Division of Responsibility

- **GLAST Mission**
 - Scott Lambros

- **LAT**
 - Large Area Telescope
 - Peter Michelson

- **EGSE**
 - Electronics Ground Support Equipment
 - Gunther Haller

- **I&T&C**
 - Integration and Test and Calibration
 - Elliott Bloom

- **IOC**
 - Instrument Operation Center
 - Scott Williams
EGSE Deliverables (Electronics + I&T&C support)

- I&T test-stand software support
 - Engineering Model 1 (EM1)
 - Engineering Model 2 (EM2)
 - Qualification Unit (QU), Calibration Unit (CU)
 - Flight Unit (FU)

- Software support for various incarnations of test-stands
 - Infrastructure (Workstations, networking, crates, etc.)
 - Test executive
 - Graphical User Interfaces (GUIs)
 - Databases and tools
 - Analysis tools
 - Data archiver
 - Test procedure design and implementation
 - Code management and release control
EM1 EGSE Configuration

- Subsystem (or simulator)
- TEM
- VME/cPCI Chassis
- LAT-COMM
- CPU
- DC Power
- Online Workstation
- Ethernet Router and Firewall
- Back door debug RS-232
- Main Data Flow 100BaseT
- 100BaseT
- WAN
- Central Database
EM2, QU, FU EGSE Configurations

- Cal Unit or LAT or simulator
- TEMs
- EP
- GTM
- SIU
- T&DF System

EGSE
- CPU
- 1553
- SolidStateRec I/F
- I/O
- DC Power
- ePCI Chassis

Online Workstation
- Ethernet Router and Firewall
- Back door debug RS-232

Main Data Flow 100BaseT

Online Workstation
- 100BaseT

Oracle Database
- WAN

Workstation
- GTM
- Online Workstation
- TEMs
EGSE & Online software

• Real-time system (JJ Russell)
 – Embedded processors running the VxWorks RTOS
 – Data acquisition and control by Trigger & Dataflow system
 – Monitoring and control of Housekeeping items
 – Data acquisition from test-stand COTS I/O modules
• Command and Control Software (test executive)
 – Working assumption is that we’ll use Interface & Control System, Inc.’s (ICS) Spacecraft Control Language (SCL)
• Data acquisition, quality verification, archive and distribution
• Data visualization and analysis
 – SCL provides some help with these last two items
 – Third party COTS and Open Source software packages have been, or can be interfaced with SCL to provide the complete solution
Test Executive Software Decision Matrix

<table>
<thead>
<tr>
<th>Company: Product Name</th>
<th>Contact and phone #</th>
<th>Open Source</th>
<th>Supported Platforms</th>
<th>Export Control</th>
<th>Upfront Cost</th>
<th>website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado U/LASP: OASIS</td>
<td>Randy Davis 1-303-492-6867; Michelle Kelly 303-492-4624</td>
<td>Source is free, but not "open source"- ADA</td>
<td>Solaris 2.5.1 UltraspArc</td>
<td>No</td>
<td></td>
<td>http://lasp.colorado.edu/oasis/oasis.html</td>
</tr>
<tr>
<td>GSFC: ASSIST</td>
<td>Bill Mocarsky, William.L.Mocarsky.1@gsfc.nasa.gov</td>
<td>No-C</td>
<td>Linux, IBM AIX</td>
<td>yes</td>
<td></td>
<td>None found.</td>
</tr>
</tbody>
</table>
FUSE Control Center

- Johns Hopkins University
- Operational more than 2 years
- ICS also responsible for Payload Flight Software, I&T Systems, and Simulators.

INTEGRATED TOOLSET

- SCL
- SAMMI
- O2
- STK
- Orbix
- NDDS
- IDL
Real-Time Command and Control Infrastructure Overview

Using SCL Shared Memory, Commercial Database Product, and Science Processing Applications

Brian Buckley @ ICS, 9/10/01
SCL Summary

- **Heritage**: 13 year history of mission critical software product development
- **Mature**: eSCL is a proven, stable, Open Source product
- **Agile**: Allows rapid prototyping, deployment, and updates
- **Intelligent**: Automated analysis and decision-making capability
- **Simplicity**: Toolkit provides a centralized approach to encapsulating Design and Logic
Tasks

• SCL in the VxWorks environment
• Interface to test-stand hardware
• Design and build application SCL database schema(s)
• Select a user interface tool
 – Initially text based
 – National Instruments’ LabView
 – Kenesix’ SAMMI
 – ICS’ JAVA based GUI builder (available 11/01)
• Select a local database tool
 – MSAccess
 • Subsystems are starting with this
 – MySQL
 – ProgresSQL
• Provide mechanism to upload local database contents to the Central Database
 – Oracle
 – Located and managed at SLAC
Tasks, continued

