

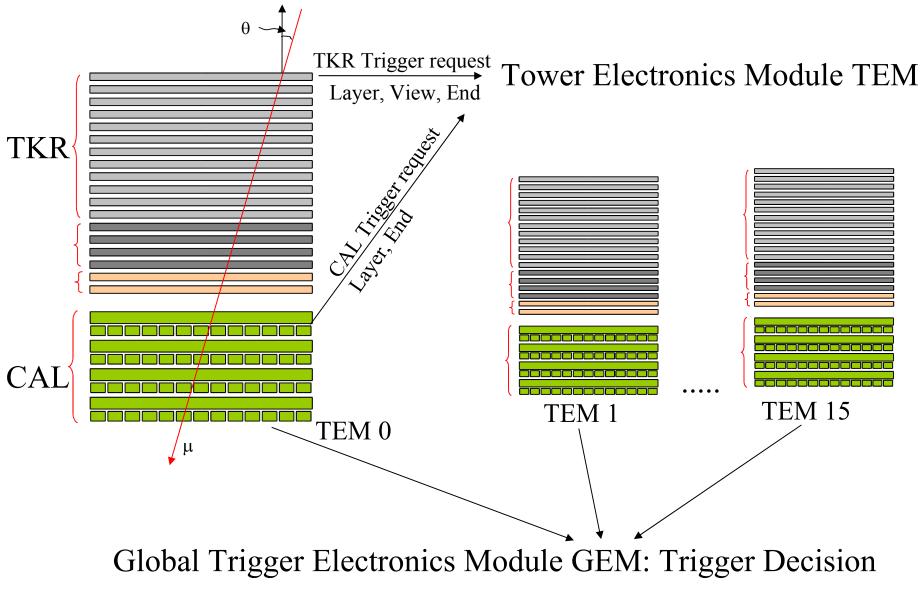
Gamma-ray Large Area Space Telescope

GLAST Large Area Telescope:

I&T Science Verification Analysis and Calibration (SVAC)

Instrument Data Analysis Smorgasbord

Anders W. Borgland SLAC I&T Science Verification Analysis and Calibration borgland@slac.stanford.edu



Instrument Data Analysis

- With hardware comes new things to look at!
 - What are they?
 - Do we want (all of) them?
 - Will they be available?
 - Where will they be available?
 - » Maybe here, maybe there, but certainly not everywhere!
- Hardware:
 - Tower Electronics Module (TEM)
 - Global Trigger Electronics Module (GEM)
 - Event size(s)
- Track reconstruction strategy for muons (during Integration):
 - Minimum track energy?
- Trigger information:
 - Current status

Trigger Requests and Trigger Decision

Tower Electronics Module TEM

- Tower Electronics Module (TEM):
 - LAT-TD-00605
 - TEM processes data from and manages the Front-End electronics:
 - Will not talk about readout and error contributions here.
 - Will concentrate on:
 - **TEM Diagnostic information = Trigger Primitives**
 - Trigger primitives:
 - Information the TEM received from the TKR and CAL electronics.
 - Transmitted to the Global Trigger Electronics Module GEM.
 - Used by the GEM to make the trigger decision.

Trigger Primitives

- Trigger primitives:
 - Detailed status of trigger <u>request</u> information:
 - For each end (of each view) of each layer in each tower
 - » i.e. There is a TKR trigger request from the positive End of View X of Layer 5 in Tower 8.
 - » i.e. There is a CAL LE trigger request from the positive End of Layer 2 in Tower 8.
- Warning!
 - Information lives in electronics space.
 - Sometimes non-trivial decoding to physical space!
 - » 'X' may be what you think of as 'Y' :-)

Trigger Primitives for the CAL

- CAL:
 - Two (nominal) trigger thresholds:
 - CAL Low Energy: 100 MeV
 - CAL High Energy: 1 GeV
 - Thresholds may change for Integration.
 - Trigger requests for
 - Each threshold and for
 - » Each layer
 - » Each end of layer
 - i.e. Don't know which crystal fired!
 - Know for each crystal whether it was above the zero suppression threshold.

Trigger Primitives for the TKR

- TKR:
 - Trigger request is '3-in-a-row' XY pairs of hits.
 - Trigger requests for:
 - Each layer: 0-15
 - Each view: X and Y
 - Each end of layer
 - i.e. Don't know which strip fired!
- For both CAL and TKR:
 - Don't have exact location of trigger request!

