0-3'>
 <GCFE ID='0-11'/>
 </GCRC>
 </GCCC>
 <GTIC/>
 </GTEM>
 </GLAT>
 </schema>
</LATdoc>
The schema documents conform to the XML standard as specified by the World Wide Web Consortium (http://www.w3.org/XML/).
The above example describes a hardware configuration that consists of a TEM with fully populated CAL components (GCCC,GCRC,GCFE). The ID attribute defines which of the components will be available. In this case it is fully populated since a TEM contains 4 GCCCs, each GCCC contains 4 GCRCs and each GCRC contains 12 GCFEs.
Alhough not shown here the schema also defines the broadcast nodes. The declaration of the broadcast nodes is implicit unless overridden by the <explicitBroadcastNodes> tag. If explicitly defined then the ID attribute contains a “255” or “*” to signify that it is a broadcast node.
When the schema is read by gSchemaConfig::readSchema method, an object hierarchy is created with the top level object being a GLAT object instance. The more components are defined in the schema the longer it will take for the schema to load and the more memory it will require.

12.2. Reference

A schema always starts with an XML declaration. Typically it consists of the following line:
<?xml version='1.0' encoding='UTF-8'?>

This is followed by the root tag of the schema which is <LATdoc>. It has the following syntax:

<LATdoc name='name of the schema'>

The name gets stored as part of the LAT object hierarchy. It serves no other function except when the schema is written back to a file the name is preserved.
Then comes the optional declarations section and it may contain the following:
 <declarations>

 <import name='module name'>module specification</import>

 <group enabled='flag' name='group name'/>
 <options>
 <explicitBroadcastNodes>boolean</explicitBroadcastNodes>
 </options>
 </declarations>
The <import> contains the modules to be imported that contain the EGU (Engineering Unit Conversion) classes, the constraint classes and the rule classes. The module specification can be a Python source file (.py) or a module name. If it is a Python source file it can have the full path. If it doesn’t contain a path then PYTHONPATH is searched to find the module. module name is a string which identifies the module.
The <group> tag specifies a group with the name group name and the flag identifies whether it is enabled or not. The flag can have true, yes, false or no as values.
The <options> tag contains various options that affect the reading and processing of the schema. Currently the following options are defined:
<explicitBroadcastNodes> Specifies whether the explicit definition of the broadcast nodes are enabled or not. By default this option is disabled. A value of 1 can be used as the text element of this tag to enable this option.
Note: The declarations section can also be specified in a configuration definition and has additional options that apply to configuration. See the next section for more information.
After the optional declarations section the schema definition must be specified using the <schema> tag. Under this tag the LAT component hierarchy can be defined. Each component is defined by a tag that matches its name. Currently the following component names are recognized:

GLAT, GTEM, GCCC, GCRC, GCFE, GTCC, GTRC, GTFE, GTIC
GAEM, GAEQ, GARC, GAFE, GPDU, GTWR, GEBM, GEBMC, GEBMST

GGEM, GGEMC, GGEMMG, GGEMST, GGEMSC, GGEMVG, GGEMIE, GGEMW

Some of these tags can have an ID attribute used to specify the component id. The component id has the following syntax:
ID='single id'

ID='start id – end id'
ID='id1, id2,..., idn'
ID='*' or ID='255'
12.3. Advanced Schema Features

<include> tag: To reduce repetition of data, commonly used schema sections can be stored in separate files and included in other files using the <include> tag. It has the following syntax:
<include filename=’filename specification’/>
The filename attribute contains the filename or path of the XML file to be included. If it is a path it may contain environment variables. Environment variables start with a ‘$’ sign. Here is an example:

<include filename=’$ONLINE_ROOT/repos/envMonConfig.xml’/>
The <include> tag can be at any level of the XML hierarchy. It can also be specified in files that are included by other files. Care should be taken to avoid circular references when specifying the include files.
<opaque> tag: This tag is used to include user defined data along with the schema definition. It has the following syntax:

