GLAST Large Area Telescope:
Integration and Test
Two Tower
Integration Readiness Review
Science Verification Analysis and Calibration

Eduardo do Couto e Silva
eduardo@slac.stanford.edu
(650) 9262698
OUTLINE

Planning
- SVAC requirements
- Current Status of Documentation
- Data Taking Plans

Implementation
- Data Processing Chain (pipeline)
- Data Quality Monitoring
- Calibrations
- Data Analysis

Summary
- Future Work
- Main Concerns and/or Risks
Requirements & Documentation
• Applicable to data taking from Cosmic Rays and VDG photons
 – Data Processing
 – Convert each raw data file (LDF) into analysis files
 – Archive files
 – Monitor Data Quality
 – Verify the integrity of data and test configuration
 – Calibrations
 – Generate calibrated data
 – Improve calibrations
 – Trend calibration constants used by the reconstruction
 – Data Analysis
 – Characterize Low Level Performance
 – Tune MC simulations
List of Documents

<table>
<thead>
<tr>
<th>Document Description</th>
<th>LAT DOCS</th>
<th>Responsibility</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAT SVAC Plan</td>
<td>LAT-MD-00446</td>
<td>SVAC</td>
<td>signed off</td>
</tr>
<tr>
<td>SVAC Plan for LAT Integration at SLAC</td>
<td>LAT-MD-00575</td>
<td>SVAC</td>
<td>signed off</td>
</tr>
<tr>
<td>SVAC Contributed Manpower</td>
<td>LAT-MD-00613</td>
<td>SVAC</td>
<td>released</td>
</tr>
</tbody>
</table>

- **SVAC Plan LAT-MD-00446-06**
 - Master Plan : Level 3
 - Covers pre and post launch activities
 - Expect updates after transition into FSW (during I&T)

- **SVAC Plan LAT-MD-00575-01**
 - Describes implementation details : Level 4
 - Special signature cycle
 » submitted to subsystem managers and other key people for SVAC
 - Covers all LAT integration at SLAC
 - Baseline for integration at SLAC is already described
 - Expect updates after 1 and 2 tower tests (lessons learned)

- **SVAC Contributed Manpower LAT-MD-00613-02**
 - Captures existing commitments – Level 3
Redundancy – Risk Reduction

- To reduce schedule risks **no critical task** is assigned to a single person

Redundancy achieved

- Calibrations: Xin/Anders
- Geometry: Anders/Xin
- Code Management: Anders/Xin
- Data Processing and Archival: Warren/Xin
- Data Reports: Xin/Anders
- Event Display: Anders/Warren

Redundancy process in progress

- Data Configuration Parser: Warren/Anders
- LDF verification: SAS/ISOC

Redundancy process not yet started

- Electronic Logbook (ORACLE): Xin/ISOC
- Trending Database (ORACLE/JAS): Xin/ISOC

Calibration trending is not so critical for two towers, During our Peer Review in July 2004, ISOC agreed to take over soon since Xin is oversubscribed. Need to ramp up this effort.
Data Taking Plans
Cosmic Ray Data Taking

- 1 Tower (Single bay, special grid)
- 2 Towers
- 4 Towers
- 6 Towers
- 8 Towers
- 10 Towers
- 12 Towers
- 14 Towers
- 16 Towers
- LAT
VDG Data Taking

1 Tower
(Single bay, special grid)

2 Towers

LAT
Overview – SVAC Tests

- **SVAC 101**
 - Data Collection with CAL high energy muon gain

- **SVAC 102**
 - Data Collection with CAL high energy muon gain and TEM diagnostics enabled

- **SVAC 103**
 - Data Collection without zero suppression

- **SVAC 104:**
 - Data Collection with flight configuration

- **SVAC 105:**
 - ACD functionality for integrated LAT

- **SVAC 106:**
 - Data Collection with ACD triggers only and ROI 1

- **SVAC 107:**
 - Data Collection with ACD triggers only and ROI 2

- **SVAC 108:**
 - Data Collection with ACD triggers only and ROI 3

- **SVAC 204** (there is typo in LAT-MD-00575)
 - TKR Threshold Dispersion (Same as TKR TE701)

