Tables

Triggering the LAT in the LATTE Environment

	[image: image1.jpg]

	LAT I&T Software

	Triggering the LAT in the LATTE Environment

	
	

	Number:
	LAT-TD-xxxx

	Subsystem:
	Integration and Test / Online

	Supersedes:
	None

	Type:
	Coding Documentation

	Author:
	J. H. Panetta

	Created:
	23 March 2004

	Updated:
	14 April 2004

	Printed:
	18 January 2002

	
	

A manual for the use of the trigger system from within LATTE.
Covers coincidence based systems (ACD teststand) and veto based systems (LAT).

With annotated examples

Document Approval

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	Prepared By:
	
	
	
	

	
	J. H. Panetta
	LAT Integration and Test
	
	Date

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	Approved By:
	
	
	
	

	
	
	
	
	Date

	
	
	
	
	

	Approved By:
	
	
	
	

	
	
	
	
	Date

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Record Of Changes

	Version
	Date
	Title Or Brief Description
	Entered By

	0.1
	12 January 2002
	Draft Release
	J. H. Panetta

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents

11
Introduction

22
Application Level Triggers

22.1
Setup

32.1.1
Input Masks

32.1.2
Engine List

32.1.3
Conditions

32.2
Using the Trigger System

43
Triggering System

43.1
Input Enables

43.1.1
TrgInputEnables Class

53.1.2
TrgCnoEnables Class

53.1.3
TrgTileEnables Class

53.1.4
TrgTowerEnables Class

53.2
Towers Interface

53.2.1
TrgTowers Class

63.2.2
TrgTower Class

63.2.3
TrgCalorimeter Class

63.2.4
TrgTracker Class

63.3
Trigger Engines

63.3.1
TrgEngines Class

63.3.2
TrgEngine Class

73.3.3
TrgEngineRequest Class

73.4
Trigger Conditions

73.4.1
TrgConditions Class

73.4.2
TrgConditionsValue Class

73.4.3
MiniGLTTrgConditionsValue

83.5
Periodic Conditions

83.6
Trigger Sequencing

83.7
Trigger Coincidences

83.7.1
TrgCoincidences

83.7.2
TrgCoincidence

93.8
Trigger Statistics & Counters

104
LATTE Provided Implementations

104.1
Implementations for use with Run Control

104.1.1
rcTrgEngines

104.1.2
rcTrgTileEnables

104.1.3
rcTrgCoincidence

114.1.4
TrgRoiAsTiles

114.2
Blank Implementations

125
Example Code

125.1
SimpleGasuExample

135.2
MiniGLTExample

145.3
Coincidence Example

155.4
Engine Example

1 Introduction

The basic design of the LATTE Triggering system is detailed in GASU Based Teststands, LAT‑TD‑XXXXX. It is an object-oriented system, where each component of the trigger is a singleton class that defines or implements some function of the triggering system. User provided classes define the state of the system, while LATTE provided classes provide the hardware access layer and the high level trigger abstraction. Within this model, the user does not need to worry about the fine details of register shapes and names, and can set up an arbitrarily complex trigger using only a handful of tools.

This document is to serve as a programming manual for the trigger system for LATTE. The following assumptions will be made:

· The reader will be familiar with the PYTHON programming language and/or object-oriented systems in general.

· The reader will be familiar with the operation of Run Control.

· The reader will be aware of the existence of the document The GLT Electronics Module, LAT‑TD‑01545.
· The reader will be familiar with triggering systems in general. For more information on this, see GASU Based Teststands, LAT‑TD‑XXXXX on the I&T Online website:
http://www-glast.slac.stanford.edu/IntegrationTest/ONLINE/default.htm
2 Application Level Triggers

2.1 Setup
Setting up a trigger at application level is meant to be straightforward. This section will walk the user through the creation of a relatively simple trigger setup. Each numbered point here references to the example codes in Chapter 5.

1. Create the top level class:
For GASU systems, inherit from TrgUsingTiles or another high level implementation (such as rcTrgGem). In the example code, this class is SimpleGasuExample.
For GLT systems, inherit from rcTrgMiniGLT. In the example code, this class is called MiniGLTExample.