<opaque name=’opaque data name’>
Between the start end tags, valid XML data can be specified. The name attribute gives the opaque data a name for retrieval later. The data is kept in memory as an XML DOM (Document Object Model). It is the script’s responsibility to parse this DOM after retrieving it. The <opaque> tag can be specified at the top level (under the <LATdoc> tag) or under a specific component node. If it is at the top level then its binding is the root LAT object instance. Otherwise its binding is the component node under which it is specified. In order to access a component’s opaque data the getOpaque method of the corresponding object instance can be called. Here is an example:
 <schema>
 <GLAT>
 <GTEM ID='0'>
 <include filename="$ONLINE_ROOT/repos/TKRTowerInfo.xml"/>
 </GTEM>
 </GLAT>
 </schema>
TKRtowerInfo.xml file:

<?xml version='1.0' encoding='UTF-8'?>
<opaque name="TKRtowerInfo">
 <type>Minitower</type>
 <towerSerial>xxx-xxx-xxx</towerSerial>
 <layer id="X1">
 <mcm>102</mcm>
 </layer>
</opaque>
In the above example, once the schema is read a pointer to its root node, the GLAT object instance will be returned. If the opaque data of TEM 0 needs to be accessed, the following code can be written:

lat.TEM[0].getOpaque('TKRtowerInfo')
This will return a list of opaque data DOM objects that match the name 'TKRtowerInfo'. In this case a list with only one element will be returned. The reason the return value is a list is that the opaque data with the same name can be repeated more than once.
Another way of getting the opaque data is calling the method without any parameters. In this case all the opaque data associated with the specified component node will be returned in a dictionary object keyed by the opaque data name where each element is a list containing one or more opaque data that matches the key name.
13. Configuration

13.1. Introduction

The configuration section of a schema document starts with the <configuration> tag. It can be either contained within a schema document or be included using the include> tag. If it is included, the document it is contained in should be a well formed XML document.

The purpose of the configuration section is to initialize the hardware to a well known state before executing the script. The schema and the configuration go hand in hand, while the schema defines which components exist in the system, the configuration defines which registers in which components should be set to what values.
The act of processing the registers in a configuration is called applying a configuration or “applyConfig”. “applyConfig” is done at the setup stage of RunControl script execution. There can be more than one configuration script in a schema. During setup, each of these configurations is applied in the order that they are specified in the schema. In addition the script can apply any of these configurations by calling “self.applyConfig(seq)”, where seq is the sequence that the configuration appears in the schema.
Another way of reading in a configuration is to call “self.readConfig(filename)” where filename is the name of the configuration file in XML format.

Like in the schema declarations, EGUs, rules and constraints can be defined within a configuration section. The benefit of this is that different configurations can be applied for example based on the hardware versions or based on the user’s selections.

The syntax of a configuration section is similar to a schema. In order to specify the register values, under the component nodes each register name can be specified as a tag and the value to be assigned to that register will be the text element of that tag. Here is an example:

 <GTEM ID='0'>
 <GTCC ID='5'>
 <GTRC ID='0'>
 <GTFE ID='11'>
 <data_mask>0x20</data_mask>
 <calib_mask>0x20</calib_mask>
 <trig_mask>0x20</trig_mask>
 <mode>0x1</mode>
 </GTFE>

 </GTRC>
 </GTCC>
 </GTEM>
In the above example we are instructing the system that whenever the configuration is applied, the registers for TEM 0, TCC 5, TRC 0, TFE 11 will be set to the indicated values. The values can either be specified in hex or in decimal.
13.2. Reference
A configuration section always starts with the <configuration> tag having the following syntax:
<configuration name='configName' version='configVersion'>
The configName and configVersion are stored as part of the hierarchy and can be retrieved by calling the self.lat.getConfigurations() method which returns a tuple of DOM, configuration name and configuration version. This is useful in scripts where a GUI needs to be populated with the available configurations inside a widget.