- **SVAC 201**
 - TKR Threshold Calibration (Same as TKR TE601)

- **SVAC 202**
 - TKR TOT Conversion Parameter Calibration (Same as TKR TE602)

- **SVAC 203**
 - CAL FLE/FHE Muon Scan

LAT-MD-00575
• Data taking conditions
 – For most tests muon telescope participates in the trigger
 – For most of tests TEM diagnostics are enabled
 – Expected rate from 20 ~ 30 Hz

• Cosmic Rays
 – SVAC 104: (2 hours)
 – Data Collection with flight configuration, vertical orientation
 – SVAC 102 (2 hours) VDG OFF
 – Data Collection with CAL high energy muon gain with four range readout, TEM diagnostics enabled, vertical orientation
 – SVAC 102 (1 hour)
 – Data Collection with CAL high energy muon gain with four range readout, TEM diagnostics enabled, horizontal orientation
 – SVAC 103: (1 hour)
 – Data Collection with CAL high energy muon gain with four range readout, TEM diagnostics enabled, vertical orientation, without zero suppression

• Low Energy Photons
 – SVAC 102 (1 hour) VDG ON
 – Data Collection with CAL high energy muon gain and TEM diagnostics enabled, horizontal orientation
SVAC tests – Single Tower in grid

These tests are repeated for each new tower after it is installed in a grid

- **Day 1: Calibrations**
 - SVAC 201: (1 hour)
 - TKR Threshold Calibration – charge injection
 - SVAC 202: (1 hour)
 - TKR Tot Conversion parameter Calibration – charge injection
 - SVAC 204: (1 hour)
 - TKR Threshold dispersion – charge injection
 - SVAC 104: (4 hours)
 - TKR MIP Calibration/Trigger efficiency/Residuals
 - SVAC 203: (8 hours)
 - Determine CAL discriminator setting with muons

- **Day 2: Calibrations (large statistical sample) and Low-level characterization**
 - SVAC 102 (23 hour)
 - Data Collection with CAL high energy muon gain with four range readout, TEM diagnostics enabled, horizontal orientation
 - SVAC 103: (1 hour)
 - Data Collection with CAL high energy muon gain with four range readout, TEM diagnostics enabled, vertical orientation, without zero suppression

- **Day 3: Low Energy Photons**
 - SVAC 102 (13 hours) VDG ON
 - Data Collection with CAL high energy muon gain and TEM diagnostics enabled, horizontal orientation
 - SVAC 102 (3 hours) VDG OFF
 - Data Collection with CAL high energy muon gain and TEM diagnostics enabled, horizontal orientation

Expected CR rate for single tower: 30 Hz

All nominal settings for integrated instrument (e.g. time delays) are assumed to be known
SVAC Scripts

• “Requirements” for Data Taking scripts and/or LATTE
 – Shall produce several data runs
 – 30 min (TBR) : for one tower
 – 10 min (TBR) : for LAT
 – Shall produce the data taking configuration for each run with information about the hardware under test
 – external info
 » VDG rate used, solicited trigger rate for E2E tests
 – internal info
 » to support calibrations and data analysis
 » e.g. zero suppression ON/OFF, etc
 » Full list provided in LA-MD-00575
 – Shall produce data taking configuration in time reasonably small when compared with the duration of run
 – Snapshots of registers currently take ~ 1 min to be produced
 – rc.report (summary info)
Data Processing (pipeline)
Data Flow – 1 hr of Cosmics single tower (1/2)

Data Taking

- Record data

Online Pipeline

- Transfer Data within Local PC
- Data arrives In SLAC farm
- SVAC pipeline is launched

1 hr
20 min
5 min
10 min

Internal problems are being fixed
Network speed is a 100 Mbits/s

Dominated by 5 min frequency within which the pipeline scheduler runs. SAS is working with SLAC computer Center on a solution to that
Data Flow – 1 hr of Cosmics single tower (1/2)

- **Online Pipeline**
 - Launch digi processing
 - 15 min
 - Digi File processed
 - 10 min
 - Digi Reports on the Web
 - 20 min
 - Analysis of reports
 - 15 min