2. Define your input masks:
For GASU systems, implement the member function inputEnables(). This function returns an object which inherits from TrgInputEnables (Sec. 3.1.1). The example code's returned object is the LATTE provided NoInputsEnabled object.
For GLT systems, do nothing. Everything is always enabled.
Input masks are described in further detail in Section 2.1.1 and Section 3.1.
3. Define your engines:
For all systems, implement the member function engines(). This function returns an object which will inherit from rcTrgEngines (Sec. 4.1.1) Use the replaceEngine() member function to add any engines.
For GASU systems, multiple engines are typically defined. In the example code, this object is SGETrgEngines, which contains one engine: SolicitedEngine.
In GLT systems, only engine 0 can be defined.
Engines are described in section 2.1.2.

4. Define your trigger conditions:
For all systems, implement the member function conditions().
For GASU systems, this function should return an object that inherits from TrgConditionsValue (Sec. 3.4.2).
For GLT systems, this function should return an object that inherits from MiniGLTTrgConditionsValue (Sec. 3.4.3).
Conditions are described in section 2.1.3.

2.1.1 Input Masks

All input definitions inherit from TrgInputEnables. There are three classes of trigger inputs that can be masked:

· Towers: Mask in or out any of the three trigger lines from any or all of the 16 towers of the LAT. The format of the Tower masking classes is discussed in Section 3.2.

· Tiles: Mask in or out either side of any of the 108 tile lines. The format of the tile masking classes is discussed in Section 3.1.3. LATTE has provided an implementation of the tile enables classes: rcTrgTileEnables, discussed in Section 4.1.2.

· CNOs: Mask in or out any of the 12 CNO signals. The CNO enable class is discussed in Section 3.1.2.
2.1.2 Engine List
LATTE provides an implementation of the engine list class: rcTrgEngines. This implemen​tation resolves many of the gory details of engine list design. Each engine is created to do specific things (e.g. CALSTROBE followed by TACK) and to act whenever a particular condition exists in the system.(e.g. solicited trigger or calHigh).
See Section 4.1.1 for usage.
needs more work…
2.1.3 Conditions

Trigger conditions define what the system does when a trigger happens. There is one master condition for the system, which is what conditions() returns, and there are conditions under which each of the engines fire.
needs more work…
2.2 Using the Trigger System

needs work…

3 Triggering System
The components of the triggering system are described in detail in Chapters 4 through 12 of the document GASU Based Teststands (GTBS), LAT‑TD‑XXXXX. There are eight major components, discussed briefly in the following sections:
Input Enables: The components of the detector that contribute to the trigger decision
Towers: The components of the towers that contribute to the trigger decision.
Trigger Engines: What happens when a trigger occurs

Trigger Conditions: The physical circumstances under which the detector will trigger.

Periodic Conditions: A trigger which occurs at an interval

Trigger Sequencing: Initial and current event numbering.
Regions of Interest / Coincidences: ACD veto and tile coincidence setup.
Trigger Statistics / Counters: Track what’s going on in the detector.
LATTE provides an example triggering system called SimpleGasuExample, discussed in Chapter 4.

	[image: image2.wmf]

	self.trigger() is the default accessor to the trigger system from a user's test script. This member function is defined in rcTransitions.

3.1 Input Enables

3.1.1 TrgInputEnables Class
The trigger can receive input from a variety of sources: 108 tiles, 16 towers, 12 CNO signals. The set of input enables describes which of the above are allowed to be part of the trigger decision. Input Enables are split into three functional parts: ACD tiles, ACD CNO signals and Tower inputs. The class TrgInputEnables defines the interface, and defines three member functions:
· cno() : returns an object of type TrgCnoEnables.

· tiles() : returns an object of type TrgTileEnables.

· towers() : returns an object of type TrgTowerEnables.

LATTE provides a default implementation of the TrgInputEnables called NoInputsEnabled, defining a system where all trigger inputs are disabled.
	
[image: image3.wmf]

	Note: It is important to remember, only enable what needs to be enabled. If channels are enabled that are not connected, the inputs to the GASU may float, giving rise to a noisy system.

	[image: image4.wmf]

	inputEnables() is the accessor from the trigger system to TrgInputEnables.

3.1.2 TrgCnoEnables Class
Defines the enabled CNO triggers. Twelve member functions are defined, corresponding to the twelve FREE boards: LA1(), RB1(), LA2(), LB2(), RA2(), RB2(), LA3(), RB3(), LA4(), LB4(), RA4(), and RB4(). By default, all functions return False, that the indicated channel is not enabled.
LATTE provides an implementation of TrgCnoEnables called NoCnoEnabled.
3.1.3 TrgTileEnables Class
Defines which of the 108 tiles are enabled. The tile(tileNumber) function is implemented by the user to take a tile number (defined in appendix A of GASU Based Teststands) as an argument and return on of 4 values detailed in GTBS section 12.1.3.
LATTE provides two implementations of TrgTileEnables: NoTilesEnabled, which disables all tiles, and rcTrgTileEnables, which provides additional functionality. The latter is described in Section 4.1.2.

