

What? Where How? Description of the Geometry

Anders W. Borgland SLAC Instrument Analysis Workshop 1 SLAC, June 7, 2004

Two towers

Viewed from the front, looking backward, the towers are numbered from the lower to higher values along X and Y, as illustrated below.

From the event display:

This talk:

- Where to find useful and relevant geometry information.
- How to use the event displays to access geometry information.

Where and what?

- Geometry information can be found in XML files in the package xmlGeoDB.
- Geometry here means:
 - Geometry i.e. how many, how wide etc.
 - Material characteristics and composition.
 - Configuration i.e. detector thresholds like
 - cal.zeroSupressEnergy
 - Tkr.trigThreshold
- SAS and subsystems are currently working on verifying and updating these numbers:
 - LAT-TD-03674-01

- Release: EngineeringModel with cvs tag v2r0402p4
- Two towers specific information (actual position of the two towers etc):
 - xmlGeoDB/xml/latAssembly/2TowerSection.xml
- 'Everything' else:
 - xmlGeoDB/xml/latAssembly/2TowerSegVols.xml
 - Dimension of CAL diodes are still the same, so
- The file just contains softlinks to xmlGeoDB/xml/flight/*.xml
- Material characteristics and composition:
 - xmlGeoDB/xml/materials.xml

The Event Displays

- Looking at xml files can be fun, but
- We can also use event displays both the GLAST Event Display and FRED – to access and look at geometry information.
- Examples in this talk:
 - The CAL diodes
 - The tracker Multi-Chip Modules
 - Overall dimensions

Instrument Analysis Workshop June 7, 2004

The GLAST Event Display

		GuiMgr
File	Display Print EventLoop	
	OnboardFilter Si Strip Hits MonteCarlo Detector Status Info	>
	Galactic sphere radius Rocking Mode Celestial Sphere F Cal recon AcdRecon TkrRecon F axes	hide detector detail level 0 detail level 1 detail level 2 detail level 3 detail level 4 detail level 5
	Reference point Scale Set ref. pt Set magnification System	detail level 6 Materials Set color Al Al Al_11b Al_31b C_closeout CarbonFiber CsI Polystyrene Si Tkr_MCM_board Tkr_wall
۷iı	ew 3, Plan (X-Z)	Tray_bot_face

Anders W. Borgland

1

Instrument Analysis Workshop June 7, 2004

The CAL diodes

Instrument Analysis Workshop June 7, 2004

The CAL diodes cont'

xmlGeoDB/xml/flight/CALDimPrim.xml

GLAST LAT Project Instrument Analysis Workshop June 7, 2004 Tracker Multi-Chip Module (MCM)

xmlGeoDB/xml/flight/TKRDimPrim.xml

Anders W. Borgland

10/16

Instrument Analysis Workshop June 7, 2004

Tower dimensions X-Z (in mm)

Approximate dimensions from the event display using set points:

GLAST LAT Project

(Approximate) Tower dimensions Z-Y (in mm)

These numbers are only approximations found by using set points in the GUI. For the correct/precise dimensions, look in the xml files, in the new and updated document LAT-TD-03674-01 or

- FRED is a new event display see Riccardo's talk later today!
- Can load a 225kB xml file (made by a separate application) with all the geometry for the two towers.
- Can look at offline and independently of Gleam and GlastRelease.
- Easy to access geometry the information:
 - Click on the element (like the CAL diode) in the HepRep instance tree.
 - Dimensions, composition etc come up automatically i.e. no need for 'reference' points (and zooming) like with the old GUI.
 - Element is colour highlighted in the event display.

Instrument Analysis Workshop June 7, 2004

FRED

Conclusion

- SAS and the subsystems are currently verifying and updating the geometry information: LAT-TD-03674-01
- **Digging** in xml files to get to the geometry is fun, but looking at event displays is sometimes a good alternative.
- Checking out FRED may be worth while ③