

Status of Intra- and Inter-Tower Tracker Alignment

(A preliminary look at the alignment)

Michael Kuss

INFN Pisa

for the alignment team

Instrument Analysis Workshop 6 SLAC 28 February 2006

the ideal TkrFM

the real TkrFM

lt's not an academic exercise only!

From Sara's presentation at IAWS5:

without alignment

with alignment (in MC)

Intra-tower alignment

reference document: my talk at IAWS4

What does it do?

\checkmark aligns planes horizontally, along the measured coordinate
\checkmark aligns planes vertically
\checkmark determines the rotation around z (NEW!)

What does it not do?
\square doesn't align planes horizontally, parallel to the strips
\square doesn't determine rotations around x and y
\square doesn't align single ladders or wafers (yet!)

Residuals vs. slope (horizontal and vertical alignment)

r->DrawResSlope ("Y9", "abs (h_abs-h_abs_ext)<1\&\&abs (invSlope) <1")

res $=\Delta x+\Delta z \cdot \cot (\theta)$

Aligns:

- horizontal (\perp to strips)
- vertical

Residuals vs. position in other view

r->DrawResOrd ("Y9", "abs (h_abs-h_abs_ext)<1")

Procedure

Intra-tower alignment is an iterative process!

Since RA v8r3p1: run with 100k events till "real" convergence

- "real" convergence is achieved if a geometry repeats
- 1 iteration for 100 k events takes about 6 min CPU
- result is "perfect" geometry

Blindiness

Attention

Intra-tower alignment is blind versus:

- translation
- shearing
- vertical scaling (horizontal is fixed by strip dimensions, assuming ladders are glued properly)
- rotation
- translation of the planes of one view vs. the other
- rotation of the planes of one view vs. the other

After every iteration, separately in each view, I "correct" for:

- $\sum \operatorname{pos}_{\mathrm{h}}=0$ (horizontal translation)
- \sum pos $_{\mathrm{h}}{ }^{2}$ min. (shearing)
- $\sum\left(\right.$ pos $_{\mathrm{v}}-$ pos $\left._{\mathrm{v}, \text { ref }}\right)=0$ (vertical translation)
- $\sum\left(\text { pos }_{\mathrm{v}}-\text { pos }_{\mathrm{v}, \text { ref }}\right)^{2}$ min. (vertical scaling)
- $\sum \operatorname{rot}_{\mathrm{z}}=0$ (rotation around z)

Typical result

difference A_39800573-Gleam_v5r8

Intra-tower alignment: summary

Tower 0 (TkrFMA) Y2: 1.33mrad Tower 5 (TkrFM1) Y12: 1.38 mrad
rotation around z

Tower 6 (TkrFM12) Y13: $-358 \mu \mathrm{~m}$
Tower 9 (TkrFM3) Y8: $394 \mu \mathrm{~m}$

Check of mechanical stability (trendling)

- reference data: single-tower runs taken at Alenia, Pisa, or SLAC before October 2005 (used 100k events each)
- new data: 16-tower (B30) runs 135005518/20/22/24 (1.75M events) taken January 162006 at SLAC

The following plots show the difference of the two geometries obtained for a particular tower.

Intra-tower alignment results tower 0

Intra-tower alignment results tower 1

Intra-tower alignment results tower 2

Tower 2 (TkrFM14) run 135005524-306001267

Intra-tower alignment results tower 3

Tower 3 (TkrFM15) run 135005524-306001452

Intra-tower alignment results tower 4

Intra-tower alignment results tower 5

Intra-tower alignment results tower 6

Intra-tower alignment results tower 7

Tower 7 (TkrFM13) run 135005524-306001367

Intra-tower alignment results tower 8

Tower 8 (TkrFM5) run 135005524-399002040

Intra-tower alignment results tower 9

Tower 9 (TkrFM3) run 135005524-398001090

Intra-tower alignment results tower 10

Intra-tower alignment results tower 11

Intra-tower alignment results tower 12

Tower 12 (TkrFM6) run 135005524-309000994

Intra-tower alignment results tower 13

Intra-tower alignment results tower 14

Tower 14 (TkrFM10) run 135005524-308003812

Intra-tower alignment results tower 15

The future of LeaningTower

- (NEW!) can handle multi-tower runs
- (NEW!) determines rotations properly
- doesn't handle single ladders/wafers
- introduces ambiguities for the resulting geometry
- people don't like it anyway
\Rightarrow merge with AlignmentContainer!