3.1.4 TrgTowerEnables Class
Defines which of the 16 towers are enabled. This class has one member function: towers(), which returns a TrgTowers object, defined in section 3.2. The returned TrgTowers object is where the inputs are enabled or disabled.
LATTE provides an implementation of TrgTowerEnables called NoTowersEnabled.

3.2 Towers Interface
3.2.1 TrgTowers Class
The TrgTowers class defines the setup of the 16 towers of the LAT. The user defines the member function tower(towerNumber) which returns an object of type TrgTower.

LATTE does not provide an implementation of TrgTowers.

3.2.2 TrgTower Class
Defines the setup of a single tower in the LAT. TrgTower has two user defined member functions: calorimeter(), returning TrgCalorimeter and tracker(), returning TrgTracker.

LATTE provides an implementation of TrgTower: NullTower.

3.2.3 TrgCalorimeter Class
Defines the input masking for a single tower’s calorimeter. TrgCalorimeter has two member functions: useHighEnergy() and useLowEnergy() both returning a boolean. These define whether or not the HE and LE signals are used in building a trigger. Default for both of these is False.
LATTE provides one implementation of TrgCalorimeter: NullCalorimeter.

3.2.4 TrgTracker Class
Defines the input masking for a single tower’s tracker. TrgTracker has one member function – use(), returning a Boolean – which defines whether or not to use the tracker THREE_IN_A_ROW signal for building a trigger. Default is to return False.
LATTE provides one implementation of TrgTracker: NullTracker.
3.3 Trigger Engines
The Trigger Engine classes define what the trigger system does when it detects a triggerable condition. They control trigger prescaling, readout options (zero suppression, four range readout, etc.), final event destination, event markers and command sequencing (TACK, CAL_STROBE).
3.3.1 TrgEngines Class
This class defines the list of engines in use. There must be exactly 16 engines, even if some are not ever used by the system. This class has one member function: engine(engineNumber) which returns a TrgEngine object.
LATTE requires the use of a particular implementation of TrgEngines: rcTrgEngines, described in Section 4.1.1.
	[image: image5.wmf]

	engines() is the accessor from the trigger system to TrgEngines.

3.3.2 TrgEngine Class
Users inherit from this class to customize their trigger engines. The member functions request(), prescale() and participate(conditionsNumber) must be satisfied. These return TrgEngineRequest, integer and boolean respectively. The integer return value from prescale() is defined in GBTS 9.1.
LATTE provides several implementations of TrgEngine covering many different needs. These are detailed in Section XXX.

3.3.3 TrgEngineRequest Class

This is used to specify the trigger message associated with a particular engine. It is intended to be used by inheriting from the following four classes:

TrgReadout: Readout the front end electronics.
TrgInjectCharge: Inject charge to the front ends.
TrgInjectChargeReadout: Inject charge and readout the front ends.
TrgMarker: Inject a marker event.
TrgEngineRequest provides two member functions for the users to implement: zeroSuppress(), returning True if the option is enabled and False otherwise; and fourRange(), returning similar logic. Default for both of these is False, indicating that the options are disabled.
3.4 Trigger Conditions
3.4.1 TrgConditions Class
This class defines one combinatoric of the seven trigger conditions (128 possible states). The class contains one member function for each condition. In no particular order, these are: roi(), calLow(), calHigh(), tkr(), periodic(), solicited() and cno(). Each returns True if the condition is used, False otherwise. Default is False. This class should not be used directly by the user. Use the derived class TrgConditionsValue instead.
	[image: image6.wmf]

	conditions() is the accessor from the trigger system to TrgConditions.

3.4.2 TrgConditionsValue Class

This class inherits from TrgConditions and adds the value() member function which computes the combinatoric conditionsNumber from the set of conditions.
Several examples of TrgConditionsValue implementations are given in the following sections.

3.4.3 MiniGLTTrgConditionsValue

This class inherits from TrgConditionsValue and specifies the conditions in applicable when a Mini GLT is used. It reimplements the value() function and adds an additional function external() corresponding to an external trigger source. The member functions roi(), periodic(), and cno() have no meaning in this implementation.