- **Configuration Reports on the Web**
 - Verification of H/W settings
 - 15 min

- **SVAC Pipeline**
 - Scheduler limited (5 min)
 - CPU limited (~1 GHz)
 - Human intervention

- **Recon Reports on the Web**
 - Recon File processed
 - 360 min
 - Recon Reports on the Web
 - 20 min
 - Analysis of reports
 - 15 min

- **Analysis Files processed**
 - Data Analysis
 - Hrs/weeks

- **Launch analysis processes**
 - Analysis Files processed
 - 10 min
 - Data Analysis
 - Hrs/weeks

- E. do Couto e Silva
Pipeline Tasks

Rows indicate that processes are occurring at the same time

<table>
<thead>
<tr>
<th>tasks</th>
<th>online</th>
<th>updateElogDb</th>
<th>digitization</th>
<th>configReport</th>
<th>recon</th>
<th>digiReport</th>
<th>svacTtuple</th>
<th>reconReport</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cronjob</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>ldf2fits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>injectSVAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>populate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>LaunchDigi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>LaunchConfRep</td>
<td></td>
<td>convert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>LaunchRecon</td>
<td></td>
<td>configTables</td>
<td></td>
<td>recon</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>LauncRep</td>
<td>configReportUrl</td>
<td>recon</td>
<td></td>
<td>genReport</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>digiRootFile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>digiReportUrl</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LaunchSVAC</td>
<td></td>
<td>+5</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>LaunchReport</td>
<td></td>
<td>svacTuple</td>
<td></td>
<td></td>
<td>+10</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>reconRootFile</td>
<td></td>
<td>svacRootFile</td>
<td>genReport</td>
<td></td>
<td>+15</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>meritRootFile</td>
<td></td>
<td></td>
<td>reconReportUrl</td>
<td></td>
<td>+20</td>
</tr>
</tbody>
</table>

Elapsed time should be reduced to seconds instead of minutes.

SAS is working with SLAC Computer Center towards that goal.

E. do Couto e Silva
Data Taking Issues Related to Pipeline

• Wants to remain below 200 MB limit for LDF (digi) files because
 – Reconstructed file is 10 times larger than digitized one
 – Allow fast turn around in the results since the pipeline by has smaller jobs
 – Less of a burden on Collaborators outside SLAC to ftp files for data analysis at their local institutions

• One tower problem
 – Expected rate of 30 Hz
 – Record 100K events in 3600 seconds ~ 1 hour!
 • 100,000 events imply in about 100 MB (TKR)
 – One data file with 100K events will get reconstructed
 » in about 18 hours for non-optimized code!
 » in about 6 hours for optimized code!

• LAT problem
 – Expected rate of 300 Hz
 – Record 100K events in ~ 10 min!
Data Quality Monitoring
SVAC Reports

• The Quality Monitoring System
 – uses the pipeline to automatically generate reports
 – Reports are uploaded to the Web
 – We are adding more information on a per need basis

• Report format is designed for 16 towers (no ACD yet)
 – Configuration Reports (parsed from online files)
 – CAL FLE/FHE/LAC thresholds
 – TKR GTRC splits
 – Etc
 – Digitized and Reconstruction Reports (parsed from offline files)
 – Hit multiplicities
 – Number of crystals hit
 – Trigger bits set
 – Number of reconstructed tracks
 – etc
Run selection (1)
Run selection (2)

Get run info produced by the online

Get digitization and reconstruction reports

Get register configuration info
Instrument Configuration (1)

Configuration for run 101

Created by ConfigTables version v1r0p0 from files:
snapshot: snap.xml
schema: junk

LAT globals

CAL Zero Supression is OFF.
CAL Four Range Readout is ON.