Then comes the optional declarations section and it may contain the following in addition to the content described in the schema documentation:

 <declarations>

 <options>
 <skipTemOverrides>boolean</skipTemOverrides>
 </options>
 </declarations>
Whenever a configuration is applied, by default, certain TEM registers gets modified to make sure that the system is in a proper event data taking state. If the option <skipTemOverrides> has a value of 1 this process is skipped. This option is particularly useful when there are multiple configurations and this setting of the TEM registers should only be done during the application of the first configuration but not for the subsequent ones.
The component hierarchy inside a configuration section is defined similar to the schema hieararchy definition. Under each node a register/value list can be provided, as demonstrated in the introduction. A register entry has the following syntax:

<registerName egu="eguName" rule="ruleName" constraint="constraintName">
 registerValue
</registerName>
registerName is a valid register name documented for the node that it is listed under. This tag can have the following optional attributes:

egu
Defines the engineering constant conversion class used to calculate the registers converted value.

rule
Defines the rule that will be applied when the register value is read (evaluated).

constraint
Defines the constraints to apply when the register is assigned a value.

In addition, an optional register value can be specified so that when the configuration is applied, the register is set to the specified value. The register value can be in hexadecimal format preceded by “0x” or in decimal format. Although accepted, there is no need to supply the “L” qualifier since all values read are treated as “longs”.
14. Event data handling: evtSvr, evtCli

14.1. Current (pre-LCB) high rate problems

High trigger rate can overflow the COMM card FIFOs or cause similar problems. The COMM card driver captures all these effects in the form of a status value that is attached to each event. Any consumer of events is obligated to check the status of that event before parsing it. Currently, and this will change, you can get the event status either directly through the evtCli.readEvent() return value, or by looking at evtCli.evt_status after the event has been read. In most cases, if the status value is not zero, the event should not be processed. To find the meaning of specific status values, see gutil.py, which can normally be found in the Online/work/LAT directory.

In an earlier version of the Online System, events with bad status were not being delivered to the Python level. This had the disadvantage that an application could not know whether triggers were disappearing and for what reason, so we removed it. Also, some tests the Electronics Group created are specifically interested in events with bad status, and not in those with good status.

Another effect that might be observed is a slew of "send error: S_errno_EPIPE" messages appearing on the VxWorks console. These could appear when the Python application crashed, for example, since in that case there would be nothing to read the socket. The various buffers would fill up and not be drained by anything, so finally this message is emitted every time an attempt is made to write an event to the socket. However, it can legitimately happen that the trigger rate and event read rate is such that the network buffers fill up. This can happen when the bandwidth of the network is exceeded, or the event reader can't keep up with the trigger rate. In these cases, these messages are printed on the VxWorks console and a counter is incremented. The Online Group intends to have these counters displayable in the RunControl GUI, but it hasn't been implemented yet.

If bad status values are not seen but there are bad effects like the Python application crashing or messages appearing on the VxWorks console, then that might suggest that the event status value is not being set correctly by the COMM card driver code. Such situations should be reported to the Online group.

15. Event data parsing

15.1. Raw data format

EBF.

15.2. Persistent data format

FITS.

16. Command and Data telemetry

16.1. Database

16.2. Database documentation

16.3. Configuration management of database changes

17. Run Control

[image: image1.wmf]

userApplication

rcTransitions

Figure 1 – Run Control class hierarchy

Run Control provides a framework against which applications can be developed. The class hierarchy is shown in Figure 1. The system consists of a top level GUI that manages a Finite State Machine (FSM). The FSM has states RESET, STOPPED, RUNNING and PAUSED. The state transitions are called SETUP, TEARDOWN, START_RUN, STOP_RUN, PAUSE, and RESUME. The state diagram is shown in Figure 2.

[image: image2.wmf]

Reset

Stopped

Running

Paused

Setup

Teardown

Start run

Pause

Stop run

Stop

Resume

Figure 2 – State transition diagram

The state transitions are implemented through methods of the rcTransitions class. An application provides its functionality by providing an application class that inherits from the rcTransistions class. The application class must be called userApplication in order to make it findable by the RunControl code. userApplication may inherit from other classes in addition to rcTransitions, if that is beneficial to the application. Another allowable approach is for an application class to inherit from rcTransitions, which is then in turn inherited by the userApplication class. See Figure 3. This provides a method of relegating common features to a set of user applications to the sandwiched class(es) whilst keeping the application specifics in the top-level class. Each state transition can thus be personalized according to the needs of the application.