Systems which use a Mini GLT (i.e. those that don't have a GASU) should use this implementation as opposed to the parent implementation.

3.5 Periodic Conditions

These classes, TrgPeriodic and others, describe the character of a trigger signal that occurs a fixed interval. This feature is not often used in a test-stand environment, so no additional documentation will be
LATTE provides a default periodic condition that fires at approximately 10 Hz as part of SimpleGasuExample.

	[image: image7.wmf]

	periodicCondition() is the accessor from the trigger system to TrgPeriodic.

3.6 Trigger Sequencing

The trigger sequencing system sets the initial event number and tag, and it returns the current event number and tag. For user scripts, the only interesting functions are eventNumber() and eventTag(), which return the current event number and tag respectively.
LATTE provides a default implementation of TrgSequence as part of SimpleGasuExample.

	[image: image8.wmf]

	sequence() is the accessor from the trigger system to TrgSequence.

3.7 Trigger Coincidences

This set of classes allows the user to define coincidences between the tiles of the ACD. There are 16 regions of interest in the LAT, which map to 8 coincidence sets.
3.7.1 TrgCoincidences

This class has one member function, coincidence(coincidenceNumber), that returns a TrgCoincidence object.

LATTE provides one implementation of TrgCoincidences: TrgRoiAsTiles.

	[image: image9.wmf]

	coincidences() is the accessor from the trigger system to TrgCoincidences.

3.7.2 TrgCoincidence

This class has one member function, inCoincidence(tileNumber). This returns one of three values: a) less than zero: tile tileNumber will not be used in the coincidence set; b) greater than zero: return tile is in coincidence with tile tileNumber; c) equal to tileNumber: tile tileNumber is in coincidence with itself.
LATTE provides a useful implementation of TrgCoincidence: rcTrgCoincidence. This class is documented in section XXX.
3.8 Trigger Statistics & Counters
There are four sets of statistics counters on the GEM:
· Trigger Statistics: Provides the livetime(), number of triggers prescaled(), number of triggers discarded() due to busy and number of triggers sent().

· Tile Statistics: Provides hit statistics for two tiles A() and B(). Assign tiles with tileCounters().assignA(n), .assignB(n), .assignAB(n,m)
· Command Statistics: Provides the command() and response() statistics.
· Event Statistics: stats() provides the event statistics.
	[image: image10.wmf]

	triggerCounters().stats() is the accessor from the trigger to the trigger statistics.

tileCounters().stats() is the accessor from the trigger to the tile statistics.

cmdCounters().stats() is the accessor from the trigger to command/response statistics.

eventCounter() is the accessor from the trigger to event statistics.

4 LATTE Provided Implementations

4.1 Implementations for use with Run Control
Several class implementations are provided for users to use with LATTE. Each adds some additional functionality to the base classes, namely a base set up, coupled with hooks to ease of adding additional components.
4.1.1 rcTrgEngines

This class is an implementation of TrgEngines (Sec. 3.3.1). It provides a simplified interface for the user to add engines to the engine list. The new member function is replaceEngine(N, newEngine) which replaces engine number N with newEngine. The first parameter N is in the range [0..14]. Engine number 15 is reserved for LATTE use.
4.1.2 rcTrgTileEnables

This class is an implementation of TrgTileEnables (Sec. 3.1.3). It provides a simplified interface for the user to enable tiles. There is one new member function: addTile(tileNumber, side). The first parameter, tileNumber, is in the range [0..107], corresponding to the standard tile numbering scheme of the ACD. The second parameter, side, determines which channel of the tile is to be enabled. There are three possible values for side: 1, enable channel A; 2, enable channel B; and 3, enable both channels A and B.
4.1.3 rcTrgCoincidence

This class is an implementation of TrgCoincidence (Sec. 3.7.2). It also provides a simplified interface for the user to define coincidences between tiles. There is one new member function: addPair(tile1, tile2). The parameters tile1 and tile2 are in the range [0..107]. The addPair function effectively defines two sets of tiles that are in coincidence with each other. Note: due to implementation issues, the set of all tile1 tiles must be unique. An example use case of rcTrgCoincidence is shown in Section 0
4.1.4 TrgRoiAsTiles

This class is an implementation of TrgCoincidences (Sec 3.7.1). It provides one new member function, addCoincidence(n, coincidence) to allow the user to add coincidence sets to the system.
4.2 Blank Implementations