- Select data visualization and analysis tool(s)
 - HippoDraw
 - SLAC support
 - ROOT
 - In wide use
 - IDL
 - COTS
- Work with subsystems to construct I&T&C procedures
- Deploy I&T test-stands and software
 - Educate and train end users
- Integrate orthogonal I&T data sources with test-stand data stream
 - Muon telescopes, photon taggers, etc.
- Support Instrument Operations Center (IOC) needs
- Provide code management and version control system
- Fault management
Subsystem I&T Test-stand Requirements and Schedule*

<table>
<thead>
<tr>
<th>Test-stand</th>
<th>Type</th>
<th>Number of instances</th>
<th>Release date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development support</td>
<td>EM1</td>
<td>2</td>
<td>11/01</td>
</tr>
<tr>
<td>Subsystem support</td>
<td>EM1</td>
<td>7 + 6 NRL</td>
<td>3/02</td>
</tr>
<tr>
<td>Integration Testing</td>
<td>EM1</td>
<td>2</td>
<td>6/02</td>
</tr>
<tr>
<td>SLAC DAQ hardware development</td>
<td>EM2</td>
<td>1</td>
<td>9/02</td>
</tr>
<tr>
<td>Flight Software Testbed</td>
<td>EM2+</td>
<td>1</td>
<td>12/02</td>
</tr>
<tr>
<td>Calibration/Qualification</td>
<td>QU</td>
<td>2</td>
<td>4/03</td>
</tr>
<tr>
<td>Flight Unit I&T</td>
<td>FU</td>
<td>2</td>
<td>8/03</td>
</tr>
</tbody>
</table>

* From Scott Williams GLAST Technical Memorandum GTM023a

R. Claus
Summary

• Working hard to control costs through the use of COTS hardware and COTS or Open Source software
• Initial “Development support” test-stand deadline (11/01) will be difficult to attain, but not out of the question
• Searching for additional high quality labor
• Sensor development version
 – VME crate
 – Motorola MVME-2306 CPU board
 • 333 MHz PPC 604r, 32MB, Ethernet interface
 • VxWorks
 – VME COMmunications Module (LAT-COMM)
 – Tower Electronics Module (TEM)
 – NT workstation

• DAQ development version
 – cPCI crate
 – Expect to select Motorola MCP-750 CPU board
 • 400 MHz PPC 750, 128 MB, Ethernet interface
 • cPCI System Slot
 • VxWorks
 – cPCI LAT-COMM
 – TEM
 – Sun or NT workstation
Engineering Model 2

- Extension of DAQ development version of EM1
 - Complete Trigger & Dataflow system with multiple tower support
 - Global Trigger
 - Event Processor
 - Spacecraft Interface Unit (SIU)
 - Addition of Spacecraft Interface Simulator (SIS)
 - Envisioned to be based on already existing VME test-stand h/w
 - Operator workstation is connected with SIS via ethernet
 - SIS is connected with LAT via MIL-STD-1553
 - SIS is 1553 Bus Controller (PMC card)
 - LAT is 1553 Remote Terminal (cPCI card)
 - Addition of Instrument Power Supply (IPS)
 - Under computer control
 - Monitoring and archiving of housekeeping data
Engineering Model 2+

- Extension of EM2
 - 16 TEMs
 - Inherits SIU
 - Sensor simulator
Qualification Unit & Calibration Unit

• Supports
 – 4 tracker/calorimeter towers
 – 1 ACD
 – Global Trigger
 – Event Processor
 – SIU

• Overlap with EM2+ use implies an additional
 – SIS
 – IPS
 – Workstation

• Used for environmental, beam, etc. tests
 – Hot spares required
Flight Unit

• Independent of QU/CU and other test-stands
• Space qualified hardware
 – BAE RAD-750 cPCI SBC under consideration
 – cPCI MIL-STD-1553 interface
• GSE hardware required
 – SIS
 – IPS
 – Two workstations
SCL Satisfies our Requirements*

- Data Archiving
 - Housekeeping and science data
- Data Logging
 - Actions, test reports, run-time logs, scripts
- Telemetry database
- Command database
- Database Interface Compliance (ODBC)
- Out of Tolerance Data
- Data Visualization and Manipulation Interface
 - Control GUI
 - Display of graphs, charts, tables
 - WEB aware
 - Ease of use
- Test Scripts, Command Procedure, and Operations Sequences
 - Rich scripting language
 - Multithreading capability

* LAT Electrical Ground Support Equipment Level 3 Specification (Doc # LAT-SS-00XXX-P1)
SCL Satisfies Requirements (cont’d)

• Resource Priorities
 – Capable of scheduling and prioritizing scripts
• Version Control
 – Run log recording of system component version numbers
• Open Source
• Operating System
 – Windows NT/2000, Sun Solaris, Linux, etc. supported
• Messaging service
 – Pagers, PDAs, cell phones
• Not Export Controlled
Concerns

• Managing SCL training and support costs
• Ability to cooperate with other onboard Spacecraft Control Systems
 – The GLAST spacecraft
 – The GBM instrument
• Footprint of SCL in the embedded system
 – Memory usage
 – CPU usage
• Scalability of SCL to the size of our application
 – Number of SCL database entries
 – Number of rules & constraints to be processed
• JAVA based monitoring and control GUI builder
 – Nominally ready 11/01
 • delays?
 – Initial release
 • buggy?
Manpower