Trigger Primitives: Where Art Thou?

- Trigger primitives are in:
 - TDS
 - Digi root files
- Trigger primitives are also in the SVAC ntuple:
 - Electronics space (bitwise words):
 - TkrTp [Tower][0-7]
 - CalTp [Tower][0-7]
 - Decoded into physical space:
 - TkrReq [Tower][Layer][View][End]
 - CalReq [Tower][Layer][End]
 - » CAL LE and CAL HE are OR'ed together in CalReq.
- In addition, in the SVAC tuple:
 - Number of crystals per tower above the zero-suppression threshold:
 - CalNumHit [Tower]

SVAC

The GASU

- We now have a GAS Unit.
- GASU is a container for the four modules:
 - ACD Electronics Module (AEM)
 - Global Trigger Electronics Module (GEM) +
 - Command/Response Unit (CRU)
 - Event Builder Module (EBM)
- How do you make the acronym 'GAS' out of this?
- Will only talk about the GEM contribution here.

GEM!

Global Trigger Electronics Module GEM

- More details in LAT-TD-01545.
- **GEM's principal function**:
 - Process trigger inputs from the TEMs and ACD.
 - Make the decision whether to read out the event:
 - An otherwise triggerable event can be prescaled away or the instrument can be busy.
- Provides two types of information:
 - Trigger information at the tower level:
 - Which subsystem triggered and in which tower
 - » i.e. There is a TKR trigger in tower 8
 - Time and event counters.
- Provides the overall trigger word:
 - GEM Conditions Summary
 - 7 bits summarizing why the event triggered.
 - ACD ROI TKR CAL LE CAL HE ACD CNO Periodic Solicited

GEM Event Contribution: What Triggered Where?

- What triggered and in which tower:
 - 16-bits vectors with trigger signals:
 - TKR, CAL LE, CAL HE, ACD ROI, ACD SNO (12 bits)
 - » i.e. There is a TKR trigger in Tower 8.
- ACD tile list:
 - State of all the ACD tiles:
 - Hit/No Hit
- Event Summary:
 - CALSTROBE, Tag, TACK, 4-range readout, Zerosuppression, Marker, Event number

GEM Event Contribution: Time Counters

- GEM provides several time counters in ticks of 50 ns:
 - Live time:
 - 1/deadtime
 - 24 bits
 - Trigger time:
 - Free running counter incrementing at the system clock
 - Counts from when it was reset to the event was declared
 - 25 bits
 - 1-PPS time:
 - Seconds:
 - Number of seconds since the GEM was reset
 - 7 bits
 - 1-PPS time:
 - Time in 50 ns ticks of the last arrived 1-PPS signal
 - 25 bits
 - Delta event time: See later

- All of these counters roll over and at different times.
- Time Counters Usable? Time counters can give absolute time for an event: ٠
 - Only with Flight software ……?
 - Flight Software:
 - Keeps track of rollovers.
 - Anchors events within and keep track of 1-PPS signals.
- Not obvious what we can do:
 - Without Flight Software.
 - No 1-PPS signal.
- Online provides two event time stamps:
 - 60 Hz clock
 - 20 MHz system clock (50ns ticks):
 - This is when the event is <u>shipped from the Event Builder</u>.
 - Events queueing up may <u>increase</u> this time! (Buffered System)
- Not obvious how/if we can relate GEM time counters to Online ٠ time stamps.

Delta Event Time

- GEM Delta Event Counter:
 - Delta event time is usable!
 - Time between event (n-1) and event n.
 - 16 bits
 - It saturates at 3.2 ms

– i.e. Only usable above 300 Hz!

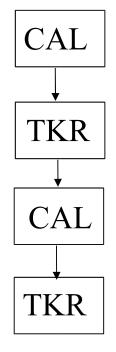
GEM Event Contribution: Event Counters

- Event counters:
 - Prescaled count:
 - Number of triggered events not passing the prescalers
 - 24 bits
 - Discarded count:
 - Number of triggered events passing prescalers, but lost due to LAT being busy.
 - 24 bits
 - Sent count:
 - Number of triggered events read out.
 - Same as number of Trigger Accept Messages (TAMs) sent by the GEM.
 - 16 bits

– Usable without Flight Software?

GEM Event Contribution: Where to find it?