The following implementations of trigger classes are provided as instances of empty implemen​tations. Each of the following is an example of the class which either disables all inputs associated with the class, or sets up an object that does nothing. These are to be used by users to quickly disable systems which are not of interest. For example, the ACD would use the NoTowersEnabled class to define the masking for towers in the system.
· NoInputsEnabled(TrgInputEnables): Disables all inputs.
· NoTowersEnabled(TrgTowerEnables): Disables all towers.
· NoTilesEnabled(TrgTileEnables): Disables all tiles.
· NoCnoEnabled(TrgCnoEnables): Disables all CNO inputs.
· NullTower(TrgTower): Disables one tower.
· NullCal(TrgCalorimeter): Disables one calorimeter.
· NullTkr(TrgTracker): Disables one tracker.
· NullRoi(TrgRoi): Defines an empty region of interest set.
· NullCoincidence(TrgCoincidence) : Defines an empty coincidence set.
· NullEngine(TrgEngine) : Defines a minimal trigger engine.
· NullRequest(TrgEngineRequest) : Defines an empty engine request.
5 Example Code

This section contains a set of example code, discussed in detail in Section 2.
5.1 SimpleGasuExample

This is the example code from RunControl/applications in the standard LATTE release. It sets up a very minimal trigger with no trigger inputs enabled, and only the solicited condition enabled. This trigger reads out the detector without zero suppression when the user solicits a trigger.
from trigger import *

1 class SimpleGasuExample(TrgUsingTiles):

 def __init__(self):

 TrgUsingTiles.__init__(self)

 self.__inputEnables = SGETrgInputEnables()

 self.__engines = SGETrgEngines()

 self.__conditions = SolicitedCondition()

 def inputEnables(self): return self.__inputEnables

 def engines(self): return self.__engines

 def conditions(self): return self.__conditions

 def coincidences(self): return self.roi()

 def useAcdAsTrigger(self): return True

2 class SGETrgInputEnables(NoInputsEnabled):

 def __init__(self): NoInputsEnabled.__init__(self)

3 class SGETrgEngines(rcTrgEngines):

 def __init__(self):

 rcTrgEngines.__init__(self)

 # Only want one engine: Solicited Trigger

 eng = SolicitedEngine()

 self.replaceEngine(0,eng)
class SolicitedEngine(TrgEngine):

 # Solicited Trigger, TACK only, no zero suppression

 def __init__(self):

 TrgEngine.__init__(self)

 self.__request = TrgReadout()

 def participate(self,conditionsValue):

 cond = SolicitedCondition()

 if conditionsValue & cond.value():

 return True

 return False

 def prescale(self): return 0

 def request(self): return self.__request

4 class SolicitedCondition(TrgConditionsValue):

 def __init__(self):
 TrgConditionsValue.__init__(self)

 def solicited(self): return True

5.2 MiniGLTExample

This is an example similar to that in Section 5.1. It sets up a trigger for a G2 based system that reads out the system with zero suppression enabled whenever the user solicits a trigger.
from trigger import *

5 class MiniGLTExample(rcTrgMiniGLT):

 def __init__(self):

 rcTrgMiniGLT.__init__(self)

 self.__engines = MiniGLTTrgEngines()

 self.__conditions = MiniGLTSolicitedCondition()

 def engines(self): return self.__engines

 def conditions(self): return self.__conditions

6 class MiniGLTTrgEngines(rcTrgEngines):

 def __init__(self):

 rcTrgEngines.__init__(self)

 # There are two engines in the MiniGLT.

 # 0) User defined engine

 # 15) Marker engine
 eng = MiniGLTSolicitedEngine()

 self.replaceEngine(0,eng)
class MiniGLTSolicitedEngine(TrgEngine):

 def __init__(self):

 TrgEngine.__init__(self)

 self.__request = ZsupTrgInjectChargeReadout()

 def participate(self,conditionsValue):

