EM1 EGSE Configuration

- Subsystem (or simulator)
- AEM/TEM
- DC Power
- Back door debug RS-232
- LAT-COMM
- VME/cPCI Chassis
- CPU
- Online Workstation
- Ethernet Router and Firewall
- Main Dataflow Ethernet
- Ethernet
- Back door debug RS-232
- Online Workstation
- Central Database

Subsystem/simulator
Electronics/Online

WAN
Hardware hierarchy

LAT

TEM

CC

RC

AEM

RC

GASU

GEM

GLT

FE
Software hierarchy

- GTEM
 - GCCC
 - registers
 - GCRC
 - registers
 - GCFE
 - registers
 - GTIC
 - GTCC
 - GTRC
 - GTFE

Tower Electronics Module

- GAEM
 - GARC
 - registers
 - GAF
 - GGEM
 - GGLT
 - registers

AntiCoincidence Detector Electronics Module

Global Trigger Electronics Module
Quantities (1)

<table>
<thead>
<tr>
<th>TEM Functional Block</th>
<th>Total Number per TEM</th>
<th>Number of Registers per Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTEM Tower Electronics Module</td>
<td>1</td>
<td>6 x 32-bits</td>
</tr>
<tr>
<td>GCCC Calorimeter Cable Controller</td>
<td>4</td>
<td>7 x 32-bits</td>
</tr>
<tr>
<td>GCRD Calorimeter Readout Controller</td>
<td>16 = 4 x 4</td>
<td>8 x 16-bits</td>
</tr>
<tr>
<td>GCFE Calorimeter Front-End ASIC</td>
<td>192 = 16 x 12</td>
<td>3 x 16-bits</td>
</tr>
<tr>
<td>GTCC Tracker Cable Controller</td>
<td>8</td>
<td>6 x 32-bits</td>
</tr>
<tr>
<td>GTRC Tracker Readout Controller</td>
<td>72 = 8 x 9</td>
<td>2 x 64-bits</td>
</tr>
<tr>
<td>GTFE Tracker Front-End ASIC</td>
<td>1728 = 72 x 24</td>
<td>5 x 64-bits</td>
</tr>
<tr>
<td>GTIC Trigger Interface Controller</td>
<td>1</td>
<td>18 x 32-bits</td>
</tr>
</tbody>
</table>

Totals: ~2000 ~10000
Quantities (2)

<table>
<thead>
<tr>
<th>AEM Functional Block</th>
<th>Total Number per AEM</th>
<th>Number of Registers per Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAEM ACD Electronics Module</td>
<td>1</td>
<td>5 x 32-bits</td>
</tr>
<tr>
<td>GARC Calorimeter Readout Controller</td>
<td>12</td>
<td>43 x 16-bits</td>
</tr>
<tr>
<td>GAFE Calorimeter Front-End ASIC</td>
<td>216 = 18 x 12</td>
<td>11 x 16-bits</td>
</tr>
</tbody>
</table>

Totals: ~200 ~3000

1 LAT = 16 TEMs + 1 AEM + 1 GEM

= ~160000 + ~3000 + few registers

= ~165000 registers
Nodes and attributes

- **Gnode**: Base class describing a major block in the LAT hierarchy
 - Subclassed to create GLAT, GTEM, GCCC, GCFE, etc. nodes
- **Gattr**: Base class describing attributes of a Gnode
 - Examples are registers, dataless commands, etc.
 - Some Gattrs can have an associated constraint, rule and or raw/engineering unit conversion class
Constraints, Rules and EGU

- **Gconstraint**: Base class for describing a constraint
 - Constraints are evaluated when attempting to *write* a mnemonic
 - Two types of constraint subclasses are currently supplied
 - **GconstraintLimitRE**: RE => Raises Exception when attempt is made to violate limits.
 - **GconstraintLimit**: Pegs value to limits when attempt is made to violate limits. No indication given to caller that violation attempt was made.

- **Grule**: Base class for describing a rule
 - Rules are evaluated when a mnemonic is *read*
 - One example rule subclass is currently supplied
 - **GRuleLimit**: When value is outside limits, a message is printed

- **GEGU**: Base class for converting between raw and engineering units
 - One example subclass is currently supplied
 - **GEGU_linear**: Provides linear conversions
 - Could be used to convert between values and state names
Nodes and Attributes

- **Set()** evaluates constraint in *engineering* units
- **Set()** then converts to raw units before loading the value on the hardware
- **Get()** reads the hardware and converts the raw value to engineering units
- **Get()** then evaluates rule in *engineering* units
- If no EGU is defined, raw and engineering units are the same
Cautions

- Beware of naming inconsistencies
 - GlimitConstraint should be GconstraintLimit, etc.
 - We’ll try to get these fixed as we go along
- Beware of constraints and rules
 - These are evaluated directly in mnemonic accessors
 - Don’t provide one if it is not needed
 - Ensure that evaluation is success oriented and fast
 - Violations should not happen frequently and are thus not as CPU time critical
 - Minimize memory usage
 - Attempt to be generic so it can be reused with multiple attribute instances
- Beware of rounding issues with GEGUs
 - Constraints and rules are evaluated using engineering units
Software Architecture

>>> test()

DB server

Observer

App

DB repeater

DB server

...
Migration

• EM-1: No FSW beyond hardware drivers
 – Will be used for the EM test (cosmics, Van de Graaff photons)

• EM-2: Development platform for multi-tower support
 – Embedded systems run FSW code
 – Commanding will be done through a more realistic dictionary
 – Event format changes from TEM/AEM output style
 – Test bench scripts will still be able to be run

• CU: Four tower system used for the Beam Test at SLAC
 – No ACD contribution
 – Evolution of EM-2
 – Will need to handle external sources of data
 – 1553, SSR and SIS communications not required to satisfy test
 – Test bench scripts will still be able to be run

• FU/LAT: The complete system
 – Communications only through SIS, 1553 and SSR
 – Will need IOC/MOC-like interface
 – Test bench scripts will not be able to be run
Schedule

- EM test
 - March/April 2003
- CDR
 - April 2003
- SIS (Spacecraft Interface Simulator)
 - April 2003 (preliminary version January ’03?)
- CU beam test
 - May/June 2004
- FU/LAT integration
 - October 2004
- Airplane end-to-end test
 - February 2005