

GLAST Large Area Telescope:

TKR Calibrations

Hiro Tajima (SLAC) Takuya Kawamoto (Hiroshima) Johann Cohen-Tanugi (SLAC)

TKR

htajima@slac.stanford.edu 650-926-3035

Hiro Tajima, TKR Calibrations

TKR Parameters to be Calibrated

- Bad channels.
 - Noisy channels.
 - Masked online to reduce excess data rate.
 - Dead/disconnected channels.
 - Not used for mask.
 - Used in offline analysis to account for missing hits.
- GTFE DACs
 - Calibration DAC (One DAC per GTFE)
 - Charge scale needs to be calibrated for each GTFE.
 - Channel level dispersion is expected to be small.
 - Threshold DAC (One DAC per GTFE)
 - Tuning of DAC to nominal threshold (1.4 fC ~ 0.27 MIP)
- **TOT**
 - TOT as a function of input charge (calibration DAC)

LAT Instrument Analysis Meeting- Mar 10, 2005

Noisy Strips

- High noise occupancy strips need to be identified and masked.
 - Specification
 - Trigger: < 5x10⁻⁵ (strip average)
 - Data: < 10⁻⁴ (strip average)
- Noise occupancy <10⁻² will be sufficiently quite for offline analysis.
- For now, limit is set conservatively.
 - Any strip above 10⁻⁴ is masked.
- On orbit, noisy channel should be determined based on average GTRC data rate.
 - Retain as many strips as possible for offline use.
 - No fixed threshold

Noise occupancy for layer Y3

LAT Instrument Analysis Meeting– Mar 10, 2005

Dead Channels

- Dead channels are dead amplifier channels.
 - No data from charge injection.
 - Shows up as zero gain channels in gain measurement.

Channel Gain for layer Y14

LAT Instrument Analysis Meeting– Mar 10, 2005

Disconnected Strips

- Disconnected strips are due to broken connection between amplifier and silicon strip.
 - Shows up as very low noise channels.
 - Noise < 500 electrons.

Channel Noise for layer Y14

- Partially disconnected strips are due to broken connection between SSDs.
 - Shows up as intermediate noise channels.
 - Not to easy to distinguish them from quite GTFEs.

Channel Noise for layer X5

- It is easier to identify partially disconnected strips from strip occupancies.
 - Use track information to determine the associated SSD.
 - Occupancy drops to 0 if connection is broken.
 - Important to keep track of history.

Hiro Tajima, TKR Calibrations

• Intermittently disconnected strips make life more interesting.

Layer	strip #	Occupancies					
		SSD0	SSD1	SSD2	SSD3		
X2	1441	0	0	0	0		
	1446	5	3	4	7		
	1447	0	0	0	0		
Y3	863	0	0	0	0		
	870	17	9	20	8		
	875	0	0	0	0		
X16	1535	10	20	19	15		
Y16	2	34	24	31	11		
	35	8	14	14	20		

- Occupancy is not sufficient to reliably identify intermittent strips.
- Efficiency is complimentary to occupancy
- Still work in progress

Occupancy deficit at the edges ' of top and bottom 2 layers

- Intermittently partially disconnected strips are slightly easier to identify. (although hard to pronounce...)
 - Occupancies in strips closer to amplifier can be used as references. $(f_{1}(acc, u))$

Layer	strip	Occupancies				$F.O.M. = \log \left \frac{f_p(o(t), \mu)}{f_p(int(\mu), \mu)} \right $
	#	SSD0	SSD1	SSD2	SSD3	$(J_p(\operatorname{IIII}(\mu),\mu))$
Y3	496	39	34	8	7	<i>f</i> p: Poisson probability function
	501	41	39	1	0	
Y3	510	30	29	0	0	poisson.Qist Entries 1816 Mean -6.767
	514	37	25	5	0	
	519	25	29	8	4	
	523	26	36	1	1	
Y3	537	45	45	1	0	
	550	27	26	14	8 -	
	556	34	24	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

DAC/TOT Calibrations Overview

- DAC/TOT calibration sequence
 - TOT-charge calibration.
 - Measure TOT vs. input charge and fit.
 - Pretend input charge (calibration DAC scale) is known.
 - Factor out channel dependence.
 - Charge scale calibration.
 - Muon MIP peak to calibrate input charge (calibration DAC) scale.
 - Threshold DAC calibration.
 - Second iteration of TOT-charge calibration.
 - TOT depends on threshold.

LAT Instrument Analysis Meeting- Mar 10, 2005

TOT-Charge Calibration

- Charge injection test.
 - Measure TOT as a function of input charge.
 - Fit to second order polynomial.
 - Charge = p0 + p1*TOT + p2*TOT²
 - Large dispersion of conversion parameters within GTFE.
 - Due to shaper circuitry limitation.

Charge Scale Calibration Mar 10, 2005

- Fit muon charge distribution for each GTFE.
 - Gaussian convolved Landau distribution.

Threshold DAC Calibration Mar 10, 2005

Threshold DAC

• Scan threshold DAC for a given input charge (1.4 fC ~ 0.27 MIP)

13

Effective Data Threshold

- Effective data threshold is higher than the trigger threshold.
 - Trigger threshold: charge required to trigger at pulse peak.
 - Data threshold: charge required for data capture at TACK.
 - TACK: ~1 µs after the trigger request.

LAT Instrument Analysis Meeting- Mar 10, 2005

Conclusions

- Bad strips
 - Identification of noisy, dead, disconnected strips is well understood.
 - Identification of partially disconnected strips is in a good shape.
 - Identification of intermittently disconnect strips (partial or not) is a challenge.
 - Reasonable solution exists.
- DAC/TOT calibrations.
 - Procedure in place.
 - Appear to be working as expected.
 - Needs more studies to understand the effect.
 - Data threshold dispersion is large.