GLAST Large Area Telescope

LAT Deadtime

Warren Focke
SLAC
I&T Science Verification Analysis and Calibration
Engineering Physicist
focke@slac.stanford.edu
650-926-4713
Outline

• What are we measuring and why?
• How?
• Full LAT deadtime measurements
• Interesting stuff
• Wrapup
It's Not Measured in %

• What?
 – Want to measure how long detector is unresponsive after an event

• Isn't the livetime counter good enough?
 – It's fine if you want to make an energy spectrum or image. But timing properties are affected by deadtime that is correlated with the signal.
How?

- Two ways to measure deadtime:
 - realtime – livetime
 - minimum event separation
 - delta EvtTicks
 - GemDeltaEventTime
- Most of this will not be possible offline in flight
 - onboard filter will discard many events
 - true previous/next events will usually not be available
 - so we won't get deadtime per event unless it's done onboard
Variables Used

- All measured in LAT ticks (50 ns)
- All in SVAC tuple
- GemDeltaEventTime (GDET)
 - direct from GEM
 - time since last event
 - only if triggered & read out
 - saturates
 - 16 bits = 3.3ms
- GemLiveTime (LIVE)
 - direct from GEM
 - only increments when LAT not busy
 - running counter (rolls over)
 - 25 bits = 1.7s
More Variables

- **EvtTicks**
 - Calculated offline
 - from GemOnePpsSeconds, GemOnePpsTime and GemTriggerTime
 - use EvtSecond, EvtNanoSecond to catch rollovers
 - Elapsed ticks since arbitrary point (<128s) before run start
 - Will need a new algorithm when we get GPS
 - 1pps signals are currently generated from GEM clock and are always exactly 20,000,000 ticks apart
 - This will not be true with GPS, as the GEM clock isn't that good
 - But it doesn't have to be
 - Absolute times will involve interpolating from 1pps signals to determine actual clock rate
Calculating Deadtime

- LIVE is running livetime counter from GEM
 - GemLiveTime in SVAC tuple
- \(DLT_i = LIVE_i - LIVE_{i-1} \)
 - + 2**25 if < 0
- \(DET_i = EvtTicks_i - Evtticks_{i-1} \)
- DeadTime\(_i\) = \(DET_i - DLT_i \)
- Make histogram
- Can't do this in flight
Other Methods

• Deadtime can also be estimated by looking at time intervals between successive events
 – Smallest value observed is upper limit
 • deadtime is actually $1-(\text{smallest value})$
• GemDeltaEventTime measures this directly
• Difference in EvtTicks for successive events gives another measure
• Both of these measurements agree with deadtime as calculated on previous slide for end2end full LAT runs
Full LAT B/2 Deadtime

- Minimum = 529 ticks (26.45 µs)
 - This is the predicted value
- 10.8M measured times
- 238 of them != 529
- Max = 5697 ticks (285 µs)
B/2 Extended Deadtime

- 238/10.8M not minimum
- Due to
 - Large events
 - Backpressure from previous large events
- Max = 5697 ticks (285μs)
 - previous event was not reconstructed
- Pictured event had 550 ticks
Full LAT Deadtime

| Fraction outside main peak is “extended” |

<table>
<thead>
<tr>
<th></th>
<th>min Deadtime</th>
<th>min GDET</th>
<th>min delta EvtTicks</th>
<th>Extended fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/2</td>
<td>529</td>
<td>530</td>
<td>530</td>
<td>2.20E-005</td>
</tr>
<tr>
<td>B/13</td>
<td>13129</td>
<td>13130</td>
<td>13130</td>
<td>25.00%</td>
</tr>
<tr>
<td>B/30</td>
<td>1309</td>
<td>1310</td>
<td>1310</td>
<td>1.10%</td>
</tr>
</tbody>
</table>

6-tower B10

Deadtime (in ticks)
Deadtime Evolution

<table>
<thead>
<tr>
<th># Towers</th>
<th>B2</th>
<th>B10/B30</th>
<th>B13</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>529</td>
<td>1308</td>
<td>13128</td>
</tr>
<tr>
<td>4</td>
<td>529</td>
<td>9167</td>
<td>13128</td>
</tr>
<tr>
<td>6</td>
<td>529</td>
<td>1309</td>
<td>13129</td>
</tr>
<tr>
<td>8</td>
<td>529</td>
<td>1309</td>
<td>13129</td>
</tr>
<tr>
<td>LAT</td>
<td>529</td>
<td>1309</td>
<td>13129</td>
</tr>
</tbody>
</table>

Change from 1308/13128 to 1309/13129 is due to different CAL TACK delays in new towers. Maximum was 45 ticks for 2 and 4 towers, 46 ticks from 6 towers on.

Bad LAC thresholds caused about half the logs to be read out for every event.

Deadtime remained @ 529 even for 20kHz external trigger (2 tower run).
Quantized Deadtime in B10/B30

- Secondary peaks are separated by 132 ticks
 - this is the time required to read out 4 CAL logs
- These are 4-range runs, so CAL data is always quantized in 4-log chunks

132 ticks
Peak Widths

- Secondary peaks are > 1 tick wide due to different CAL TACK delays in different towers.
 - 2 towers:
 - tack delays = 44, 45
 - peaks at 1511, 1512
 - 16 towers:
 - tack delays = 43-46
 - peaks at 1510-1513
- Main peak is 1 tick wide because all towers contribute – longest delay wins
 - that's why the deadtime grew (by 1 tick) when we added towers 8 & 9
Conclusions

• Deadtime is stable at the predicted value
 – even at high rate
• Requirement: < 100\,\mu s
 – we're well under
• Goal: < 20\mu s
 – Missed it by that much