- GEM Event Contribution:
 - TDS
 - Digi root files
- Merit tuple:
 - GEM Conditions Summary word is in Merit.
- SVAC tuple:
 - GEM Conditions Summary word
 - Event summary
 - All the time and event counters.
 - TKR, CAL LE, CAL HE, ACD ROI and ACD CNO vectors
 - Will be implemented as arrays.

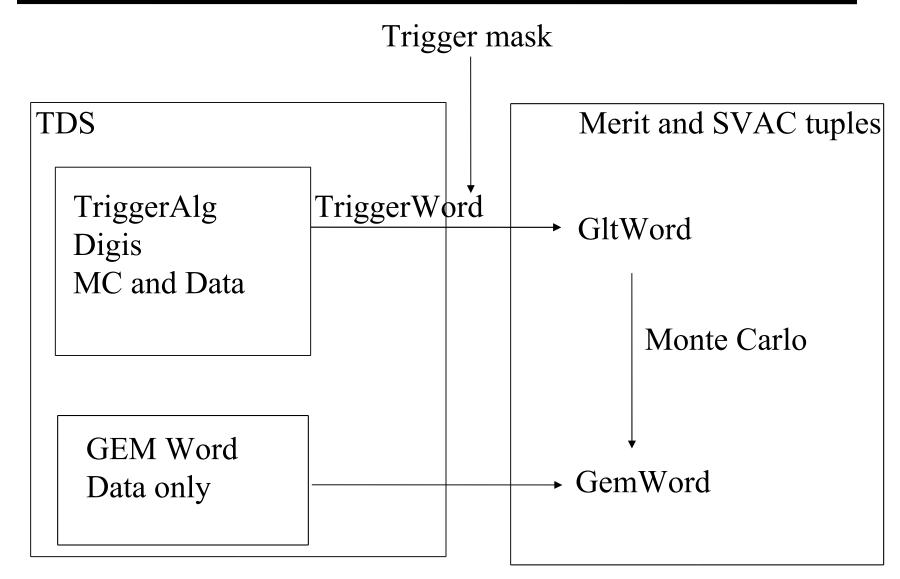

Event Size(s)

- We can get the size of the following event contributions:
 - ODS (Online time stamps)
 - GEM: Fixed size
 - TEM 0: Variable size
 -
 - TEM 15: Variable size
 - ACD: Variable size
- Will be put into
 - TDS
 - Digi root files
 - SVAC tuple
- Do we want separate CAL and TKR event sizes?
 - Calculated offline from the hits?

Track Reconstruction Strategy For Muons

- Current track reconstruction works in iterations:
 - CAL:
 - Get preliminary energy estimate.
 - TKR:
 - Track finding and preliminary track fit.
 - CAL:
 - Update energy estimate.
 - TKR:
 - Update track fit with improved energy estimate.
- Energy estimate is used to estimate multiple scattering:
 - Directly influences the errors.
 - Also determines track reconstruction strategy:
 - Low energy means lots of multiple scattering
 - » i.e. Only use the first few points to estimate the incident direction.

- Muons get assigned the wrong energy:
 - MIP leaves ~90 MeV in the CAL.
 - Track reconstruction assumes the muon is a 90 MeV track
 - i.e. Badly overestimates multiple scattering.
- Current track reconstruction also assumes the electron hypothesis:
 - Muon hypothesis available in latest version.
- Muon hypothesis sets a minimum track energy for reco to use.
- Non trivial problem:
 - Which energy to choose?
 - 1 GeV, 2 GeV, 3 GeV,?
 - How sensitive is it?
 - Is there a 'best' value?
 - Needs study!



Set a Minimum Energy?

- Can also set a minimum energy in the current MC version:
 - TkrInitSvc.TkrMinEnergy = 2000.0;
 - Tkrlter.Members={};
- Do we want to regenerate the Workshop MC with this?
 - Files exists for TkrMinEnergy = 2 GeV:
 - You can find it in the usual place for Workshop MC (directory 'cr_minTkrEnergy').
 - Also includes end-of-track parameters and both CAL end energies in the SVAC tuple.
- What do we want to do during Integration?

