

Data Analysis of End to End Runs for Cosmic Rays for Tower A

Eduardo do Couto e Silva and Xin Chen Instrument Analysis Workshop 3 Mar 10, 2005

- It is changing as fast as the software
 - used to be 8 and 9 the first two towers...

					12	13	14	15	12	13	14	15		12	13	14	15	12	13	14	15
					8 9 10 11				8	9	10	11		8	9	10	11	8	9	10	11
					4	5	6	7	4	5	6	7		4	5	6	7	4	5	6	7
					0	1	2	3	0	1	2	3		0	1	2	3	0	1	2	3
(Si	⁻ 1 ngle I و	Towe bay, s grid)	r specia	al		2 Tov	wers		4	Tow	ers			(6 Tov	vers			יסד 8	wers	
12	13	14	15		12	13	14	15	12	13	14	15		12	13	14	15	12	13	14	15
8	9	10	11		8	9	10	11	8	9	10	11		8	9	10	11	8	9	10	11
4	5	6	7		4	5	6	7	4	5	6	7		4	5	6	7	4	5	6	7
0	1	2	3		0	1	2	3	0	1	2	3		0	1	2	3	0	1	2	3
													-								

10 Towers

12 Towers

14 Towers

16 Towers

LAT

IA Workshop 3 Mar 10, 2005

Tower A – Week of March 14

Time			Test News	Description	
(n)			l est name	Description	-
22	1	1	Baseline Cosmic Rays (CR)	all settings nominal	TEM Diag
-	•	•			OFF
1	2	3	Condition Scan CR	Change only TKR DAC to 22	
1		6	Condition Scan CR	Read TKR from Right RC	
1		7	Condition Scan CR	Read TKR from Left RC	
1	3	1	Baseline CR Trigger	Only TKR is allowed to open trigger window	
1		2	Baseline CR Trigger	Only CAL_LO set to 20 MeV is allowed to open window	
1	4	1	Nominal CR Rate	Overlay rate of 1 kHz	
1		2	Nominal CR Rate	Overlay rate of 5 kHz	
1		3	Nominal CR Rate	Overlay rate of 10 kHz	TFM Diag
1		4	Nominal CR Rate	Overlay rate of 20 kHz	ON
1	5	3	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and change only TKR DAC to 22	
1		6	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and and read TKR from Right RC	
1		7	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and read TKR from Left RC	
1	7	1	Baseline CR Data Volume	Zero suppression OFF	
1	8	6	Nominal CR Data Volume	Overlay rate of 1kHz, CAL 4 range, Zero Suppression OFF	
1		9	Nominal CR Data Volume	Overlay rate of 10kHz, CAL 4 range, Zero Suppression OFF	
2	В	1	SVAC (Calibration, Performance, MC)	all settings nominal	
2		9	SVAC (Calibration, Performance, MC)	CAL High Energy muon gain, four range readout	
1		12	SVAC (Calibration, Performance, MC)	Zero suppression OFF, four range readout	

IA Workshop 3 Mar 10, 2005

Tower AB – Week of March 28

Time (h)			Test Name	Description
37				
2	1	1	Baseline Cosmic Rays (CR)	all settings nominal
1	2	1	Condition Scan CR	Set unregulated power supply to 29V - need PDU
		2	Condition Scan CR	Set unregulated power supply to 27V - need PDU
		3	Condition Scan CR	Change only TKR DAC to 22
1		6	Condition Scan CR	Read TKR from Right RC
1		7	Condition Scan CR	Read TKR from Left RC
1	3	1	Baseline CR Trigger	Only TKR is allowed to open trigger window
1		2	Baseline CR Trigger	Only CAL_LO set to 20 MeV is allowed to open window
1	4	1	Nominal CR Rate	Overlay rate of 1 kHz
1		2	Nominal CR Rate	Overlay rate of 5 kHz
1		3	Nominal CR Rate	Overlay rate of 10 kHz
1		4	Nominal CR Rate	Overlay rate of 20 kHz
1	5	3	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and change only TKR DAC to 22
1		6	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and and read TKR from Right RC
1		7	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and read TKR from Left RC
1	7	1	Baseline CR Data Volume	Zero suppression OFF
1	8	6	Nominal CR Data Volume	Overlay rate of 1kHz, CAL 4 range, Zero Suppression OFF
1		9	Nominal CR Data Volume	Overlay rate of 10kHz, CAL 4 range, Zero Suppression OFF
4	В	2	SVAC (Calibration, Performance, MC)	all settings nominal
15		10	SVAC (Calibration, Performance, MC)	CAL High Energy muon gain, four range readout
1		13	SVAC (Calibration, Performance, MC)	Zero suppression OFF, four range readout

