Alignment in Gleam

Leon Rocfester Tracy Ulsfer Hiro Tajima
S LAC
Instrument $\mathcal{A n a l y s}$ is W orksfrop 2
SLAC, September 27, 2004

- Our original goal was to align eact wafer.
- Hierarchy of volumes: tower, tray, face, ladder, wafer
- Transformations from figher to lower levels
- Currently, we plan to perform alignment only at the tower level.
- Obviously needed
- Indications are that after being characterized, pointing of towers will not move by more than 7 arc-seconds due to temperature variations, so this calibration will be effective.
- Expect $\pm 50 \mu \mathrm{~m}$ (max) deviations for ladders in trays, perfaps $\pm 100 \mu \mathrm{~m}$ for trays in tower.
- If necessary, ladder alignment data exist, and tray alignment can be measured independently in eacf tower using cosmic rays.
- But we will need to monitor the intra-tower residuals anyway
- Full characterization will still be needed to generate simulated data with realistic internal misalignments, to help us write and test monitoring programs.

Current Scheme for Constants

- Misalignments of each element are characterized by six constants: three translations $(\Delta \boldsymbol{x}, \Delta \boldsymbol{y}, \Delta \boldsymbol{z})$ and rotations $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma)$ around the three axes.
- $\Delta \boldsymbol{x}, \Delta \boldsymbol{y}$, and γ are "first-order," that is they produce displacements that don't depend on the track slopes.
- Δz generates displacements proportional to the track slopes. But since the slopes can be large, these displacements are not necessarily small.
- $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ generate displacements of both kinds.
- There are two sets of constants, one for simulation and one for reconstruction.

Constants File

- The elements subject to alignment are: Tower, Tray, Face, Ladder, Wafer. Each element in the tracker can be displaced with respect to the one above it in the hierarchy. So:
- Trays can be displaced with respect to the tower
- Faces (bottom or top) can be displaced with respect to the tray
- Ladders can be displaced with respect to the face
- Wafers can be displaced with respect to the ladder
- As you will see in the example, this scheme allows the description to be as simple or as complex as required by the given task.

```
    // example alignment constant file for simulation
    Tower 3
\begin{tabular}{lrrrrrrr} 
// & \multicolumn{4}{c}{ delta in microns } & \multicolumn{3}{c}{ rot in mrad } \\
Tray & 1 & 45. & 17. & -30 & 1.5 & -0.7 & 0.3 \\
Face & 1 & 21 & -13 & 43 & 0.0 & 0.5 & -1.6 \\
Face & 2 & -14 & 7 & -26 & 0.0 & -0.5 & 1.6
\end{tabular}
\begin{tabular}{llllllll} 
Tower & 4 & 0 & 15 & -6 & 0.0 & 0.0 & 0.0
\end{tabular}
Face 0
Ladder 1
\begin{tabular}{lrrrrrrr} 
Wafer & 2 & 12 & -7 & 24 & 0.3 & -0.5 & 1.1 \\
Wafer & 1 & 14 & -14 & 18 & 0.2 & -0.4 & 1.3
\end{tabular}
(If no constants are given, zeros are assumed.)
```


Setting up Internal Arrays

- This division reflects the way alignment information will be collected in real life. The code reflects this hierarchy.
- At eacfilevel
- Alignment constants at that level, if any, are read in
- Constants are merged with those from the level above
- ..including nulls for any not specified
- The merged constants are passed down to the next level
- At the lowest level(wafers) the constants are inserted into an array containing one entry for each wafer in the detector (..9216 in all for the flight instrument. Treatment is general; two towers is a special case.)

A Fundamental Choice

Alignment can be introduced by moving the detector or by moving the fit/cluster.

Moving the fit

We move the hits.

- Benefits
- The geometry (Geant, propagator) can be Kept simple. Every element is replicated uniformly.
- Geometry is nominal, so events don't have to be re. simulated every time the alignment is updated.
- Drawbacks
- Geometry is not quite "correct"
- Certain pathologies arise during simulation
- Clusters may not lie on the $\mathcal{M C}$ and recon tracks in the display. They show up where they would be if the element were actually displaced.
- Simulation
- For each fit the track is moved according to the constants, and then the resulting track is re-intersected with the active element.
- Reconstruction
- For eacf cluster on a track, the nominal position is modified according to the constants and the slopes of the track.
- Currently, the correction is applied just before fitting.
- In principle, the first-order corrections could be made when the clusters are constructed, and the remaining corrections could be applied at patrec time. In practice, this would probably be more complicated and confusing.

