

CAL Detector Knobs to Turn Or Eduardo Don't Touch That!!!!

J. Eric Grove Naval Research Lab, Washington DC

j.eric.grove@nrl.navy.mil (202) 767-3112

CAL Knobs

- Outline
 - Assumptions
 - CAL reminder
 - What knobs does CAL have?
 - Three themes
 - Basic operating modes
 - Flight mode
 - Ground modes
 - Known "features"
 - More to come, I'm sure

Instrument Analysis Workshop, June 2004

Assumptions

□ What are my assumptions?

GLAST LAT Project

- CAL modules arrive fully tested and calibrated with EM2 EGSE TEMs
 - Comprehensive Functional Test script exercises "everything"
 - Data are analyzed by on-line s/w
 - Test reports are generated
 - CAL-only muon and charge-injection data
 - Data are analyzed by Python scripts
 - Calibration tables are delivered with each Module
- Value added from Two Tower test and SAS tools
 - Integrated system performance [2 × (TKR+CAL)]
 - More detailed CAL light taper maps from TKR+CAL
- Tests, configurations, and tools
 - Defined. Debated. Detailed.
 - "Just because you can" doesn't mean "you should".' Neil Johnson, Axioms for Life

Naval Research Lab

CAL Module

- 8 layers of 12 CsI(Tl) crystals
 - Crystal dimensions
 - 27 x 20 x 326 mm
 - Hodoscopic stacking
 - alternating orthogonal layers
 - Dual PIN photodiode on each end of crystals
- Mechanical packaging
 - Carbon Composite cell structure
 - Al base plate and side cell closeouts

- Electronics boards attached to each side
 - Interface connectors to TEM at base of calorimeter
- Outer wall is EMI shield and provides structural stiffness as well

CAL Knobs

- What knobs can be turned?
 - Note: not "What knobs can you turn?" not "What knobs should you turn?"
 - Three themes
 - Gain
 - LE gain
 - HE gain
 - Time to peak
 - Triggering
 - FLE enable/disable and threshold
 - FHE enable/disable and threshold
 - Data volume
 - Range readout (auto/commanded, one/four)
 - Zero suppression enable/disable and threshold

Naval Research Lab

CAL Knobs

- Calorimeter Gain knobs
 - Preamp gain adjustable to meet Lev IV specs on energy coverage of LEX1 and HEX1 ranges
 - LE gain
 - 8 programmable settings, cover x3 in gain
 - One setting per CAL face (= 16 towers x 4 faces)
 - HE gain
 - 9 programmable settings, cover x3 in gain + test gain for muons
 - One setting per CAL face
 - Optimal settings determined with on-line s/w
 - No SAS analysis needed to find the setting
 - Time to peak
 - Adjusted so that track-and-hold occurs at peak of shaped signal
 - One setting per tower
 - Different setting for muons and charge injection
 - Optimal setting determined with on-line s/w
 - No SAS analysis needed

CAL Knobs

- Calorimeter Triggering knobs
 - Fast-shaped discriminator on all 4 channels of each CDE
 - FLE enable/disable
 - FLE threshold
 - 64 fine + 64 coarse programmable DAC settings
 - » Cover up to ~200 MeV
 - One setting per CAL xtal end (= 1536 xtals x 2 faces)
 - FHE enable/disable
 - FHE threshold
 - 64 fine + 64 coarse programmable DAC settings
 - » Cover up to ~25 GeV
 - One setting per CAL xtal end (= 1536 xtals x 2 faces)
 - Optimal settings determined with on-line s/w
 - No SAS analysis needed

Naval Research Lab

CAL Knobs

- Calorimeter Data Volume knobs
 - Range readout
 - Auto range or commanded range
 - One range or four ranges
 - Zero suppression
 - LAC ("log accept") enable/disable
 - LAC threshold
 - 64 fine + 64 coarse programmable DAC settings
 - » Cover up to ~20 MeV in $\sim \frac{1}{4}$ MeV steps
 - One setting per CAL xtal end (= 1536 xtals x 2 faces)
 - Optimal settings determined with on-line s/w
 - No SAS analysis needed

Naval Research Lab

Instrument Analysis Workshop, June 2004

CAL Knobs

- □ Other CAL knobs, not for use
 - Range discriminators
 - ULD for X8-X1 selection
 - GCRC timers
 - GCFE range settling time
 - ADC sample time
 - ADC conversion time
 - GCFE range enable/disable
 - Others...