More statistics to study CAL edges

IA Workshop 3 Mar 10, 2005

Data Analysis Working Groups for Tower A : cosmic rays

Time (h)			Test Name	Description	
22 2	1	1	Baseline Cosmic Rays (CR)	all settings nominal	
_	-	-			
1	2	3	Condition Scan CR	Change only TKR DAC to 22	TVD
1		6	Condition Scan CR	Read TKR from Right RC	
1		7	Condition Scan CR	Read TKR from Left RC	Grou
1	3	1	Baseline CR Trigger	Only TKR is allowed to open trigger window	
1		2	Baseline CR Trigger	Only CAL_LO set to 20 MeV is allowed to open window	
1	4	1	Nominal CR Rate	Overlay rate of 1 kHz	— .
1		2	Nominal CR Rate	Overlay rate of 5 kHz	Irigge
1		3	Nominal CR Rate	Overlay rate of 10 kHz	Grou
1		4	Nominal CR Rate	Overlay rate of 20 kHz	
1	5	3	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and change only TKR DAC to 22	
1		6	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and and read TKR from Right RC	
1		7	Nominal Rate Condition Scan CR	Overlay rate of 10 kHz and read TKR from Left RC	
1	7	1	Baseline CR Data Volume	Zero suppression OFF	CAL
1	8	6	Nominal CR Data Volume	Overlay rate of 1kHz, CAL 4 range, Zero Suppression OFF	Grou
1		9	Nominal CR Data Volume	Overlay rate of 10kHz, CAL 4 range, Zero Suppression OFF	Giu
2	B	1	SVAC (Calibration, Performance, MC)	all settings nominal	
2		9	SVAC (Calibration, Performance, MC)	CAL High Energy muon gain, four range readout	
1		12	SVAC (Calibration, Performance, MC)	Zero suppression OFF, four range readout	

GLAST LAT Project IA Wo Charge to Working Groups

- Identify distributions that can be used to compare with the baseline run
- Develop muon selection cuts using CAL and TKR
 - Cut on CAL variables and analyze TKR variables
 - Cut on TKR variables and analyze CAL variables
 - Cut on both loosely
 - Cut on both with tight cuts
- Apply cuts and compare distributions with those from baseline runs
 - Shape should not change if we selected muons !
- We have 10 high-priority E2E runs to analyze in two weeks before the two towers are tested in a grid
 - Can we try it?

Let's try an example...

- For the moment, the integrated tower runs have all the same setting so
 - Use runs with TKR A only as an example

- TKR A Runs
 - 398000801 DAC = 22 (here noise creeps in!)
 - Thanks Hiro for getting us a run to use an example
 - 398000307 DAC = 26 (trigger rate supposed to be flat)
 - 398000310 DAC = 30 (let's call this the baseline run)

IA Workshop 3 Mar 10, 2005

Select the Runs by E2E ID

	G	LAST Sh Shift R	ift Logbook un Info	
U	GLAST Home	Help	Shift Index	List Runs
Run Range:	0-100000000		(e.g. 2500-2550 2567)	
Run Date Rang	e: taken from to	(use	format YYYY-MM-DD)'	
Duration (s):	(e.g. > 1000) No. of eve	nts:	(e.g. > 1000)	
Completion sta	tus: Any 🔽 H	article Type:	Any	
Instrument Typ	e: Any Orientatio	n: Any	•	
I&T Test ID/C	onfig ID: (e.g. 0/1) No of t	towers:	(e.g. 1)	
TKR Serial No.	. example CAL Serial	No.:	example	
Script Name:	(e.g. calf_r	nu ⁿ) Schema f	ile:	(e.g. em2cal*)
Suite Name:	(e.g. 1	LPT)		
Suite Date Ran	ge: taken from to	(use	e format YYYY-MM-DD)'	
FITS file:	(e.g. ²	*2805*)		
Site: Any	Phase: Any	•		
list runs	list root files		Table from previwill be available of	ious slide on the web

- Apply a KS test to compare shapes of distributions for runs you expect to see no changes...
 - KS = 1 means shapes are identical

Compare a run with low thresholds with the baseline run

 Apply a KS test to compare shapes of distributions for runs you expect to see changes...