[image: image3.wmf]

userApplication

<appClass>

rcTransitions

Figure 3 - Example inheritance hierarchy

In addition to handling the state transitions, Run Control ensures that the application has an opportunity to process every data event received from the hardware, independent of the trigger type.

The following sections describe the state transitions and event handling in detail.

17.1. SETUP

The SETUP transition, as its name implies, is responsible for setting up the system. As such, it loads a schema and configuration file(s), initializes the command client, the event (telemetry) client and the trigger system (GLT). The application may have additional initialization work to do. This can be done by overriding the default setup() method of the rcTransitions class.

17.2. TEARDOWN

Stuff.

17.3. START_RUN

Stuff.

17.4. STOP_RUN

Stuff.

17.5. PAUSE

Stuff.

17.6. RESUME

Stuff.

17.7. Event data processing

Stuff.

17.8. Usage

 For running under Run Control, there are a couple of things to beware of. First, the system won't respond like you might expect by calling the userApplication transition methods (setup, teardown, startRun, stopRun, pause, resume and stop (n.b., not all of these are there, nor need to be there in your code, but they're available). The process method also falls into this catagory.) When running under Run Control, the run control software "owns" these functions and only it can call them. You just supply what you want done on each of these transitions and Run Control takes care of getting them called. The transition methods get called in response to the button clicks on each of the Run Control GUIs.

 (This is the difference between RunControl and RunControlMain: for RunControl, each button click in the figure corresponds to _one_ of the transition methods being called. For RunControlMain, each button click on the CD player-like buttons corresponds to several of the transition methods being called, depending on what state the system was in before the button was clicked and what destination state the button click requests. Remember the state transition diagram from the Online workshop.)

 When in standalone mode, the code at the bottom of your file fakes up Run Control's behaviour, so you'd need to provide the calls in the way you want them executed.

 So, calling self.stop() in __commandSynch() will mess things up. Currently there is no way for a RunControl application to control the state transitions. In other words, it can't cause the Run to be stopped and everything to shut down. So here's what you do:

 RunControl applications break down into two catagories. In the first, the application itself causes the system to trigger by writing to glt.CMD_SELF_TRIGGER. In the second, the hardware formulates its own triggers, uncommanded by software. userApplication.__commandSynch() was written for the first case. It's not needed in the second case. For triggers generated external to the software, you can safely get rid of __commandSynch and its related bits. userApplication.process() will get called for every event. You can decide in process() that you have enough data and then stop the triggers by setting the glt.MASK to 0x1F. (Note that you need to write to the MASK register only once per configuration change, not once for every event. The MASK register is described in the GLAST VME LAT Communications Interface (http://www.slac.stanford.edu/exp/glast/flight/sw/user_guide/index.html), section B.2.1. Unfortunately, this is only the hardware implementation. To see the way the Online software accesses these bits, see the GGLT class in gLAT.py.). The system will then wait for the user to press the Stop button to end the Run. (To support standalone mode, you'd also do self.__cmdSynchSem.release() so that the wait() method will return.) You could instead decide to change a register value (e.g. a DAC value) and take more data, but keep in mind that this is an asynchonous operation. There could well be lots of events buffered up that were acquired with the previous DAC value. Handling this situation is harder and I can describe it in a separate e-mail if you're interested. The solution is based on the use of the marker field in the trigger message. I use this method in rcTransitions.py to tell the event handler task to exit on the StopRun transition.

See Selim’s Run Control HowTo document: http://www-glast.slac.stanford.edu/IntegrationTest/ONLINE/docs/QuickRunControlGuide.htm
17.9. Command Line Switches

RunControl can be given the following switches on its command line. If a switch requires a parameter, a blank space or an equal sign can be used to associate the switch with the parameter.
 -h or --help for Help

 -u or --userid to specify the User Id (default is 1234)

 -d or --debug to specify debug mode (defaults to 0)

 The following debug modes are available and can be added together for combinations:

 0: No Debug
 1: Debug All
 2: Event Dump
 4: Warnings
 8: Parser Output
 16: Error Output

 -c or --config to specify the run control configuration file to use (defaults to runControl.cfg in the current directory)

 -p or --playback to indicate that Run Control should command the event server to play back the next event from its file. Since this is done using the GLT's self trigger command, the state of the internal trigger enable bit deterimines whether the application or Run Control will issue the self trigger command. No events will be delivered if the application has the internal trigger enabled, but doesn't issue CMD_SELF_TRIGGERs.