 # This function relies on the programmer's knowledge that the

 # conditionsValue is a bitfield.
 cond = MiniGLTSolicitedCondition()

 condValue = cond.value()

 if conditionsValue & condValue:

 return True

 return False
 def prescale(self): return 0

 def request(self): return self.__request

7 class MiniGLTSolicitedCondition(MiniGLTTrgConditionsValue):

 def __init__(self): MiniGLTTrgConditionsValue.__init__(self)

 def solicited(self): return True

class ZsupTrgInjectChargeReadout(TrgInjectChargeReadout):

 def __init__(self): TrgInjectChargeReadout.__init__(self)

 def zeroSuppress(self): return True

5.3 Coincidence Example
This is a model of how to set up coincidences between tiles in a GASU system.
The first thing that must be done is to enable the tiles of interest. The LATTE class rcTrgTileEnables (see Section 4.1.2) provides an interface to make this easier, using a new member function addTile(). LATTE has also provided a map between tile names as defined in the GASU Teststands document and tile number. TrgGemRegisterGeometry contains the AcdTileNumbering dictionary which can be used as shown:
class TileEnables(rcTrgTileEnables):

 def __init__(self):

 rcTrgTileEnables.__init__(self)

 sideA = 1

 sideB = 2

 sideAB = 3

 from TrgGemRegisterGeometry import AcdTileNumbering as TN

 self.addTile(TN['000'], sideA)

 self.addTile(TN['001'], sideA)

 self.addTile(TN['002'], sideA)

Next is to set up the coincidences. The LATTE class rcTrgCoincidence (Section 4.1.3) is provided to make this less painful. This example sets up a coincidence such that the system will fire if: either tile 000 or 002 fires and if tile 001 or 002 fires. This means that the system will fire if only tile 002 goes off.

class MyCoinc1(rcTrgCoincidence):

 def __init__(self):

 rcTrgCoincidence.__init__(self)

 self.addPair(TN['000'], TN['001'])

 self.addPair(TN['002'], TN['002'])

Lastly, this coincidence needs to be added to the list of the coincidences. Somewhere in the constructor of the top level trigger class we put the following statement to add the coincidence to the system. The coincidences object must be of type TrgRoiAsTiles, as the addCoincidence() member function is used (Section 4.1.4).
 self.coincidences().addCoincidence(0,MyCoinc())
The GEM can handle a total of eight coincidence sets, allowing a quite complicated system. One possible application for using all eight in a testing situation is to create a set of coincidences, each of which has only one tile active (addPair(N, N)). This allows a test of eight tiles simul​ta​ne​ously.
5.4 Engine Example

This is a model of how to set up multiple, collaborating engines in a GASU system. The purpose of this engine set is to demonstrate the self-triggering capabilities of the ACD. One engine injects charge (CALSTROBE) to the front ends whenever the user solicits a trigger, the other reads out the detector (TACK) whenever the ACD veto roi is above threshold.
We first set up the class that returns when the engines() function is called. This class inherits from rcTrgEngines to that we can use the replaceEngine() member function (Section 4.1.1). We define two engines, SolicitedEngine and AcdEngine as engines 0 and 1 respectively.
class PulseEngines(rcTrgEngines):

 def __init__(self):

 rcTrgEngines.__init__(self)

 eng0 = SolicitedEngine()

 eng1 = AcdEngine()

 self.replaceEngine(0,eng0)

 self.replaceEngine(1,eng1)

SolicitedEngine is defined to inject charge when the application solicits a trigger. It is not prescaled.
class SolicitedEngine(TrgEngine):

 def __init__(self):

 TrgEngine.__init__(self)

 self.__request = TrgInjectCharge()

 def participate(self,conditionsValue):

 cond = SolicitedCondition()

 if conditionsValue & cond.value():

 return True

 return False

 def prescale(self): return 0

 def request(self): return self.__request

class SolicitedCondition(TrgConditionsValue):

 def solicited(self): return True

AcdEngine reads out the detector whenever the "roi" condition is asserted. It also is not prescaled.
class AcdEngine(TrgEngine):

 def __init__(self):

 TrgEngine.__init__(self)

 self.__request = TrgReadout()

 def participate(self,conditionsValue):

 cond = AcdConditions()
 ...
class AcdConditions(TrgConditionsValue):

 def roi(self): return True

After these engines are set up, the user issues a solicit() command. The GEM receives the command and issues a CALSTROBE message to the front ends, and then exits. Some time later (several microseconds) the charge injected into the front ends has built up enough to cause one or more of the ACD tiles to be above threshold. If these tiles were in the Input Enables (Section 2.1.1), the corresponding roi/veto signal would be asserted. This goes back from the front ends into the GEM and causes a TACK to be sent, and the front ends are then read out.

ii

LAT-TD-xxxx

Hard copies of this document are for REFERENCE ONLY and should not be considered the latest revision

_1072182281.doc
[image: image1.png]