AlignmentContainer

Johann started to code:

- tool filters recon files
o 1 track
o track contained in one tower (currently)
o at least 36 hits on track
o tries to select high-energy muons (based on KalThetaMS and KalEne)
o residual calculated from TkrRecon results: TkrHit: :Measured-TkrHit:: Predicted (problem: residual for first plane of the track is always 0)
o saves residual and slope to a root file
- python script reads the root file, and performs the alignment (cloned from LeaningTower)
- doesn't iterate yet

Comparison of methods

- Pisa: uses 100k events (35k good tracks), 1h for TkrRecon, alignment iterative (6 min), typically $30-40$ iterations
- Johann/AlignmentContainer: should use 100k events, alignment iterative (1h for TkrRecon, some mins for alignment)
- Hiro: fits tracks from the data stream, not iterative, no extra time required, surprisingly good

Intra-tower alignment blindiness (revisited)

Intra-tower alignment is blind versus:

- translation
- shearing
- vertical scaling (horizontal is fixed by strip dimensions)
- rotation
- translation of the planes of one view vs. the other
- rotation of the planes of one view vs. the other
\Rightarrow Inter-tower alignment

Translation

Intra-tower alignment:
rotation of a single tower with respect to some coordinate system is ambiguous

Inter-tower alignment:

tracks passing tower gaps fix the rotation of one tower vs. the others

\Rightarrow SOLVED

Instrument Analysis Workshop 6, SLAC, 28 February 2005

Shear

There is no way to correct for common shear from data!
> Metrology measurements?
> Average over all TkrFM's?
$>$ Do we care? $50 \mu \mathrm{~m}$ vs. 554 mm for a perpendicular track $=0.1 \mathrm{mrad}$ (20arcsec)

Vertical Scale

There is no way to correct for a common vertical scale from data!

$>$ Metrology measurements?
$>$ Average over all towers?
Do we care? $70 \mu \mathrm{~m}$ vs. 554 mm for a 45° track $=0.1 \mathrm{mrad}$
$>$ Can we look at some bright sources (Crab et al.)?

Intra-tower alignment blindiness (re-revisited)

Intra-tower alignment is blind, but inter-tower alignment ... gives:
\checkmark translation
\checkmark rotation
gives more or less:
\checkmark shearing
\checkmark vertical scaling
but it doesn't say anything about:
\square translation of the planes of one view vs. the other
\square rotation of the planes of one view vs. the other

Inter-tower alignment

- started long time ago by Hiro (intra-tower too)
- restarted by Tracy (AlignmentContainer)
- recently revived by Johann
- handles only two towers at a time (a reference tower, and a second tower to be aligned)
- track through both towers gets split into two
- track segment in reference tower gets refit
- new track is compared to track segment in the second tower

Status: does something, but results are not consistent when switching reference and second tower

Conclusions

- Misalignment has an impact on data analysis!
- LeaningTower:
o aligns planes vertically and horizontally with high accuracy
o determines rotations around z properly (NEW!)
o can handle multi-tower runs (NEW!)
o doesn't do some things (yet)
o needs help from inter-tower alignment
o TkrAlignmentSvc files are available, and (NEW!) the signs are validated
- Actions items:
o Intra-tower: implement the method of LeaningTower in a proper way
o Inter-tower: fix the bugs in the code
o How do we feed the alignment constants into the analysis?
Calibration database?