 -n or --noreload to specify a file that contains prefixes of modules which should not be reloaded when a user script is selected. This list gets appended to the default list which currently contains the following prefixes 'scipy', 'weave', 'qwt', 'xml', 'pyexpat', 'win32'. The file should contain one prefix per line.

 -s The default schema file to load. If this switch is specified then the operator does not get asked for a schema during setup.
18. Message logging facility
 - Client/Server model

 - Work out a protocol

 - Client broadcasts a message containing the protocol version number it speaks plus its IP address and port it wants a response on

 - Server(s) respond if they can speak the requested protocol

 - Server(s) add client's IP and port to their multicast lists

 - Server continues multicasting logged messages

 - Client displays logged messages

 - Need to consider filtering logged messages from a list of servers, i.e. to listen to only one system

 - Need to handle case when there are no servers available, i.e., broadcast once a second until a response is received, maybe optionally terminate after a minute

 - Consider receiving all server responses. If one speaking the right protocol version isn't found within a timeout period, quit with a message indicating that servers speaking a different protocol version have been heard from. This is to let user know that he's not running the right pair or he needs to upgrade his client.

19. Test report generation

The test report facility within Run Control provides a mechanism to create test reports in a well formed (XML) format using the provided report building methods and lets the user transform it to HTML format by providing an XSLT stylesheet template. A third-party tool called Pyana is used to do the transformation. A sample template (reportStyle.xsl.sample) is provided in the RunControl directory. For more information on XSLT see the following links:

XSL Transformations W3C Recommendation (http://www.w3.org/TR/xslt)
XSLT Tutorial (http://www.xfront.com/xsl.html)

LATTE Doxygen API for the Test Report class:

http://www-glast.slac.stanford.edu/IntegrationTest/ONLINE/docs/doxygen/html/classrcTestReport_1_1rcTestReport.html)

19.1. Test report generation - Sample Script
A sample usage of this facility is included in the file test_report.xml in the testsuite directory. To run the sample, follow the steps below:
On Windows:

1. Open up a Command Prompt.

2. Change the directory to the testsuite directory:

cd $ONLINE_ROOT\testsuite

3. Setup the paths:
..\RunControl\setupRunControl.bat

4. Run the test script:

python test_report.py

5. You will see an HTML output scroll by. To view the output file enter the following:

start newtest.html

6. If you’d like to make changes to the stylesheet to see how it will affect the output, edit the file CALstyle2.xsl and repeat steps 3-5.
On Unix:

Stuff.

19.1.1. Test report generation - Sample Script Walkthrough
Before describing how the test report class works. Let’s look at a simplified version of the test_report.py and the XML output that it generates. Note that the script writer will normally never see this output since it is automatically generated through the test report class methods and fed to the transformFile() method as an input. It is shown here to facilitate the walkthrough.
Sample Python source for test report generation:
from rcTestReport import rcTestReport

tr = rcTestReport()
tr.initReport(title='CAL System Test Procedure')
tr.addHTML("""

 <STYLE TYPE="text/css">

 H1 { font-size: x-large; color: red }

 H2 { font-size: large; color: blue }

 H3 { font-size: medium; color: blue }

 </STYLE>

""")
tr.addHeading('CALF_SUPP_P02')
tr.addHeading('System Test Procedure Report')
tr.addHeading('Sat May 31, 2003 18:01:46 Eastern Daylight Time')
versions = tr.addSection('Versions')
tr.addSectionItem(versions, 'Release', 'P01-06-00')
verTable = tr.addSectionTable(versions, border='1', width='25%')
tr.addTableHeader(verTable, 'Module', 'left')
tr.addTableHeader(verTable, 'Version', 'right')
tr.beginTableRow(verTable)
tr.addTableData('GAEM', align='left')
tr.addTableData('2.0.1.0', align='right')
tr.beginTableRow(verTable)
tr.addTableData('GGLT', align='left')
tr.addTableData('1.3.1.0', align='right')
tr.addSectionItem(versions, 'Verification failed on', 'cmdCli, evtCli')
assocFiles = tr.addSection('Associated Files')
tr.addSectionItem(assocFiles,
 'Snapshot File',
 '../snapshots/030531180141_calf_supp_p02.xml',
 'http://archsys/snapshots/030531180141_calf_supp_p02.xml'

