# Studying TKR Trigger Arrival Time from with CAL Triggers in Flight Configuration

Eduardo do Couto e Silva Feb 28, 2006



# **Motivation**

- So far the CAL low (CAL\_LE\_) and high (CAL\_HE) energy triggers have been only tested with charge injection
  - because cosmic ray distribution peaks at low energies
- Can we use the CAL\_LE and CAL\_HE triggers in FLIGHT configuration to verify that the LAT is aligned in time?
  - need a lot of statistics since we rely on the tail of the cosmic ray distribution
    - we combined all LAT B/2 runs to obtain 10,320,000 events
      - » CAL\_LE > 100 MeV
      - » CAL\_HE > 1000 MeV
- Can we create samples of muon and photon candidates?
  - Yes, but we will define "loose" cuts to keep statistics to a reasonable level



### Beware!!!!

- The next slides are a summary of my discussions
  - with Eric Sisskind
- I also stole some text from Martin's presentations
  - IA and/or trigger meetings

- Unfortunately I had no time to have them blessed by Mike Huffer (who designed the system!)
  - if there are mistakes, they reflect my ignorance about how the system works rather than a flaw in the design !
    - I could not find a timing diagram elsewhere...

#### IA Workshop 6 – Feb28,2006



# How do we time in?



 use trigger request delay lines to adjust arrival at TEM



GLAST LAT Project IA Workshop 6 – Feb28,2006 **Trigger information (from Martin)** 

- If trigger window is too large
  - trigger efficiency high
  - data latching efficiency can be reduced
  - if window is 0 then max delay is 11 ticks
    - after that latching occurs before trigger !
- TKR trigger can be high
  - settable from 2 to 31 ticks or
  - during duration of signal
- LAT Timing was done at threshold above noise
  - CAL HI is difficult to time in with muons
    - used charge injection

IA Workshop 6 – Feb28,2006

GLAST LAT Project

# LAT Alignment: Time Delays

|   | Delay                                |   |   | TKR            |               |         |            | CAL            |       |       | ACD            |      |      |    |          |
|---|--------------------------------------|---|---|----------------|---------------|---------|------------|----------------|-------|-------|----------------|------|------|----|----------|
|   | Α                                    |   |   | 2              |               | 2       | 2          | 2              |       | 2     | Veto_delay+4   |      | 20   |    |          |
|   | В                                    |   |   | TREQ_delay+4   |               | g       | )          | TREQ_delay+6   |       | 6     | null           |      | 0    |    |          |
|   | С                                    |   |   | Window_width+5 |               | 1       | 7          | Window_width+5 |       | 17    | Window_width+7 |      | 19   |    |          |
|   | D                                    |   |   | TACK_delay+5   |               | 5       | 5          | TACK_delay+9   |       | 53    | TACK_delay+7   |      | 7    |    |          |
|   | E                                    |   |   | ļ              | 5             | 5       | 5          | 7              |       | 6     | hold_delay+6   |      | 30   |    |          |
|   | Round trip time (system clock ticks) |   |   |                |               | 3       | 8          |                |       | 84    |                |      | 76   |    |          |
|   | Round trip time (ns)                 |   |   |                | 19            | 00      |            |                | 4200  |       |                | 3800 |      |    |          |
|   | FEE Peaking time (ns)                |   |   |                | 1 <b>900-</b> | 00-2000 |            |                | >4000 | >4000 |                | 4000 |      |    |          |
| ۸ |                                      |   |   |                |               |         | <b>D</b> - |                |       |       |                | •    | GASU |    |          |
|   |                                      | A |   |                |               |         | В          |                |       |       |                | C    |      |    |          |
| ( | GTFE                                 |   | Е | G              | TRC           |         |            |                | D     |       |                |      |      | С  |          |
|   |                                      |   |   |                |               |         |            |                |       |       |                |      |      |    |          |
|   |                                      | Α |   |                |               |         | D          |                | ТЕМ   |       |                | С    |      |    |          |
|   |                                      |   |   |                |               |         | D          |                |       |       |                |      | _    |    | <b>→</b> |
| ( | GCFE                                 |   | Е | G              | CRC           |         |            | _              | D     |       |                |      |      | С  |          |
| • |                                      |   |   |                |               |         |            |                |       |       |                |      |      |    |          |
|   |                                      | А |   |                |               |         |            |                |       | C     |                |      | G    | EM |          |
| ( | GAFE                                 |   |   | G              | ARC           |         | E          |                |       |       | A              | EM   |      | С  | ۲        |
|   |                                      |   |   |                |               |         |            |                |       |       |                | D    |      |    |          |