Modes of Operation

- □ CAL configuration must be set by goal of test
 - "Just because you can"
- Functional testing during I&T exercises "all" configurations
 - Standard test suites, analyzed by existing on-line software
 - SAS can analyze, but this shouldn't be driver
- □ Most I&T operations will be in one of a few modes
 - 1. Flight mode: tests of flight ops
 - Best guess of configuration on orbit
 - 2. Ground mode: calibrations, daily health
 - High gain in HE channels to see muons, VDG gammas
 - Thresholds low enough for CAL to trigger on muons, VDG gammas

Naval Research Lab

Instrument Analysis Workshop, June 2004

J. Eric Grove

Modes of Operation

- □ Flight mode
 - Ground test of flight operations
 - Flight trigger
 - TKR trigger enabled
 - CAL trigger thresholds set high
 - » FLE ~ 100 MeV but disabled
 - » FHE ~ 1 GeV (??), enabled (??)
 - Flight gain
 - LE rails at ~ 1.6 GeV
 - HE rails at ~ 100 GeV
 - Minimize data volume
 - Auto-range, one-range readout
 - Zero-suppression enabled
 - » LAC threshold ~ 2 MeV or below

(i.e. flight trigger) (i.e. flight trigger)

(i.e. flight gain) (i.e. flight gain)

(i.e. flight readout)(i.e. flight readout)

Naval Research Lab

Instrument Analysis Workshop, June 2004

Modes of Operation

- Ground test with muons visible in HE ranges
 - Daily muon runs to test aliveness and stability
 - Energy calibration with muons
 - Flight trigger
 - TKR trigger enabled
 - CAL trigger thresholds set high
 - » FLE ~ 100 MeV, but disabled
 - » FHE ~ 1 GeV (??), enabled (??)
 - Muon gain
 - LE rails at ~ 1.6 GeV
 - HE rails at ~ 4 GeV
 - Intermediate data volume
 - Auto-range, four-range readout
 - Zero-suppression enabled
 - \gg LAC threshold ~ 2 MeV or below

(i.e. flight gain) (i.e. muon test gain)

(i.e. flight trigger)

(i.e. flight trigger)

(i.e. see all ranges) (i.e. flight setting)

Instrument Analysis Workshop, June 2004

Modes of Operation

□ Ground test with muons visible in HE ranges

- Ground test of CAL self-trigger
 - CAL trigger
 - TKR trigger disabled (or no TKR connected)
 - CAL thresholds set low to trigger on muons or VDG photons
 - » FLE ~ 2 MeV and FHE ~ 1 GeV
 - » FLE ~ 100 MeV and FHE < 10 MeV
- (trig on FLE) (trig on FHE)

- Muon gain
 - LE rails at ~ 1.6 GeV
 - HE rails at ~ 10 GeV
- Intermediate data volume
 - Auto-range, four-range readout
 - Zero-suppression enabled

- (i.e. flight gain) (i.e. muon test gain)
- (i.e. see all ranges) (i.e. flight setting)

Naval Research Lab

Washington DC

» LAC threshold ~ 2 MeV or below

Instrument Analysis Workshop, June 2004

Washington DC

Known "Features"

- Readout time can be long
 - 4-range, unsuppressed CAL readout ~ 600 us
 - Because of the TEM readout buffer logic, one of these events does indeed paralyze the entire system for ~ 600 us.
 - FIFO has space for less than 2 of these events
 - Readout is paralyzed if space for less than 1 remains.
 - Beware!

GLAST LAT Project

- □ Solicited triggers with zero suppression enabled...
 - CAL data will be null!
 - Either set the LAC threshold low that some pedestals sneak through, or inject charge in some specific channels
 - Remember the readout time is a function of the CAL data volume.
 - Tests with high-rate, Poisson solicited triggers must be carefully posed.

Instrument Analysis Workshop, June 2004

Known "Features"

□ CAL can retrigger

GLAST LAT Project

- If CAL self-trigger is enabled with a low threshold and zero suppression is enabled, CAL may double-trigger
 - Trigger gets re-enabled before it settles
 - Retrigger does not occur with zero supp disabled (i.e. large CAL data volume) because TEM readout is slow enough that FLE has had time to settle
- □ CAL trigger biases energy
 - If FLE fires (whether or not it's enabled), about 2 MeV gets added to LEX8 and LEX1 signals.
 - Don't calibrate gain scale with FLE set low for CAL selftrigger on muons or VDG photons.
 - Similar effect for FHE firing
 - Adds ~ 20 MeV

Naval Research Lab

Status of Flight CAL

Parts

- ~80% of crystals have arrived at NRL
- ~50% of CDEs have been assembled
- First flight AFEE boards have been assembled
- □ Four towers are fully populated with CDEs
 - Checked with GSE electronics
 - Each has 1.5 to 6 million good muons
- □ First integration of AFEE boards by end of month
- □ CAL Module environmental test begins in July

