

GLAST LAT TKR Noise Monitoring

Mutusmi Sugizaki and the TKR team

Mutsumi Sugizaki

What we have to know about TKR noise

Average strip occupancy per tower, layer, strip. Average layer-OR (trigger) occupancy per layer. Where are the noisy strips? How many strips? Long-term and transient noise behavior. Noise flare?

Our goal is to derive these noise parameters from nominal-run data and monitor them during the flight operation.

Two methods to derive these noise parameters.

- 1) Use periodic-trigger data which is taken for a diagnostic purpose.
- 2) Use data with event tracks excluding the data of layers on which particles pass through.

This talk present current status of these noise studies using SVAC muon-run data.

Data of these area are

Two Data Sampling for TKR Noise monitor

1) Periodic-trigger data taken for a diagnostic purpose.

Merit: Unbiased sample, good for the noise study.

Demerit: Low rate (10 Hz in a current configuration)

3.6x10⁴ trigger / hour.

Nominal noise occupancy < 10^{-6} . Noisy ~ 10^{-4}

2) Cosmic-ray trigger data excluding the areas on which particles pass through.

Merit: High rate (500 Hz in 16-Tower LAT).

Demerit: Imperfect screening

of real event hit, such as

delta rays.

The contamination ~ 10^{-6}

Use both methods according to the purpose.

Mutsumi Sugizaki

Analysis of SVAC muon-run data

16 Tower SVAC muon-run B/2 and B/30 data January 14-16, 2006 Total exposure time ~ 7.5×10^4 sec = 21 hours Cosmic-ray trigger rate ~ 500 Hz Periodic trigger rate = 10 Hz Total number of events = 3.7×10^7 Total number of periodic triggers = 7.5×10^5

Noise-monitoring parameters

Strip occupancy (long and short term stability) Layer occupancy Hit strip map (strip ID) Hit-strip multiplicity TOT

Result: Average Strip Occupancy per Layer (from all SVAC run, periodic-trigger data)

The occupancy is $< 10^{-6}$ in the most layers.

Requirement: Noise strip occupancy is $< 5x10^{-5}$ in tower average. It is enough satisfied.

Mutsumi Sugizaki

Result: Average Layer-OR Occupancy

(from all SVAC run, periodic-trigger data)

Requirement: Single-layer trigger rate < 50 kHz.

Assuming a minimum case that each trigger length is as short as 1.6 μ s, the layer-OR occupancy has to be < 0.08. It is still satisfied.

Mutsumi Sugizaki

Study of transient noise behavior (Noise Flare)

Use cosmic-ray trigger data (500 Hz)

To detect shot term noise increases (flares), noise occupancies for each 1000 event triggers (~ 2 sec) are investigated.

If the layer-average noise occupancy exceeds 5x10⁻⁵, it is labeled as 'Noise Flare'.

Noise flares are detected in 4 silicon layers.

Tower #2 Layer 17(Y8) Tower #7 Layer 29(Y14) Tower #10 Layer 34(X17) Tower #15 Layer 22(X11)

These noise flares have common features.

Related with silicon ladder Large multiplicity

Noise Hit Map of Layers with Noise Flare (periodic-trigger data)

Mutsumi Sugizaki

Hit Multiplicity of Noise Flare

Frequency of Noise Flare

- Tower7 Layer29, Tower10 Layer34: 10-20%
- Tower2 Layer17, Tower15 Layer22: 1-2%

Long Term Stability of the Noise Occupancy

<u>(from all SVAC run , periodic-trigger data)</u>

Tower Average noise occupancy

4 TKR towers with noise flares appeared in the 2nd half of 16 towers.

The noise level is largely stable if the tower does not have noise flare.

Couple of strips are found to turn warmer between the 8-Tower and the 16-Tower configurations. However, the tower-average noise occupancies are still much lower than the requirement, $(5x10^{-5})$.

Mutsumi Sugizaki

Examples of developing noisy strips

8 Tower run

16 Tower run

Mutsumi Sugizaki

The methods to monitor TKR noise from nominal-run data is studied. They are confirmed to work well.

The noise strip occupancy and the layer-OR occupancy of the LAT TKR are well within the requirements.

The noise levels are largely stable.

'Noise Flare' is detected on 4 silicon layers. The noise level is below the requirement. We keep monitoring these layers.

Future plan

Integrate these method into the process of determining data/trigger masks (Takuya/Hiro, Dec. 9, 2005, IA meeting).

Backup

Comparison of two data-sampling method (8 Tower)

Noise Occupancy estimated from periodic trigger data.

Noise Occupancy estimated from normaltrigger data excluding track hits.

Comparison of two data-sampling method (16 Tower)

Noise Occupancy estimated from periodic trigger data.

Noise Occupancy estimated from normaltrigger data excluding track hits.

Contribution of Delta-Ray

Mutsumi Sugizaki

Strip profile of each layer (some examples)

(from all SVAC run, normal-trigger data)