#### E. do Couto e Silva

IA Workshop 6 – Feb28,2006

GLAST LAT Project

# **B2** Run: Timing Diagram?





# Summary of Timing

- We are latching the data at about
  - 3800 ns since ACD trigger primitive was issued
    - signal peaks at 4000 ns
  - 4250 ns since CAL trigger primitive was issued
    - signal peaks at >4000 ns?
  - 1900 ns since TKR trigger primitive was issued
    - signal peaks at 1900-2000 ns?

- Signal height variations imply in trigger jitter (see Martin's talk)
  - Trigger jitter is not large (ACD, CAL and TKR)
    - from 60 to 125 ns?
    - note that for "diode events" it can be as large as 500 ns !
      - » see next page

IA Workshop 6 – Feb28,2006



# **Trigger Jitter (from M. Kocian)**





# The Cuts...

- Muon candidates
  - select every tower, and only one tower at the time with
    - CAL\_LE and TKR trigger fired
      - » GemTkrVector and GemCalLeVector set to 1
    - CAL\_LE and TKR trigger and ROI bit set
      - » GemConditionsWord = 7
      - One track events
        - » TkrNumTracks =1
- Photon candidates
  - select every tower, and only one tower at the time with
    - CAL\_LE and TKR trigger fired
      - » GemTkrVector[TOWER] = 1 and GemCalLeVector[TOWER] = 1
    - CAL\_LE and TKR trigger
      - » GemConditionsWord = 6
    - At least 1 track
      - » TkrNumTracks > 0
    - 2 empty TKR planes above first TKR hit plane (use Si as a veto)
      - » TKR1SSDVeto>2

#### • Final Results

- Study arrival time of TKR for events with E>100 MeV and E<100 MeV</li>
  - require CAL\_LE to open the trigger window but TKR NOT
  - efficiency ~ 0.004% to 0.09% for CAL\_LE
  - efficiency ~ 0.001% for CAL\_HE
    - » depends on the cuts applied

E. do Couto e Silva

replaces MC GltTower see Jane's talk (IA6)

Cuts are less tight than

Bill's (IA3) and Elisabetta's (IA5)



# GLAST LAT Project IA Works Number of Triggered Towers



IA Workshop 6 – Feb28,2006



# **Our Main Results**





#### GLAST LAT Project IA Workshop 6 – Feb28,2006 Maximum Energy in a Crystal



#### •Muon candidates

#### -Cuts

-GemTkrVector[twr] =1 and GemCalLeVector[twr] = 1
-GemConditionsWord = 7
-TkrNumTracks =1

#### E. do Couto e Silva



# Tkr1X0 vs Tkr1Y0



#### •Muon candidates

#### -Cuts

- -GemTkrVector[twr] =1 and GemCalLeVector[twr] = 1
- -GemConditionsWord = 7
- -TkrNumTracks =1

#### E. do Couto e Silva

#### IA Workshop 6 – Feb28,2006



# Length of the Track



#### IA Workshop 6 – Feb28,2006



# **Tkr1SSDVeto**





#### GLAST LAT Project IA Workshop 6 – Feb28,2006 TKR Arrival Time with CAL LE Opens Window



#### IA Workshop 6 – Feb28,2006



## **Muons and Photons**



ID: 135005347-3952



4053.237305 mm

IA Workshop 6 – Feb28,2006



GLAST LAT Project IA Worksl CAL HI Triggers with Muons !



- CAL\_HE triggers
  - 0.001% efficiency
  - expect a factor of 10 higher statistics for the final LAT runs!
- Not enough statistics to say anything
  - distribution does fall off !

- this is good!



- We were able to study time properties of the CAL Low Energy Trigger with ground data
  - from a sample of about 10M LAT L1 triggers (~6 hours)
- There are no obvious problems with the TKR arrival time of the events
  - distribution is well contained within the Trigger window
    - for muons and photon candidates
- There is a class of events that trigger on CAL diodes but deposit little energy in the CAL which exhibits different timing properties
  - all consistent with expectations
- LAT seems to be timed in properly
- We should have more statistics for the final runs
  - also remember we will orient the LAT horizontally!



### **Muon Candidates**













# Number of ACD Digis: muons