Trigger Information: Current Status

GEM Word and GltWord

- Trigger information from different and independent sources:
 - GEM Conditions summary word:
 - Trigger information from the hardware.
 - No GEM simulation
 - TriggerAlg, TriggerWord and the GltWord:
 - Made from the <u>digis</u>.
 - Exists for both MC and data.
 - GltWord is set from TriggerAlg/TriggerWord.
 - Content and order of bits are different between GemWord and GltWord!
 - GemWord:
 - ROI TKR CAL LE CAL HE CNO Periodic Solicited
 - GltWord:
 - ACD L ACD H TKR CAL LE CAL HE Throttle Livetime

Trigger Words In The Ntuples

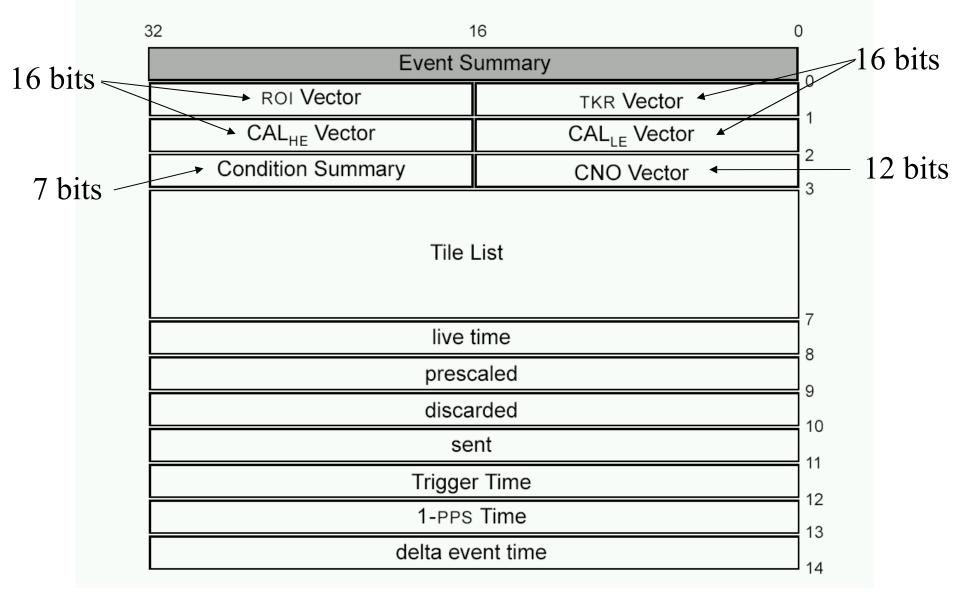
- Merit ntuple:
 - Glt variables are made as before i.e.
 - From the digis
 - GltWord is set by TriggerAlg/TriggerWord.
 - GEM conditions Summary word is a separate word.
 - MC:
- Relevant bits from GltWord is copied to GemWord.
 - » i.e. Can always make a selection based on the GemWord, even for MC.
- SVAC ntuple:
 - Same as Merit for GltWord and GemWord.
 - SVAC tuple will contain Luis' '3-in-a-row' digi combinations.

Trigger Words And Real Data: Who's The Boss?

- Real Data:
 - GEM Conditions Summary word is the ultimate authority.
 - TriggerAlg runs and calculates the 'usual' digi based Trigger word in TDS.
 - GltWord is a 'copy' of the digi based Trigger word.
 - To write out all the already triggered events (digi.root), you must set:
 - TriggerAlg.mask = 0;
 - If not, the digi based Trigger word will remake a trigger decision i.e. You can drop an already triggered event!

Conclusion

- Will soon(er or later) get towers!
- Lots of things to look at.
 - TEM trigger primitives
 - GEM:
 - Trigger information
 - Time and event counters
 - Need to think about
 - What we want.
 - Where we want it.
 - Usable?
 - » Only with Flight Software?
 - See also Su Dong's email to the Trigger list Sept 26 2004:
 - Additional GEM DAQ data on trigger timing?
- Minimum track energy for muon tracks in track reconstruction?
- Make sure we don't get lost in trigger words :-)



Backup suides.