)
tr.addSectionImage(runp, 'Test Image', './CALreport.png')
tr.transformToFile('CALstyle2.xsl', 'newtest.html')
Sample XML output:
<?xml version='1.0' encoding='UTF-8'?>

<TestReport>

 <Title>CAL System Test Procedure</Title>

 <div>

 <STYLE TYPE='text/css'>

 H1 { font-size: x-large; color: red }

 H2 { font-size: large; color: blue }

 H3 { font-size: medium; color: blue }

 </STYLE>

 </div>

 <Heading>

 <Line no='1'>CALF_SUPP_P02</Line>

 <Line no='2'>System Test Procedure Report</Line>

 <Line no='3'>Sat May 31, 2003 18:01:46 Eastern Daylight Time</Line>

 </Heading>

 <Section id='1'>

 <Caption>Versions</Caption>

 <Item>

 <Label>Release</Label>

 <Text>P01-06-00</Text>

 </Item>

 <Table width='25%' border='1'>

 <TR>

 <TH align='left'>Module</TH>

 <TH align='right'>Version</TH>

 </TR>

 <TR>

 <TD align='left'>GAEM</TD>

 <TD align='right'>2.0.1.0</TD>

 </TR>

 <TR>

 <TD align='left'>GGLT</TD>

 <TD align='right'>1.3.1.0</TD>

 </TR>
 </Table>

 <Item>

 <Label>Verification failed on</Label>

 <Text>cmdCli, evtCli</Text>

 </Item>

 </Section>

 <Section id='2'>

 <Caption>Associated Files</Caption>

 <Item>

 <Label>Snapshot File</Label>

 <Text>../snapshots/030531180141_calf_supp_p02.xml</Text>

 <Link>http://archsys/snapshots/030531180141_calf_supp_p02.xml</Link>

 </Item>

 <Image>

 <Caption>Test Image</Caption>

 <Link>./CALreport.png</Link>

 </Image>

 </Section>
Script Walkthrough:

First thing we do is import the test report class:

from rcTestReport import rcTestReport

Then we instantiate and initialize it:

tr = rcTestReport()
tr.initReport(title='CAL System Test Procedure')
The title parameter above specifies the HTML title that appears in the caption of the browser window. After that we add some HTML to change some of the formatting:
tr.addHTML("""

 <STYLE TYPE="text/css">

 H1 { font-size: x-large; color: red }

 H2 { font-size: large; color: blue }

 H3 { font-size: medium; color: blue }

 </STYLE>

""")
We then add the heading lines:

tr.addHeading('CALF_SUPP_P02')
tr.addHeading('System Test Procedure Report')
tr.addHeading('Sat May 31, 2003 18:01:46 Eastern Daylight Time')
For each section that we are going to add to the report, we call the addSection method:

versions = tr.addSection('Versions')
What addSection returns is an id for that section, for subsequent operations that is related to that section we specify this id:

tr.addSectionItem(versions, 'Release', 'P01-06-00')
In order to add a table we use the addSectionTable, addTableHeader, beginTableRow and addTableData methods, similar to section id, addSectionTable returns an id to be used in subsequent methods:
verTable = tr.addSectionTable(versions, border='1', width='25%')
tr.addTableHeader(verTable, 'Module', 'left')
tr.addTableHeader(verTable, 'Version', 'right')
tr.beginTableRow(verTable)
tr.addTableData('GAEM', align='left')
tr.addTableData('2.0.1.0', align='right')
tr.beginTableRow(verTable)
tr.addTableData('GGLT', align='left')
tr.addTableData('1.3.1.0', align='right')
We finish this section by adding one last item:

tr.addSectionItem(versions, 'Verification failed on', 'cmdCli, evtCli')

