Trigger and SVAC Tests During LAT integration

Su Dong, Eduardo do Couto e Silva and Pat Hascall

December 7, 2004
This Presentation

- **Part 1**
 - **Overview of trigger tests**
 - There are 4 tests
 » FLE scan with muons was added as part of those

- **Part 2**
 - **Overview of SVAC tests**
 - There are 17 tests
 » Merged nomenclature with Gary’s table
 » Addresses ACD tests (for completeness), no need to talk about them today

- **What do we expect to achieve today?**
 - **Agreement on the definition of these tests**
 - **Define action items for issues we may raise**
To be Addressed Today

- We do not know if a trigger primitive fired within the trigger window if the TEM diagnostics are disabled
 - In the GEM summary word we only know which tower issued the trigger primitives, but do not know which layer (end) issued the trigger primitives.
- Unbiased sample of triggers only exist with muon telescope
 - we can not analyze data with multiple trigger lines enabled (needed for efficiency studies)
- Can not test CAL FHE with muon spectrum
 - not enough high energy events
- Testing CAL FLE with muons requires lowering the on-orbit settings
 - Need to determine optimal operation point
 - beware of retriggering
1.0 GEM Timing Alignment

- Purpose
 - To verify the timing alignment and jitter for each GEM trigger input

- Duration
 - 4 hours (EXT AND CAL_LO)
 - 4 hours (EXT AND TKR)

- Configuration
 - muon data taking configuration.
 - Trigger on EXT trigger (muon telescope) AND TKR or CAL (only one trigger input under test each time)

- Procedure
 - Scan TREQ delay for the trigger test (across the allowable range)
 - Take 5000 events for each of the 16 allowed points.
 - Compute the coincidence of external trigger and trigger under test at each step
 - Compute center time and jitter.
2.0 Subsystem TACK Delay Test

- **Purpose**
 - To determine the optimal trigger output (TACK) delay for each subsystem.

- **Duration**
 - 4 hours

- **Configuration**
 - muon data taking configuration.
 - Trigger on EXT trigger ONLY (muon telescope)

- **Procedure**
 - Scan TACK delays for the TKR and CAL over the applicable range simultaneously
 - Record 5000 events for each of the 8 steps
 - Determine the optimal TACK delay will by analysis
 - Use pulse heights for the CAL and hit multiplicity for the TKR
3.0 FLE Muon Scan

- **Purpose**
 - To determine the optimal setting for the FLE for some of the muon data taking.

- **Duration**
 - 12 hours

- **Configuration**
 - muon data taking configuration.
 - Trigger on EXT (muon telescope), TKR and CAL_LO trigger

- **Procedure**
 - Use procedure from CAL as baseline LAT-MD-04187-01
 - Alternative proposal
 » Scan FLE DAC setting for the CAL over the applicable range
 » Record 5000 (TBR) EXT triggered events for each of the 3 steps (TBR)
 » Determined the optimal FLE by analysis
Trigger Tests (4)

- 4.0 Trigger efficiency
 - **Purpose**
 - To determine the trigger efficiency
 - **Duration**
 - 4 hours
 - **Configuration**
 - muon data taking configuration.
 - Can be combined with the SVAC test B4
 - Trigger on EXT (muon telescope), TKR and CAL_LO trigger
 - **Procedure**
 - Analysis offline
Trigger Primitives

• Available when TEM diagnostics are enabled
 - Allows one to know which layer (end) issued a trigger request
• The GEM summary words tell which trigger occurred in a particular tower/ACD
 - TKR, CAL_LO, CAL_HI, CNO, ROI, EXT, Periodic, Solicited
• Default on orbit
 - TEM diagnostics OFF
• Default for SVAC tests for full LAT
 - TEM diagnostics OFF
• Default for SVAC tests of partially populated LAT and tests outside flight grid and trigger tests
 - TEM diagnostics ON
• Trigger window is of fixed time
 – Configurable (250 – ~ 1600 ns)
 – the first trigger type to appear can open the trigger window
 – If the window open mask register for that type was enabled
• How do I know a trigger primitive fired?
 – After the window closes it will appear in the GEM condition summary word, from which the L1 trigger is formed, only if
 – a trigger type signal was HIGH during the time the window was open
• What if the window open mask register for a given type was disabled but the signal was HIGH?
 – It will be in the GEM condition summary word
 – Provided some other trigger will open the window at a compatible time!
Muon Data Taking for Trigger Tests