Instrument Analysis Workshop, September 27, 2004

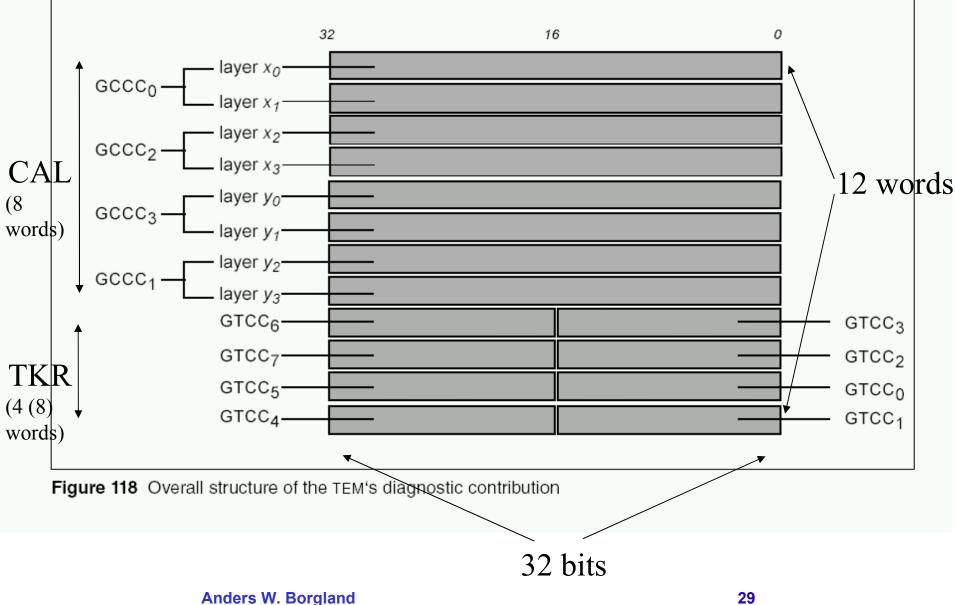
SVAC

GEM Event Contribution: Fourteen 32 bit words

Merit Trigger Variables: Not Much Overlap With GEM

- Merit contains the following GLT variables calculated from digi:
 - GltWord

SVAC


- Bit encoded word saying what (TKR,CAL) triggered
- Cf Condition summary in the GEM!
- GltTower
 - ID of tower (with lowest recon layer) that triggered.
- GltXTower, GltYTower
- GltLayer
 - First layer of trigger in GltTower
- GltTotal
 - Number of possible triggers
- GltNumTowers
 - Number of towers which triggered
- GltType
 - Number of exposed sides for the triggered tower
 - Cf ACD tiles

SVAC

Instrument Analysis Workshop, September 27, 2004

TEM Diagnostic Contribution

WARNING! In electronics land!

Instrument Analysis Workshop, September 27, 2004

The Calorimeter: Layer and Ends

- For each tower (TEM)
 - we have CAL LE and HE trigger request information for:
 - Each layer
 - Each End (positive and negative)
 - We know if each log was above zero-suppression threshold

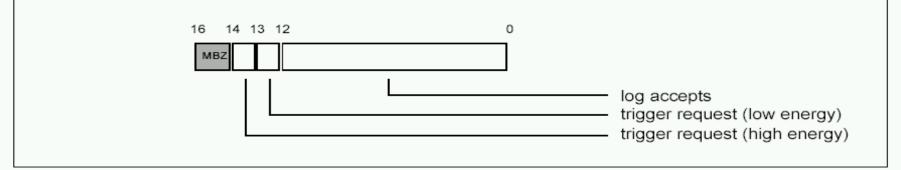


Figure 119 Calorimeter layer-end contribution to diagnostic data

Figure 120 Calorimeter layer contribution to diagnostic data

The Tracker

• For each tower (TEM)

SVAC

- we have '3-in-a-row' trigger request information for:
 - Each layer
 - Each view (X and Y)
 - Each End (positve and negative)

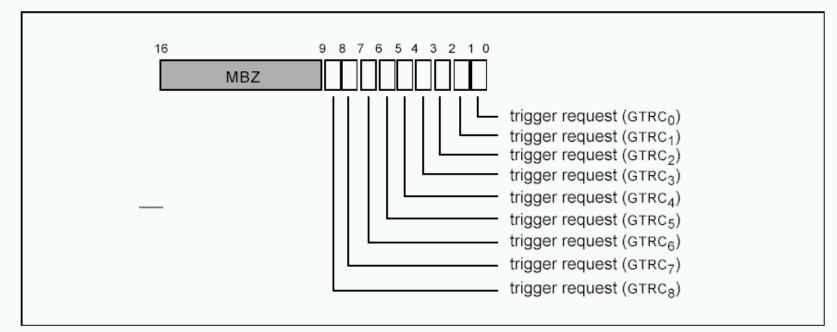


Figure 121 GTCC contribution to diagnostic data