Compare a run with low thresholds with the baseline run

- Apply a muon selection cut and you expect to see no changes...
 - KS = 1 means shapes are identical

11/12

Summary

- Conceptually the problem is very easy
 - However when we think about the details one realizes more work is involved
 - It is not obvious which distributions to choose
- Ideally we would like to have people working in a group
 Get there faster because it foster discussions
- In the afternoon we will organize working groups to start thinking about the data analysis
 - It is just a brainstorm session do not be shy...
 - Need volunteers to coordinate the three groups
 - A good starting point is to look at variables in the merit and svac nutples

Back up slides

- Purpose
 - Determine operational thresholds
 - Charge injections to support the SVAC offline calibrations with muons
 - We are doing these tests inside and outside the grid for Tower A
 - Baseline is to do these tests once per tower inside the grid
- Duration
 - Approximately 1 day (TBR)
- Tests
 - TKR tests
 - TE604 Threshold Dispersion
 - TE601 Threshold Calibrations
 - TE602 TOT conversion parameter calibrations
 - CAL test suites
 - calibDAC FLE/FHE characterization charge injection
 - calibGen calibrations with charge injection
 - muTrig FLE/FHE characterization with muons
 - » Done also by I&T tests C1 and C4 for Tower A
 - » Procedures will merge for 2 towers

Time				
(h)			Test Name	Description
20				
4	В	2	SVAC (Calibration, Performance, MC)	all settings nominal
15		10	SVAC (Calibration, Performance, MC)	CAL High Energy muon gain, four range readout
1		13	SVAC (Calibration, Performance, MC)	Zero suppression OFF, four range readout

There is no requirement for E2E runs for multiple towers

VDG Runs

- Current Data Taking configurations (13h)
 - 9/1 : VDG, Nominal settings (1h)
 - No zero suppression
 - 9/2, 9/3, 9/4: VDG, Nominal settings, vary rates (3 x 1h = 3h)
 - Place target at 3 different positions (1", 2", 4" from topmost Si tray) use Zero suppression On
 - 9/5, 9/6: VDG, Nominal settings but add pulse generator(2x 1h = 2h)
 - Overlay Pulse generator at 1 and 10 kHz on VDG triggers
 - 9/7: Flight configuration, horiz orientation and TEM diagnostics is ON (1h)
 - » Only occurs for tower A when tested with VDG photons shoot from angle below top layer of CAL
 - 9/8: Flight configuration, horiz orientation and TEM diagnostics is ON (1h)
 - » Only occurs for tower A when tested with VDG photons shoot from angle 10 cm above bottom of TKR
 - **B16:** Flight configuration, horiz orientation and TEM diagnostics is ON (4h)
 - » Only occurs for 2 towers when tested with VDG photons
 - **B11**: same as B16 but with VDG OFF (1h)
 - » Background estimation before tests with VDG photons

IA Workshop 3 Mar 10, 2005

Overview of Trigger Tests

Time				
(h)			Test Name	Description
26				
1	Т	1	TREQ Alignment - TKR	Only TKR and EXT_MU can open window
1			TREQ Alignment - CAL	Only CAL and EXT_MU can open window
8	Т	2	TACK Delay - TKR	Only TKR and EXT_MU can open window
8			TACK Delay - CAL	Only CAL and EXT_MU can open window
4	Т	4	Trigger Efficiency	Enable TKR nominal OR CAL_LO near noise floor
4	Т	5	Trigger Window Width	

•TREQ Alignment (GEM)

GLAST LAT Project

-To verify the timing alignment and jitter for each GEM trigger input

•TACK Delay Scan

-To determine the optimal trigger output (TACK) delay for each subsystem simultaneously

•FLE muon Scan (done by I&T tests C1 to C4)

-To find operational thresholds for CAL_LO to trigger on muons

•Trigger Efficiency

-To measure trigger efficiencies

•Trigger Window Tests

-For a sample of good muon events what fraction of each trigger type is latched within the window for different window widths

E. do Couto e Silva

17/12