- Single towers outside/inside the flight grid and LAT
 - **Main Register settings**
 - CAL Readout range: **ONE** or **FOUR**?
 - CAL High energy muon gain: **OFF** or **ON**?
 - Zero suppression: **ON**
 - TEM trigger diagnostic data: **ON**
SVAC Tests - Summary

- Before SVAC tests
 - Integrated tower is timed in and nominal settings are known

- SVAC tests
 - SVAC B1-B3 Flight configuration for LAT
 - SVAC B4-B5 Main configuration for LAT Calibrations
 - SVAC B6-B7 FLE trigger on muons for trigger tests
 - SVAC B8-B9 Main configuration for partially populated LAT
 - SVAC B10 No zero suppression for partially populated LAT
 - SVAC B11 No zero suppression for LAT
 - SVAC B12 Main configuration for LAT VDG tests
 - SVAC B13 Main VDG configuration for partially populated LAT
 - SVAC B14 ACD Veto functionality
 - SVAC B15-B17 ACD Calibrations

- Trade-off between fast throughput in data processing and convenience for users suggested that the
 - SVAC Data Taking scripts should be limited to 100-200 MB runs
 - Implies in ~30 min runs for 1 tower
SVAC tests – Charge Injection

• To support the SVAC offline calibrations with muons the following charge injection tests will be performed just prior to the muon data taking
 – TKR
 – TE701 – Threshold Dispersion
 – TE601 – Threshold Calibrations
 – TE602 – TOR conversion parameter calibrations
 – CAL
 – Name? – FLE/FHE characterization charge injection
• To “calibrate out the cross talk” effect from the FLE (using SAS calibGenCAL v3), the following trigger test is needed
 – Name? – FLE characterization with muons
SVAC Tests – B1 to B3

SVAC B1-B3 (Flight configuration for LAT)

- **Purpose**
 - Record cosmic ray triggers to compare offline calibrations and performance with results from default ground muon configuration (B2).
 - This is the default flight configuration for the LAT

- **Test/Duration**
 - B1: Single tower outside the flight grid (Towers A and B only): 2 hours
 - B1: Each single tower once it is installed inside the flight grid: 4 hours
 - B1: LAT in vertical orientation: 5 x 24 hours = 120 hours
 - B2: LAT in horizontal orientation (prior to VDG tests): 3 hours
 - B3: LAT in horizontal orientation: 5 x 24 hours = 120 hours

- **Configuration**
 - CAL
 - Auto range: ON
 - Readout range: ONE
 - High energy muon gain: OFF
 - Zero suppression ON
 - CAL LAC 1 MeV
 - ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on logical OR
 - EXT trigger (muon telescope) if accessible
 - TKR set to \(\frac{1}{4} \) MIP
 - CAL_LO set to 100 MeV
 - CAL_HI set to 1 GeV
 - ACD_HLD set to 1 MIP
SVAC Tests – B4-B5

• SVAC B4-B5 (Main configuration for LAT Calibrations)
 – Purpose
 – Record cosmic ray triggers to produce offline calibrations, to evaluate performance and compare with MC simulations.
 – This is the default and official configuration for LAT calibrations and includes measurement of response of both CAL PIN diodes.
 – Test/Duration
 – B4: LAT in vertical orientation: 6 x 24 hours = 144 hours
 – B5: LAT in horizontal orientation for baseline prior to Environmental Tests= 16 hours
 – Configuration
 – CAL
 » Auto range: ON
 » Readout range: FOUR
 » High energy muon gain: ON
 – Zero suppression ON
 » CAL LAC 1 MeV
 » ACD PHA 0.3 MIP
 – TEM trigger diagnostics: OFF
 – Trigger on logical OR
 » EXT trigger (muon telescope) if accessible
 » TKR set to ¼ MIP
 » CAL_LO set to 100 MeV
 » CAL_HI set to 1 GeV
 » ACD_HLD set to 1 MIP
SVAC Tests – B6