We add another section for associated files:
assocFiles = tr.addSection('Associated Files')
tr.addSectionItem(assocFiles,
 'Snapshot File',
 '../snapshots/030531180141_calf_supp_p02.xml',
 'http://archsys/snapshots/030531180141_calf_supp_p02.xml'

)
This item is a little different than the previous items we’ve seen since it contains an additional URL parameter. When this parameter included, the test report class converts the text of the item to a hyperlink that points to the given URL.
Finally we add an image to this section using addSectionImage:

tr.addSectionImage(assocFiles, 'Test Image', './CALreport.png')
Note that this time the URL for the image is given as a relative link. If the exported files’ location relative to eachother will not change after the export you can use relative links.

At the end to produce the report we call transformToFile:

tr.transformToFile('CALstyle2.xsl', 'newtest.html')
19.2. Test report generation – Stylesheet Format

The sample file reportStyle.xsl.sample should be adequate for most uses but can be modified given a basic knowledge of XSLT and HTML. There are a few places in the XSL stylesheet that can be modified to change the look of the report:
· Heading section:
This section of the stylesheet begins with <xsl:template match="Heading">. There are three lines allocated for the heading. Each line’s formatting is specified under the line <xsl:if test="@no='n'"> where n specifies the line number. By putting different HTML formatting tags around <xsl:value-of select="."/> you can change how your heading looks like.

· Caption section:
This section of the stylesheet begins with <xsl:template match="Caption"> and determines how the section Caption will be formatted. In the sample XSL file the <h1> tag is being used to specify the size of the font.
· Item section:
This section of the stylesheet begins with <xsl:template match="Item"> and determines how the section item Label and Text will be formatted.

· Image section:
This section of the stylesheet begins with <xsl:template match="Image"> and determines how the section image Caption will be formatted.

In addition to XSL formatting, the test report class has a method called addHTML that lets the script writer to add arbitrary HTML code to the output.
19.3. Test report generation – API Overview
Stuff.
19.4. Test report generation – Notes

In order to create the test report from within a Run Control script same guidelines can be used. In order not to hardcode the location of the stylesheet and the output HTML file, it is recommended that the script uses the Report File Directory preference of Run Control to set the path.

Example:

from rcTestReport import rcTestReport

tr = rcTestReport()
:
:
reportDir = self.gui.preferences()["reportdir"]
xslFile = os.path.join(reportDir, "mystylesheet.xsl")
htmlFile = os.path.join(reportDir, "myhtml.htm")
tr.transformToFile(xslFile, htmlFile)
self.addExportedFile(htmlFile)

The test report doesn’t become part of the run report until it gets added to the exported file list. Therefore it is very important that the user script calls the addExportedFile method.
20. Command audit trail

21. Multiple clients

22. GUI design tools

22.1. Qt

22.2. PyQt

23. Command/Monitoring GUI tools

23.1. Environmental Quantity Monitor GUI

[image: image4.png]Environmental Quantities =10l x|
Environmental Quantity Monitors
Update Rate: — — Raw =
DotaTaking | Chomrel0 | Chamel1 | Chammel2 | Chomel3 < sEC
Pt Monior moE m w e
| E— adc_cal_digital_3_3i
CAL Digital (3.3v) FETR F |~
cogepay | amem (B R
clroagar] 2e2v || CHIIF
CoLasaay | weeim || B L
e |T | T i
AL Bias () | = H
TEMDmaay] 22 v ||| P 8 L
TeMbgeEay] wesm T n
- |
Time

The Environmental Quantity Monitor can be launched from the main Run Control console and provides access to quantities like voltage, current and temperature. The top portion of the screen contains selection for the current component block, update rate and buttons for Raw/EGU switch and clearing the selections made.
The available options for the block are TEM 0 through TEM 15 and the ACD.

The update rate can be selected between every 2 seconds (slowest) to every 0.1 seconds (fastest).

The ‘Raw’ button let’s the user select between raw quantity values as they are received from the hardware or the engineering unit values based on the conversion classes used in the schema. These classes are contained in the file $ONLINE_ROOT\repos\envMonConfig.xml which gets included in the file $ONLINE_ROOT\repos\envMonSchema.xml
The ‘Clear’ button automatically unselects all checkboxes removing all monitors and plots.
The lower section of the screen is divided into two with a resizable splitter. The left side contains the quantity monitors in different channels and groups and checkboxes to select or de-select them. The right hand side contains a scrollable view where the plots get added as they are selected from the ‘Plot’ checkbox column.

