

Gamma-ray Large Area Space Telescope

GLAST Large Area Telescope

LAT Deadtime

Warren Focke SLAC I&T Science Verification Analysis and Calibration Engineering Physicist focke@slac.stanford.edu 650-926-4713

Outline

- What are we measuring and why?
- How?
- Full LAT deadtime measurements
- Interesting stuff
- Wrapup

It's Not Measured in %

- What?
 - Want to measure how long detector is unresponsive after an event
- Isn't the livetime counter good enough?
 - It's fine if you want to make an energy spectrum or image. But timing properties are affected by deadtime that is correlated with the signal.

How?

- Two ways to measure deadtime:
 - realtime livetime
 - minimum event separation
 - delta EvtTicks
 - GemDeltaEventTime
- Most of this will not be possible offline in flight
 - onboard filter will discard many events
 - true previous/next events will usually not be available
 - so we won't get deadtime per event unless it's done onboard

Instrument Analysis Workshop 6, Feb 27-28, 2006

Variables Used

- All measured in LAT ticks (50 ns)
- All in SVAC tuple
- GemDeltaEventTime (GDET)
 - direct from GEM
 - time since last event
 - only if triggered & read out
 - saturates
 - 16 bits = 3.3ms
- GemLiveTime (LIVE)
 - direct from GEM
 - only increments when LAT not busy
 - running counter (rolls over)
 - 25 bits = 1.7s

Instrument Analysis Workshop 6, Feb 27-28, 2006

More Variables

- EvtTicks
 - Calculated offline
 - from GemOnePpsSeconds, GemOnePpsTime and GemTriggerTime
 - use EvtSecond, EvtNanoSecond to catch rollovers
 - Elapsed ticks since arbitrary point (<128s) before run start
 - Will need a new algorithm when we get GPS
 - 1pps signals are currently generated from GEM clock and are always exactly 20,000,000 ticks apart
 - This will not be true with GPS, as the GEM clock isn't that good
 - But it doesn't have to be
 - Absolute times will involve interpolating from 1pps
 signals to determine actual clock rate

Calculating Deadtime

- LIVE is running livetime counter from GEM
 GemLiveTime in SVAC tuple
- $DLT_{i} = LIVE_{i} LIVE_{i-1}$

GLAST LAT Project

- + 2**25 if < 0</p>
- DET_i = EvtTicks_i EvtTicks_{i-1}
- DeadTime = DET DLT
- Make histogram
- •
- Can't do this in flight

Other Methods

- Deadtime can also be estimated by looking at time intervals between successive events
 - Smallest value observed is upper limit
 - deadtime is actually 1-(smallest value)
- GemDeltaEventTime measures this directly
- Difference in EvtTicks for successive events gives another measure
- •
- Both of these measurements agree with deadtime as calculated on previous slide for end2end full LAT runs

Full LAT B/2 Deadtime

- Minimum = 529 ticks (26.45µs)
 - This is the predicted value
- 10.8M measured times
- 238 of them != 529
- Max = 5697 ticks (285µs)

B/2 Extended Deadtime

• 238/10.8M not minimum

- Due to
 - Large events
 - Backpressure from previous large events
- Max = 5697 ticks (285µs)
 - previous event was not reconstructed
- Pictured event had 550 ticks

W. B. Focke

Instrument Analysis Workshop 6, Feb 27-28, 2006

Full LAT Deadtime

Instrument Analysis Workshop 6, Feb 27-28, 2006

Deadtime Evolution

Change from 1308/13128 to 1309/13129 is due to different CAL TACK delays in new towers. Maximum was 45 ticks for 2 and 4 towers, 46 ticks from 6 towers on.

Bad LAC threshholds caused about half the logs to be read out for every event Deadtime remained @ 529 even for 20kHz external trigger (2 tower run)

GLAST LAT Project Instrument Analysis Workshop 6, Feb 27-28, 2006 Quantized Deadtime in B10/B30

Secondary peaks are separated by 132 ticks

this is the time required to read out 4 CAL logs

These are 4-range runs, so CAL data is always quantized in 4-log chunks

Instrument Analysis Workshop 6, Feb 27-28, 2006

Peak Widths

- •Secondary peaks are > 1 tick wide due to different CAL TACK delays in different towers.
- \cdot 2 towers:
 - •tack delays = 44, 45 •peaks at 1511, 1512
- ·16 towers:
- tack delays = 43-46
 peaks at 1510-1513
 Main peak is 1 tick wide
 because all towers contribute
- longest delay wins
 that's why the deadtime grew (by 1 tick) when we added towers 8 & 9

Instrument Analysis Workshop 6, Feb 27-28, 2006

Conclusions

- Deadtime is stable at the predicted value
 - even at high rate
- Requirement: <100►30 μs
 - we're well under
- Goal: < 20µs
 - Missed it by that much