• SVAC B6 (FLE trigger on muons to support trigger tests)
 – Purpose
 – Record cosmic ray triggers to verify performance
 – Trigger efficiency tests for trigger group
 – This is the low energy FLE configuration for the LAT
 – Duration
 – Single tower outside the flight grid vertical orientation (tower A and B only): 1 hour
 – Single tower inside the flight grid vertical orientation (TBR depends on first two tower tests)
 – LAT in vertical orientation: 8 hours (TBR depends on first two tower tests)
 – Configuration
 – CAL
 » Auto range: ON
 » Readout range: ONE
 » High energy muon gain: OFF
 – Zero suppression ON
 » CAL LAC 1 MeV
 » ACD PHA 0.3 MIP
 – TEM trigger diagnostics: ON
 – Trigger on logical OR
 » EXT trigger (muon telescope) if accessible
 » TKR set to ¼ MIP
 » CAL_LO set to 6 MeV (TBD by trigger tests)
 » CAL_HI set to 1 GeV
 » ACD_HLD set to 1 MIP
SVAC Tests – B7

- **SVAC B7 (FLE trigger on muons to support trigger tests)**
 - **Purpose**
 - Record cosmic ray triggers with the low energy FLE configuration with TEM diagnostics disabled, to confirm that we only need configuration B6 for the LAT
 - **Duration**
 - Single tower outside the flight grid vertical orientation (tower A and B only): 1 hour
 - Single tower inside the flight grid (TBR depends on first two tower tests)
 - **Configuration**
 - CAL
 - Auto range: ON
 - Readout range: ONE
 - High energy muon gain: OFF
 - Zero suppression ON
 - CAL LAC 1 MeV
 - ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on logical OR
 - EXT trigger (muon telescope) if accessible
 - TKR set to ¼ MIP
 - CAL_LO set to 6 MeV (TBD by trigger tests)
 - CAL_HI set to 1 GeV
 - ACD_HLD set to 1 MIP
SVAC B8-B9 (Main configuration for partially populated LAT)

- **Purpose**
 - Record cosmic ray triggers to produce offline calibrations, to evaluate performance and compare with MC simulations with TEM diagnostics enabled
 - This is the default and official configuration for partially populated LAT calibrations and includes measurement of response of both CAL PIN diodes.

- **Duration**
 - B8: Single tower outside grid vertical orientation (Towers A and B only): 2 hours
 - B8: Partially populated LAT inside flight grid vertical orientation: 15 hours
 - B9: Two-Towers (A,B) inside grid in horizontal orientation (prior to VDG tests): 3 hours

- **Configuration**
 - CAL
 - Auto range: ON
 - Readout range: FOUR
 - High energy muon gain: ON
 - Zero suppression ON
 - CAL LAC 1 MeV
 - ACD PHA 0.3 MIP
 - TEM trigger diagnostics: ON
 - Trigger on logical OR
 - EXT trigger (muon telescope) if accessible
 - TKR set to $\frac{1}{4}$ MIP
 - CAL_LO set to 100 MeV
 - CAL_HI set to 1 GeV
 - ACD_HLD set to 1 MIP
SVAC B10 (No zero suppression for partially populated LAT)

- **Purpose**
 - Record cosmic ray triggers to produce offline calibrations that require no zero suppression with the TEM diagnostics enabled

- **Duration**
 - Single tower outside flight grid in vertical orientation: 1 hour
 - Partially populated LAT and/or Single tower inside flight grid in vertical orientation: 1 hour

- **Configuration**
 - CAL
 - Auto range: **ON**
 - Readout range: **FOUR**
 - High energy muon gain: **ON**
 - Zero suppression **OFF**
 - TEM trigger diagnostics: **ON**
 - Trigger on logical OR
 - EXT trigger (muon telescope) if accessible
 - TKR set to ¼ MIP
 - CAL_LO set to 100 MeV
 - CAL_HI set to 1 GeV
 - ACD_HLD set to 1 MIP
SVAC Tests – B11

• SVAC B11 (No zero suppression for LAT)
 – Purpose
 – Record cosmic ray triggers to produce offline calibrations that require no zero suppression with the TEM diagnostics disabled
 – Duration
 – LAT in vertical orientation: 1 x 16 hours = 16 hours
 – Configuration
 – CAL
 » Auto range: ON
 » Readout range: FOUR
 » High energy muon gain: ON
 – Zero suppression OFF
 – TEM trigger diagnostics: OFF
 – Trigger on logical OR
 » TKR set to ¼ MIP
 » CAL_LO set to 100 MeV
 » CAL_HI set to 1 GeV
 » ACD_HLD set to 1 MIP
SVAC Tests – B12