For TEM there are 7 groups of quantities each represented under a tab. The tabs have the following titles:
Data Taking

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

PDU

For ACD the following groups exist:

ACD Environmental Quantities (1)

ACD Environmental Quantities (2)

TEM Quantities

Data Taking contains the following quantities:

Event Size

Deadtime Counter

CAL LRS Counter 1

CAL LRS Counter 2

TKR LRS Counter 1

TKR LRS Counter 2

TKR LRS Counter 3

TKR LRS Counter 4
Channel 0 contains the following quantities:
TKR Digital (2.5V)

TKR Digital (2.5I)

TKR Analog A (1.5V)

TKR Analog A (1.5I)

TKR Analog B (2.5V)

TKR Analog B (2.5I)

TKR Bias (V)

TKR Bias (I)

Channel 1 contains the following quantities:
CAL Digital (3.3V)

CAL Digital (3.3I)

CAL Analog (3.3V)

CAL Analog (3.3I)

CAL Bias (V)

CAL Bias (I)

TEM Digital (3.3V)

TEM Digital (3.3I)

Channel 2 contains the following quantities (all temperatures):

AFEE0 T0

AFEE0 T1

AFEE1 T0

AFEE1 T1

AFEE2 T0

AFEE2 T1
AFEE3 T0

AFEE3 T1

Channel 3 contains the following quantities (all temperatures):

TKR C0 T0

TKR C0 T1

TKR C1 T0

TKR C1 T1

TKR C2 T0

TKR C2 T1

TKR C3 T0

TKR C3 T1
Channel 4 contains the following quantities (all temperatures):

TKR C4 T0

TKR C4 T1

TKR C5 T0

TKR C5 T1

TKR C6 T0

TKR C6 T1

TKR C7 T0

TKR C7 T1
PDU contains the following quantities:

PS Temp 0

PS Temp 1

TEM Temp 1

TEM Voltage 0

TEM Voltage 1

ACD Quantities
ACD Environmental Quantities (1) contains the following quantities:

Env Free 00
Env Free 01
Env Free 02
Env Free 03
Env Free 04
Env Free 05
Env Free 06
Env Free 07
ACD Environmental Quantities (2) contains the following quantities:

Env Free 08
Env Free 09
Env Free 10
Env Free 11
24. Data visualization tool

HippoDraw.

25. Electronic logbook

26. Version control

27. Version configuration verification

Run Control system uses a type of checksum verification mechanism that allows for the operator and the test analysis team to determine at the time a test was executed whether any of the source, schema and configuration files have been modified since the release was installed on the teststand. The verification results are added to the run report at the end of the test. The results include the release id and a list of files that failed the verification.
There is also a “Verify Software” option under the Run Control application Help menu to do the verification. This option works a little different than the verification done during run report generation. During the run report generation only the modules that are loaded in memory and are listed in the verification database are checked and reported. When the user chooses the menu option to do the verification, all the modules that are part of the installation are checked for integrity. Therefore it is good practice for an operator to run this option before the session starts and log the results in the electronic logbook.

The verification is not only done for the core Online system files but also needed for subsystem test scripts and libraries. When a subsystem release is installed after the Online system is installed the verification data is added to the system. The run report generation process goes through the loaded modules including the test script being run and all the library modules it may be using and verifies them one by one. If any of them fail verification they are listed under the keyword field 'ModulesFailedVerification’.
28. Appendix

Hard copies of this document are for REFERENCE ONLY and should not be

considered the latest revision beyond.
Form # LAT-FS-00005-01

Hard copies of this document are for REFERENCE ONLY and should not be

considered the latest revision.

_1105515413.doc

rcTransitions

userApplication

_1105515531.doc

<appClass>

rcTransitions

userApplication

_1105515318.doc

Resume

Stop

Stop run

Pause

Start run

Teardown

Setup

Paused

Running

Stopped

Reset

