

The GLAST Trigger System

Gregg Thayer SLAC Instrument Analysis Workshop 1 SLAC, June 7, 2004

References

- Trigger
 - LAT-SS-00286 LAT Global Trigger Specification
 - LAT-TD-00560 LAT Global Trigger and ACD Hit Map
 - LAT-TD-01545 GEM Programming ICD
- TEM
 - LAT-TD-00605 TEM Programming ICD
- AEM
 - LAT-TD-00639 AEM Programming ICD

Instrument Analysis Workshop June 7, 2004

Trigger Overview

- The Trigger monitors the LAT to decide to readout the detector
- Front end electronics digitize and process the signals from the detector
- Signals from the Towers are further processed by the TEMs
- The GEM handles the Trigger Requests and makes a trigger decision
- The TAM instructs the system to initiate readout

Instrument Analysis Workshop June 7, 2004

Trigger Primitives

- ACD
 - Each FREE board provides a High Level Discriminator signal and 18 Veto signals
 - The HLD signal is used as the CNO trigger
 - The Veto signals are used to form Regions of Interest (ROIs) which can be used as either a trigger or veto
- CAL
 - Each tower provides High
 Energy (HE) and Low Energy
 (LE) trigger request signals
- TKR
 - Each Tower provides a 3-in-arow signal
- Internal
 - The GEM can generate its own triggers either on command or periodically

Gregg Thayer

Instrument Analysis Workshop June 7, 2004

ACD Regions of Interest

 Each of the 16 ROI is defined as the OR of any of the 108 ACD veto signals and is used either as a trigger or a veto

GLAST LAT Project

- When used as a trigger, the ROI are paired, the coincidence of this pair forms the ROI condition
- When used as a veto, each of the 16 ROI are used to negate the trigger request of one of the TKR
- The ROI can only contribute in one of these modes at a time

Instrument Analysis Workshop June 7, 2004

Tower Trigger Primitives

The TEM Receives trigger signals from CAL and TKR

• CAL

- Input signals can be delayed 0-800ns
- Each input signal can be masked OFF
- Layer-end signals are OR'd to to produce TEM-wide HE and LE signals
- The width of the output HE and LE signals can be varied from 150-900ns

TKR

•

- Input signals can be delayed 0-800ns
- Each input signal can be masked off
- Layer-side signals are OR'd to produce layer signals
- Each layer signal can be masked ON
- 3-in-a-row logic is applied to layer signals
- Each 3-in-a-row combination can be masked OFF
- All 3-in-a-row combinations are OR'd to produce TEM-wide 3-in-a-row signal

Instrument Analysis Workshop June 7, 2004

Trigger Window

- The trigger window defines the time during which the trigger requests are coincident
- There are 7 trigger conditions which are the OR of the different trigger request signals:
 - ROI
 - CNO
 - CAL (HE)

GLAST LAT Project

- CAL (LE)
- TKR
- Periodic
- Solicited

- Any trigger condition can generate the opening of the trigger window
 - The width of the trigger window is adjustable (~50-1550ns)
 - During a window turn, all trigger requests are latched
- The 7 trigger conditions are used to map each of the 127 possible trigger conditions to one of the 16 Message Engines

Instrument Analysis Workshop June 7, 2004

Triggering

- The Message Engine is responsible for
 - Prescaling
 - Busy detection
 - Trigger Context portion of the TAM
- If the prescale counter has expired, and the LAT is not busy, a Trigger Accept Message is formed and sent to the TEMs and AEM
- The TEMs and AEM interpret the TAM and send the appropriate commands to the front end to read out the LAT

Gregg Thayer

8/11

Instrument Analysis Workshop June 7, 2004

Trigger Sequencing

Tracker

- The trigger context defines the combination of CALSTROBE and TACK commands sent to the front end
 - Trigger ACKnowledge initiates sample and readout of the detector
 - The CALibration STROBE signal can be used to initiate the injection of charge into the front-end
- There are 3 combinations of these commands
- The delays can be set separately for the AEM and the CAL and TKR on each TEM
 - a) is a fixed ~5 clock delay
 - b) and c) CALSTROBE delay 0-800ns.
 - d) and e) TACK delay 12.750 μ s

Gregg Thayer

9/11

Instrument Analysis Workshop June 7, 2004

Trigger Data Contribution

- When the GEM sends a TAM it also sends its event contribution to the EBM
- It contains the status of all of the trigger conditions latched during the window turn and the condition summary
- The live time, prescaled, discarded, and sent contributions are sampled from the Message Engine counters
- Trigger Time
 - the GEM timebase sampled at the close of the window
- 1-PPS Time
 - A count of the number of PPS signals received by the GEM and the timebase sampled at the time of the last arrival
- Delta Event Time
 - A count of the number of system clock tics since the last event

32 16		0
Event Summary]
ROI Vector	TKR Vector]
CAL _{HE} Vector	CAL _{LE} Vector]'
Condition Summary	CNO Vector	$\left]_{s}^{2}\right]$
Tile List		
live time		
prescaled]°
discarded],
sent];
Trigger Time];
1-PPS Time]1
delta event time],

GLAST LAT Project Instrument Analysis Workshop June 7, 2004 Diagnostic Event Contributions

- The TEM can be configured to include diagnostic information in the event
- Contains the status of all trigger requests
 - GCCC 32 bits, 16 for each layer-end
 - GTCC one for each layerside

GTCC Contribution

Gregg Thayer