LAT Muon Data Taking During Environmental Test at NRL

J. Eric Grove
SVAC runs at NRL

- How do muon collections fit in to LAT environmental test plan?

- Two purposes
 - Calibrate the LAT after it leaves SLAC
 - Verify LAT performance in variety of conditions

- Controlling documents
 - LAT Environmental Test Sequence
 - LAT-MD-02717
 - LAT Performance and Operations Test Plan
 - LAT-MD-02730

- Note: Electronic calibrations too!
 - Perform electronic calib at same epochs as “Muon Calibration”
 - ACD, CAL, and TKR scripts
 - Don’t forget these!
Environmental Test Sequence

SVAC Baseline at SLAC

- Perform Reference CPT (at SLAC)
- Receive, Unpack
- Sine Vibe 4x
- Mount Radiators
- EMI/EMC
- Acoustic

SVAC muon (and other) runs during receiving test at NRL

- T-Bal
- T-Cycle
- Remove Radiators
- Weight, CG
- Pack LAT
- Ship to Spectrum

Limited Performance
Comprehensive Performance
SVAC Test

SVAC muon (and other) runs with LAT horizontal in TVAC chamber

Agrees with LAT-MD-02717-01, "LAT Environmental Test Sequence" Release 9 May 2005

J. Eric Grove
Baseline at SLAC

- Before LAT leaves SLAC, “Baseline” tests must be completed

- LAT baseline performance and calibration at SLAC
 - Detector CPTs, LAT full functional tests, and SVAC runs
 - SVAC muon runs identified in Performance and Operations Test Plan
 - LAT701 (LAT702)
 » Flight configuration on ground (redundant side)
 - LAT711
 » Muon calibration, same as LAT701 but CAL in muon gain
 - LAT801 (LAT811)
 » Same as LAT701 but at min (max) input voltage
 - LAT821
 » Same as LAT701 but with added high-rate periodic triggers
 - LAT841 (LAT851)
 » Same as LAT821 but at min (max) input voltage
 - LAT852
 » Same as LAT701 + high-rate triggers, at max input voltage, on redundant side
Detector configuration

- LAT701, Flight Configuration on Ground
 - Derived from B-2 configuration, but improved
 - Use multiple trigger engines
 - See engine and scheduler talks
 - https://confluence.slac.stanford.edu/download/attachments/2629/TriggerEnginesAndRates_060203.ppt
 - Use ACD as veto with tower-shadow (tower-local) regions of interest
 - Note that veto is not performed in hardware
 - i.e. events with TKR and local ACD veto are mapped to trigger engine that causes readout, not to a trigger engine that is inhibited
 - Use improved ACD, CAL, and TKR thresholds
 - Why the “on ground” distinction?
 - Trigger engine that gives muons on ground is not prescaled
 - Same engine will give protons on orbit, but will be prescaled
 - Practice LAT701 runs were taken last week

- LAT711, Muon Calibration
 - Same as “Flight Configuration on Ground” except
 - CAL HE ranges are in muon gain
 - CAL readout is 4-range (but still zero suppressed)
 - Request for practice run is in process...

Please look at these runs
Redundancy configurations

- **LAT provides redundant electronics configurations**
 - **Each config needs**
 - 1 GASU (two bays)
 - 2 EPUs
 - 1 SIU
 - 1 PDU

- **SVAC runs are taken in two configurations**
 - **“Primary”**
 - Primary GASU, EPUs, SIU, PDU
 - **“Redundant”**
 - Redundant GASU, (one) EPU, SIU, PDU
 - Shares one EPU with Primary

- **Run time strategy**
 - More time on Primary than Redundant

- **EPU = Event Processing Unit**
 - CPU for event formation, filter

- **GASU = Global electronics, ACD, and Signal distribution Unit**
 - Trigger decision, GEM, AEM
 - Event builder

- **PDU = Power Distribution Unit**
 - LAT power

- **SIU = Spacecraft Interface Unit**
 - Commanding and housekeeping
Environmental Test Sequence

SVAC Baseline at SLAC

Perform Reference CPT (at SLAC) → Receive, Unpack → Sine Vibe 4x → Mount Radiators → EMI/EMC → Acoustic

SVAC muon (and other) runs during receiving test at NRL

C → S → T-Bal C → S → T-Cycle C → S → Remove Radiators → Weight, CG → Pack LAT → Ship to Spectrum

Final CPT

Agrees with LAT-MD-02717-01, “LAT Environmental Test Sequence” Release 9 May 2005

J. Eric Grove

Naval Research Lab
Washington DC
LAT muons during Receiving Test

- Test sequence on arrival at NRL
 - Detector CPTs to verify functionality
 - Detector timing-in

- **Muon runs**
 - LAT701 and LAT702
 - **Flight Configuration on Ground on primary and redundant side**
 - LAT711
 - **Muon Calibration**
 - Total muon run time ~ 2 days (?)
 - Schedule pressure to keep this as short as possible
 - These are only long muon runs at NRL with LAT z-axis vertical

- **Electronic calibration**
LAT muons in TVAC

- **Majority of SVAC muon runs will be performed in thermal-vacuum chamber**
 - **Pre-TVAC**
 - In chamber, door open
 - **Hot thermal balance (or maybe hot proto-flight) and hot cycle 4**
 - ACD ~ +20C, CAL ~ +10C, TKR ~ +25C
 - If in thermal balance, by definition temperature is not changing
 - Total run time is ~ few days
 - **Cold thermal balance (or maybe cold proto-flight) and cold cycle 4**
 - ACD ~ -5C, CAL ~ 0C, TKR ~ 0C
 - (same comments about thermal balance and run time)
 - **Post-TVAC**
 - In chamber, door open
 - This is *final* SVAC muon run before shipment to General Dynamics Spectrum Astro

- **Note:** All TVAC muon runs are taken with LAT on its side
 - i.e. Z axis is horizontal, +Y axis is vertical
 - Required by LAT thermal control system
 - Radiators on +-Y surfaces must be horizontal in gravity
 - Need to gain some experience with muon calibration in this orientation!
Summary

- Muon runs at NRL during environmental test
 - Total run time is modest
 - Essential runs identified in Test Plan
 - Receipt at NRL
 - During TVAC
 - Other muon runs will occur as convenient
 - Majority of run time is with LAT turned on its side

- Electronic calibrations too