
GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 1

GLAST Large Area TelescopeGLAST Large Area Telescope

LAT Deadtime

Warren Focke
SLAC
I&T Science Verification Analysis and Calibration
Engineering Physicist
focke@slac.stanford.edu
650-926-4713

Gamma-ray Large Gamma-ray Large
Area Space Area Space
TelescopeTelescope

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 2

OutlineOutline

• EvtTicks reminder
– & example

• Deadtime distributions
– not just upper limits

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 3

Reminder - EvtTicksReminder - EvtTicks

• Currently the best measure of event time we have.
– Assigned at trigger time.

• Other times (for example, EvtSecond, EvtNanoSecond)
are assigned much (and upredictably) later.

– Running count of LAT ticks (nominally 50 ns) since shortly
(<128 s) before run began.

• Variable EvtTicks is in SVAC tuple.
– Stored in a double, but values are integers.
– Calculated from GemTriggerTime, GemOnePpsSeconds,

GemOnePpsTime, EvtSecond, EvtNanoSecond (all in SVAC
tuple).

– Details in extra slides at end of talk
• Will need a new algorithm when we get GPS time.

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 4

ExampleExample

• Can be used to get precise time between any two events
– they do have to be from the same run

• E.g., suppose you want to look at times between CAL-only
events
– Apply a cut on GemConditionWord
– GemDeltaEventTime is then not useful, since it gives the

time since the last event that triggered, not the last one that
passed the cut

– but EvtTicks
i
 – EvtTicks

i-1
 is still valid

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 5

More SVAC tuple variablesMore SVAC tuple variables

• All measured in LAT ticks (50 ns)
• GemDeltaEventTime (GDET)

– time since last event
• only if triggered & read out

– saturates
– 16 bits = 3.3ms

• GemLiveTime (LIVE)
– only increments when LAT not busy
– running counter (rolls over)
– 25 bits = 1.7s

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 6

Deadtime AlgorithmDeadtime Algorithm

• DLT
i
 = LIVE

i
 – LIVE

i-1

– + 2**25 if < 0
• Apply cut

– GDET == delta EvtTicks
• no missing events in between

– && GDET < 2**16 - 1
• not saturated

• DeadTime
i
 = GDET

i
 – DLT

i

• Make histogram

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 7

““Flight-Like” DeadtimeFlight-Like” Deadtime

• 2 Tower Baseline (1/1) run
– 135002052

• Observed deadtimes all ==
529 ticks (26.45µs)
– as predicted

• Sweet!
– consistent with observed

minimum event
separation of 530

• This is also true for 6-tower
B/2 runs

• and 2-tower external trigger

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 8

DOH!DOH!

• 4 Tower Baseline run
– 135002711

• 4 tower data have incorrect
CAL LAC thresholds
– causes too much data to

be read out
• which causes more

deadtime
• Minimum is still 529

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 9

Non-Flightlike RunsNon-Flightlike Runs

4 range, zero suppressed 4 range, unsuppressed

Minimum deadtime = 13128
Consistent with observed
minimum event separation of
13129

Minimum deadtime = 1308
Consistent with prediction and
observed minimum event
separation of 1309

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 10

QuantizationQuantization

• 4 range, zero suppressed
• Gap of 203 ticks between

main peak & next-higher
value

• Smaller peaks are separated
by 132 ticks
– This is the time required

to transmit 4 logs
• Smaller peaks are 2 ticks

wide
– see next page

• This is not seen in B/13 (4
range, unsuppressed)
– probably “washed out”

by 10x longer times

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 11

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 12

Double PeaksDouble Peaks

• Double peak seems due to
different values of CAL TACK delay
in different towers

• Main peak would be double, too,
but both towers always contribute
at least that much deadtime, so the
longer one wins

• 6 tower runs seem mostly
consistent with this interpretation
– but a bit odd

• but they're screwy anyway

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 13

ConclusionConclusion

• Deadtime is behaving as expected for flight-like runs
• Configuration errors cause unexpected behavior

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 14

GEM Timing Variables (in SVAC tuple)GEM Timing Variables (in SVAC tuple)

• LAT timebase is a running counter of ticks (50ns)
– 25 bits, rolls on overflow (1.67 s)

• GemTriggerTime samples timebase at window close time
• GemOnePpsTime samples timebase when 1PPS signal

received
• GemOnePpsSeconds is incremented on 1PPS signal

– 7 bits, rolls on overflow (128 s)
• Timebase can overflow between 1PPS and event

– But only once, so we can detect it:
• GemTriggerTime < GemOnePpsTime

• GemOnePpsSeconds overflows every 128 s
– Not likely to roll more than once between events

• But if it does we can't detect it from GEM variables
– Can use other timestamps to detect multiple overflows

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 15

Coarser Timestamps (in SVAC tuple)Coarser Timestamps (in SVAC tuple)

• EvtSecond, EvtNanoSecond come from vxWorks realtime
clock (RTC)
– Updated at 50 Hz

• EvtUpperTime, EvtLowerTime come from SBC CPU cycle
counter
– Updated at ~16 Mhz
– But 1/60e-9 is closer
– But we don't really know for sure, and even if we did, it

varies by 1 part in ~1e6 (
http://www-glast.slac.stanford.edu/IntegrationTest/Weekly%20Minutes/2004-02-12/EMTiming.ppt)

– Sampled at event build time, not trigger time
• Queuing can have odd effects

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 16

First 2 TriesFirst 2 Tries

• Try to calculate when GemOnePpsSeconds will roll over based
on event time using seconds/nanoseconds or upper/lower
– This is folly
– Don't know the offsets between the time streams, or even

their relative rates, well enough to predict rollovers down to
the event

• Try to use long gaps (> 128 s) in seconds/nanoseconds or
upper/lower
– Better, but still doesn't always work
– Can give spurious rollovers for 64 < gaps < 128 s
– Coarseness of other timestamps means you can't make an

exact cutoff, and there's always a chance of a long
separation sneaking into the uncertain region

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 17

Third TryThird Try

• Use GemOnePpsSeconds, GemOnePpsTime and
GemTriggerTime to make trial timestamps, based on
assumption that obvious rollovers are the only ones.
– see next slide

• Compare delta times between events for trial times with deltas
from coarser timestamps

• Differences should be within 10-20 ms, unless we missed a
PPS rollover
– Then they will cluster around multiples of 128 s

• Correct trial times if we missed any rollovers
– Add an appropriate multiple of 128 s (round the difference

between deltas to nearest multiple of 128) to all events after
the missed roll

GLAST LAT Project Instrument Analysis Workshop, July 14-15, 2005

W. B. Focke 18

DetailsDetails

• trialTime
i
 = (nPpsRoll * 128 + OnePpsSeconds

last
) * 20e6 +

(TriggerTime
i
 – OnePpsTime

last
)

– correct for obvious rollovers

• OnePpsSeconds
last

< OnePpsSeconds
last-1

– nPpsRoll += 1

• TriggerTime
i
 < OnePpsTime

last

– TriggerTime += 2**25

• This assumes that OnePpsTime
i
 – OnePpsTime

i-1
 == 20e6

– currently true, OnePps signal is faked from LAT clock
– won't be true (?) when we get a GPS