Example of Moving a Hit

Here we show the result of moving the silicon plane up, so that the apparent trackmoves down. Then we re-intersect the track with the silicon plane and calculate newentry and exit points. \qquad

Some Details

Does it Work?

- In the next six slides, you can see the results of applying the alignment corrections. On each slide, three distributions are overlaid:
- Vanilla, no alignment applied
- Alignment corrections applied during simulation
- Alignment corrections applied during simulation and reconstruction.
- In eacfislide, the variables plotted are the ones most sensitive to the correction in question.
- The goal is for the first and last distributions to be essentially the same.

Translation in X

DeltaX = 228 microns

Translation in Y

DeltaY = 228 microns

Translation in Z

Rotation around X Axis

Rotation around Y Axis

Rotation around Z Axis

Areas for improvement

- Reconstruction corrections sfould probably be applied earlier in the process.
- Patrec may fail to find a fit on a figh-energy track in a misaligned detector.
- Since the new plan is to make a TkrTrackduring patrec, it would seem logical to do the alignment when adding fits.
- Will slightly increase patrec time...probably not significant
- Simulation: works well in spite of the items below:
- Hits at the edges of the active areas
- Interactions in the silicon
- Nearly forizontal tracks

The track would have fit the misaligned
 active silicon, 6ut misses the the nominal volume. So there is no McPositionHit to move.

Only affects one or two edge bins.
Solution may be to take advantage of the $\sim 1 \mathrm{~mm}$ dead zone framing the active silicon. By making this active, fits could be recorded there and then fandled correctly during digitization.

Interactions in the Silicon

Lost Interactions

Nearly Horizontal Tracks

Constants Finding

(Apologies to Tracy!)

Some History

- Based on the work of Hiro Tajima
- Standalone ROOT macro
- Did its own patrec, fitting
- Geometry put in by fiand (now outdated!)
- Lots of copying of files, fand modifications
- But it seems to have worked!
- (But couldn't really check, because Leon's stuff wasn't ready..)

Tracy's Goal

- Integrate witf Gleam
- Ulse as many existing tools as possible
- Break down to functional components to allow exploration ofalternative schemes
- Be ready for real data!

How It's Done

- Generate events in misaligned detector, using standard code
- For this exercise, diagonal figh-energy muons
- To understand what we're doing, we cheat and use MC patrec.
- Perform standard pattern recognition and fitting
- Picktracks
- Minimum number of clusters in reference and target tower
- Separate tracks into two parts
- Reference tower
- Refit, using onfy the clusters in trat tower
- Target tower
- Store measured position and covariance matrix for eack fit plane.
- Replace fit position witt extrapolation of reference track.

How It's Done (2)

- Accumulate events
- Perform minimization (Minuit)
- Vary parameters in n-dimensional space ($n<=6$)
- For each set of parameters, transform measured positions using existing tools
- Calculate residuals and chi-squared, using weights derived from covariance matrix and measured errors
- Compare results witf inputs

How Are We Doing?

- We have done end-to-end checks of procedure
- Translation in X
- Translation in \mathcal{Y}
- Simultaneous translation in X and \mathcal{Y}
- Rotation around X axis
- Original offsets are reproduced!

Some Diagnostic plots

More Diagnostic Plots

- Clean up code
- Ulinderstand fiow to interpret errors
- Realistic source spectrum
- Study performance in the presence of internal misalignments
- Exploration of alternate scfiemes
- Tracy fas one or two in mind

Where We Stand

- We fave checked two-tower alignment end-to-end:
- Generated events using misaligned tracker
- Ulsed those events to measure the misalignment
- Verified that the constants found agree with the input constants
- Ulse the constants to correct the fitted tracks.
- We fave identified a modest program of improvements to take care of remaining details.
- We await real two-tower data to demonstrate that we are not only consistent, but also correct!