- Myself
- Some loaner labor from EGSE
- Expect to hire at least one other full time person
- Can probably get a postdoc with 50% duty cycle
- Stanford University Research Assistant(s)
What We Do

Multi-platform, **portable** Software Development and Integration for:

- Autonomous command and control software and **embedded systems**
- **Large-scale** ground control software
- Mission planning and operations
- Industrial control systems
- Intelligent e-commerce solutions
- Acquisition, test instrumentation
- Simulation and modeling
- System monitoring and advisory systems
- General systems integration and test
Common Requirements of a e-Business Solution

- Portable to Common Platforms
 - Windows NT/2000, Solaris, Linux, HP/UX, etc.
- Industry standards
 - TCP/IP, HTTP, FTP, SQL, XML, PKI, SSL, SMTP, etc.
- 3-Tier Architecture
- Java and C++ interfaces
- Real-Time performance
- 24/7 reliability
- Scalability – server farms, multiple hosts
- Load Balancing
- Journaling and audit trail
- Plug in capabilities for new, extended, or legacy technologies
e-Command & Control

Core Components:

- eSCL – Rule and Scripting Engine
- Web GUI Builder – Desktops, PDAs, Phones
- Visual Scripting – Drag & Drop logic
- Fault Modeling using the UML Methodology
- Message Broker - Software bus
- Event Queues - load balancing
- Web-Based Commanding (packet formatting)
- Web-Based Monitoring (remote GUI)
- Archive and Playback
- Real-Time software Decom
- Authentication and Encryption Technologies
- ODBC database connectivity
- Real-Time Shared memory database(s)
- Schema examples
- Extended Stored Procedure and Trigger Samples
- .dll and API for event interface
- e-Mail bridge
- XML standards for data interchange
Steps to field an e-Control system

- Embrace SML/XML for a common data definition format
- Authenticate and Profile Users
- Web-based registration for events
- Modeling of and Validation of the System
- Data acquisition and decommutation
- Archive & Playback
- Real-Time Monitoring and Commanding
- e-mail alerts: desktop, cell phone, pager, PDA
- Web-Based Management and Administration
- Web-Based Commanding
- Web-Based Monitoring
- Integration with Commercial Database for Analysis, Reporting, and web-based data dissemination
SML – Spacecraft Markup Language

- XML tag set that is vendor-neutral
- Used to define Command items, Telemetry Items, Packet Definitions, Interprocess Communications Messages, etc.
- All SCL tools are SML compliant
- Data easily exchanged with other vendors
- Submitted to ISO committees for standardization
HelloWorld

message "Hello World"
end HelloWorld
Software Bus Messaging Layer

- Messaging (payload) is independent of protocols
- Enough information is carried to route messages

- Application
 - Software Bus API on top of a parser
- XML
 - XML Messages
- Transport
 - HTTP(S), RPC, ToolTalk, TCP, POP3, SMTP…
- Hardware
 - Ethernet
Data Acquisition and Decom

- Data acquired from Front end equipment
- Frames decommutated using tables defined for DataIO
- Data value updated in the SCL Database
- Real Time Change Only (RTCO) packet received by the RTE
- Relevant rules are retrieved, evaluated, and executed
- Well-Defined APIs for each Module…not all required depending on configuration
Archive and Playback

- Archive and Playback of Raw Frames and Changing Data
- Time Tagging and Snapshots
- XML format for storage
Web-Based SCL Projects

- XML embedded in scripts and rules
- Self-documenting using XML style sheets
- Details viewed in Browser
Web-Based Commanding

- XML command definitions
- SCL Command Generator
- Integrated with web browser for “point and click” commanding
Web-Based Monitoring

- SCL Database viewed in Browser as Text (today)
- Java Based GUI for gauges, strip charts, and meters (in work)
Deliver Web Data Anywhere

Welcome to my eSCL

Authorized Users Only!

Enter Your Login Information

User ID:
Password:

Log in

Welcome to my eSCL
Authorized Users Only!

ID: sldemo
Password: [Assigned] (Log in)

OR

Welcome to my eSCL
Authorized Users Only!

ID: sldemo
Password: [Assigned] (Log in)

Network Available

Brian Buckley @ ICS, 9/10/01
Intelligent Alerts

Sample COM approach: Pager, cell phone, PDA, desktop, etc.

- User Profile
- DBMS
- RealTime Data Handler
- eSCL
- Scripts & Rules
- Messaging Service
- Custom Interface(s)
- Logging
- Sample .COM approach: Pager, cell phone, PDA, desktop, etc.

Brian Buckley @ ICS, 9/10/01
Administration and Reporting

- Administrative interface using Commercial Database (ODBC)
- Administration and Reporting via the web
- SCL Scripts and Rules can manipulate Database tables