GLAST Large Area Telescope:

TKR Calibrations

Hiro Tajima (SLAC)
Takuya Kawamoto (Hiroshima)
Johann Cohen-Tanugi (SLAC)

TKR

htajima@slac.stanford.edu
650-926-3035
TKR Parameters to be Calibrated

- Bad channels.
 - Noisy channels.
 - Masked online to reduce excess data rate.
 - Dead/disconnected channels.
 - Not used for mask.
 - Used in offline analysis to account for missing hits.
- GTFE DACs
 - Calibration DAC (One DAC per GTFE)
 - Charge scale needs to be calibrated for each GTFE.
 - Channel level dispersion is expected to be small.
 - Threshold DAC (One DAC per GTFE)
 - Tuning of DAC to nominal threshold (1.4 fC ~ 0.27 MIP)
- TOT
 - TOT as a function of input charge (calibration DAC)
Noisy Strips

- High noise occupancy strips need to be identified and masked.
 - Specification
 - Trigger: $< 5 \times 10^{-5}$ (strip average)
 - Data: $< 10^{-4}$ (strip average)
- Noise occupancy $< 10^{-2}$ will be sufficiently quite for offline analysis.
- For now, limit is set conservatively.
 - Any strip above 10^{-4} is masked.
- On orbit, noisy channel should be determined based on average GTRC data rate.
 - Retain as many strips as possible for offline use.
 - No fixed threshold

![Graph showing noise occupancy for layer Y3]
Dead Channels

- Dead channels are dead amplifier channels.
 - No data from charge injection.
 - Shows up as zero gain channels in gain measurement.
Disconnected Strips

- Disconnected strips are due to broken connection between amplifier and silicon strip.
 - Shows up as very low noise channels.
 - Noise < 500 electrons.

Channel Noise for layer Y14
Partially Disconnected Strips (Noise)

- Partially disconnected strips are due to broken connection between SSDs.
 - Shows up as intermediate noise channels.
- Not to easy to distinguish them from quite GTFEs.

Channel Noise for layer X5

Partially disconnected strips
Partially Disconnected Strips (Occupancy)

- It is easier to identify partially disconnected strips from strip occupancies.
 - Use track information to determine the associated SSD.
 - Occupancy drops to 0 if connection is broken.
 - Important to keep track of history.
Intermittently Disconnected Strips

- Intermittently disconnected strips make life more interesting.

<table>
<thead>
<tr>
<th>Layer</th>
<th>strip #</th>
<th>Occupancies</th>
<th></th>
<th>Occupancy deficit at the edges of top and bottom 2 layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSD0</td>
<td>SSD1</td>
<td>SSD2</td>
<td>SSD3</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>1441</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1446</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1447</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y3</td>
<td>863</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>870</td>
<td>17</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>875</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X16</td>
<td>1535</td>
<td>10</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Y16</td>
<td>2</td>
<td>34</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>8</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

- Occupancy is not sufficient to reliably identify intermittent strips.
- Efficiency is complimentary to occupancy
- Still work in progress
Intermittently Partially Disconnected Strips

- Intermittently partially disconnected strips are slightly easier to identify. (although hard to pronounce…)
 - Occupancies in strips closer to amplifier can be used as references.

<table>
<thead>
<tr>
<th>Layer</th>
<th>strip #</th>
<th>Occupancies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SSD0</td>
</tr>
<tr>
<td>Y3</td>
<td>496</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>501</td>
<td>41</td>
</tr>
<tr>
<td>Y3</td>
<td>510</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>514</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>519</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>523</td>
<td>26</td>
</tr>
<tr>
<td>Y3</td>
<td>537</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>556</td>
<td>34</td>
</tr>
</tbody>
</table>

\[
FOM = \log \left(\frac{f_p(occ, \mu)}{f_p(int(\mu), \mu)} \right)
\]

\(f_p\): Poisson probability function
DAC/TOT Calibrations Overview

• DAC/TOT calibration sequence
 – TOT-charge calibration.
 • Measure TOT vs. input charge and fit.
 • Pretend input charge (calibration DAC scale) is known.
 • Factor out channel dependence.
 – Charge scale calibration.
 • Muon MIP peak to calibrate input charge (calibration DAC) scale.
 – Threshold DAC calibration.
 – Second iteration of TOT-charge calibration.
 • TOT depends on threshold.
TOT-Charge Calibration

- Charge injection test.
 - Measure TOT as a function of input charge.
 - Fit to second order polynomial.
 - Charge = $p_0 + p_1 \times \text{TOT} + p_2 \times \text{TOT}^2$
 - Large dispersion of conversion parameters within GTFE.
 - Due to shaper circuitry limitation.

![Graphs showing TOT parameter vs. strip# and TOT vs. Calibration DAC]
Charge Scale Calibration

- Fit muon charge distribution for each GTFE.
 - Gaussian convolved Landau distribution.

Raw TOT Distributions

Charge Distributions (channel dependence factored out)

Hiro Tajima, TKR Calibrations
Threshold DAC Calibration

- Scan threshold DAC for a given input charge (1.4 fC ~ 0.27 MIP)

BEFORE charge scale calibration

AFTER charge scale calibration

Hiro Tajima, TKR Calibrations
• Effective data threshold is higher than the trigger threshold.
 – Trigger threshold: charge required to trigger at pulse peak.
 – Data threshold: charge required for data capture at TACK.
• TACK: ~1 µs after the trigger request.
Conclusions

• Bad strips
 – Identification of noisy, dead, disconnected strips is well understood.
 – Identification of partially disconnected strips is in a good shape.
 – Identification of intermittently disconnect strips (partial or not) is a challenge.
 • Reasonable solution exists.

• DAC/TOT calibrations.
 – Procedure in place.
 – Appear to be working as expected.
 – Needs more studies to understand the effect.
 – Data threshold dispersion is large.