• SVAC B12 (Main configuration for LAT VDG tests)
 – Purpose
 – Record VDG photons to measure performance
 – Duration
 – LAT in horizontal orientation: 16 hours
 – Configuration
 – CAL
 » Auto range: ON
 » Readout range: ONE
 » High energy muon gain: OFF
 – Zero suppression ON
 » CAL LAC 1 MeV
 » ACD PHA 0.3 MIP
 – TEM trigger diagnostics: OFF
 – Trigger on
 » TKR set to ¼ MIP
SVAC Tests – B13

• SVAC B13 (Main VDG configuration for partially populated LAT)
 – **Purpose**
 – Record photons to evaluate performance
 – **Duration**
 – Tower A outside grid in horizontal orientation: **16 hour**
 – Tower A and B inside grid in horizontal orientation: **16 hours**
 – **Configuration**
 – CAL
 » Auto range: **ON**
 » Readout range: **FOUR**
 » High energy muon gain: **ON**
 – Zero suppression **ON**
 » CAL LAC **1 MeV**
 » ACD PHA **0.3 MIP**
 – TEM trigger diagnostics: **ON**
 – Trigger on
 » TKR set to **¼ MIP**
SVAC Tests – B14

- SVAC B14 ACD (veto functionality)
 - **Purpose**
 - Record cosmics for veto functionality
 - **Duration**
 - LAT in vertical orientation: 1-8 hours (TBR)
 - **Configuration**
 - CAL
 » Auto range: ON
 » Readout range: ONE
 » High energy muon gain: OFF
 - Zero suppression ON
 » CAL LAC 1 MeV
 » ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on logical OR
 » EXT trigger (muon telescope) if accessible
 » TKR set to ¼ MIP
 » CAL_LO set to 100 MeV
 » CAL_HI set to 1 GeV
 » ACD_HLD set to 1 MIP
SVAC Tests – B15

- SVAC B15 ACD Calibrations
 - **Purpose**
 - Record cosmics for ROI 1
 - **Duration**
 - LAT in vertical orientation: 6 hours
 - **Configuration (as in flight for TKR and CAL)**
 - Zero suppression ON
 - CAL LAC 1 MeV
 - ACD PHA 0.3 MIP
 - TEM trigger diagnostics: OFF
 - Trigger on ACD
 - ACD_veto set to 0.1 MIP
 - ACD_HLD set to 1 MIP
SVAC Tests – B16

• SVAC B16 ACD Calibrations
 – Purpose
 – Record cosmics for RO2 2
 – Duration
 – LAT in vertical orientation: 6 hours
 – Configuration (as in flight for TKR and CAL)
 – Zero suppression ON
 » CAL LAC 1 MeV
 » ACD PHA 0.3 MIP
 – TEM trigger diagnostics: OFF
 – Trigger on ACD
 » ACD_veto set to 0.1 MIP
 » ACD_HLD set to 1 MIP
SVAC Tests – B17

• SVAC B17 ACD Calibrations
 – Purpose
 – Record cosmics for ROI 3
 – Duration
 – LAT in vertical orientation: 6 hours
 – Configuration (as in flight for TKR and CAL)
 – Zero suppression ON
 » CAL LAC 1 MeV
 » ACD PHA 0.3 MIP
 – TEM trigger diagnostics: OFF
 – Trigger on ACD
 » ACD_veto set to 0.1 MIP
 » ACD_HLD set to 1 MIP
Yet To be addressed …

• External trigger efficiency ~ 1 to 4 Hz
 – This needs to be understood before data taking time is finalized

• Testing STRETCH_OR in the GTRC needs to be added to the TKR tests
 – This needs to be understood before data taking time is finalized

• Redundancy between sides A and B of ELX boxes needs to be added
 – This needs to be understood before data taking time is finalized
Trigger window – proposal

- The trigger primitive information should always flow into the GEM condition summary word
 - irrespective of the status of the window open register

- Benefits
 - Add flexibility to the system for on-orbit operations
 - **Case 1**
 - Disallow CAL_HI to open the window (in case it has a significant trigger time slew which is energy dependent)
 - CAL_HI APPEARS in the GEM event summary word as long as TKR or CAL_LO opens the window
 - **Case 2**
 - Disallow CAL_LO to open the window (in case retriggering is an issue)
 - CAL_LO APPEARS in the GEM event summary word as long as TKR opens the window
 - Rely on TKR for low energy spectrum
 - » Not good situation and need careful study of systematics