TKR GTRC Layer Readout Split Points

<table>
<thead>
<tr>
<th>Layer</th>
<th>Tower 2 X</th>
<th>Tower 2 Y</th>
<th>Tower 3 X</th>
<th>Tower 3 Y</th>
<th>Tower 4 X</th>
<th>Tower 4 Y</th>
<th>Tower 5 X</th>
<th>Tower 5 Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>4</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
</tr>
<tr>
<td>3</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
</tr>
<tr>
<td>2</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
<td>12:0:12</td>
</tr>
<tr>
<td>1</td>
<td>4:0:20</td>
<td>4:0:20</td>
<td>4:0:20</td>
<td>4:0:20</td>
<td>4:0:20</td>
<td>4:0:20</td>
<td>12:0:12</td>
<td>12:0:12</td>
</tr>
<tr>
<td>0</td>
<td>0:24:0</td>
<td>0:24:0</td>
<td>0:24:0</td>
<td>0:24:0</td>
<td>0:24:0</td>
<td>0:24:0</td>
<td>0:24:0</td>
<td>0:24:0</td>
</tr>
</tbody>
</table>

CAL register configuration
EM2 hardware (only 5 planes)
Instrument Configuration (2)

CAL Low Energy Trigger Discriminator (GTEM/GCCC/GCRC/GCFE/fle_dac: *)

CAL Low Energy Trigger Discriminator for Tower 2 side -X

<table>
<thead>
<tr>
<th>layer</th>
<th>crystal</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CAL Low Energy Trigger Discriminator for Tower 2 side +Y

<table>
<thead>
<tr>
<th>layer</th>
<th>crystal</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 Absent</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

CAL Low Energy Trigger Discriminator for Tower 3 side +X

<table>
<thead>
<tr>
<th>layer</th>
<th>crystal</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CAL Low Energy Trigger Discriminator for Tower 3 side +Y

<table>
<thead>
<tr>
<th>layer</th>
<th>crystal</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 Absent</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Code accommodates missing elements (just in case...)_
Retrieval of Large Number of Runs

• For massive production needed for calibration all runs must be retrieved in a convenient format (application dependent)
• The infrastructure is in place and needs to be tailored to user needs
Data Quality – SVAC Reports

Single tower data from PISA (of course not in the grid)

LAT MC

LAT MC

E. do Couto e Silva
Calibrations
Calibration Requirements

- Calibration delivery shall include
 - Algorithms for calibrations
 - an executable that combines data from different runs
 - runs on the SLAC batch farm
 - reference datasets
 - Documentation describing usage and algorithm description
 - Metadata to address serial number and bay location in a grid

- SAS Calibration types are defined in the SVAC Plan LAT-MD-00446
 - **TKR**
 - Dead and Noisy strips
 - TOT Conversion Parameter (produced by EGSE scripts)
 - TOT MIP Conversion (in progress)
 - **CAL**
 - Pedestals
 - Gains (muon peaks)
 - Light asymmetry (muon slopes)

CAL calibration package is being rewritten.
Delivery scheduled for 1 month prior to begin of Integration
Calibrations

For Reference only

- Requirements
 - Perform calibrations involving offline analysis using SAS software

- Datasets
 - Particle Sources
 - Cosmic Rays and VDG photons
 - Data taking period
 - ~ 24 hours at nominal settings for partially populated LAT (e.g. 1 ad 2 towers)
 - ~ days at nominal settings for full LAT
 - Additional input information needed
 - From charge injection tests (e.g. TKR TOT Conversion parameter, CAL charge injection)

- Results
 - During initial phases of I&T will be manually generated
 - Automation may be possible but not for all types
 - will be used to generate calibrated reconstructed data files

- Timescale for Results
 - few hours (TBR) after completion of the data taking
 - Depends on turn around time of pipeline
 - Depends on complexity of calibrations
 - Experience will be developed throughout integration until final calibrations are performed when the LAT is assembled
Calibration Validation Procedure

TBW
Data Analysis
E2E Tests - Data Analysis

• **Requirements**
 - Support the analysis of the data from trigger and data flow tests for the LAT when is fully assembled as recommended by the End-to-end Committee report

• **Datasets**
 - Obtained using Cosmic Rays and VDG photons as particle sources
 - will be produced by changing configuration settings as defined in the End-to-End Committee Report and captured in LAT-MD-04136 (See Particle Test Peer Review)

• **Results**
 - Reports automatically generated at the end of the run
 - Reports contain tables and plots to identify *coarse* problems and establish that data is analyzable
 - Final acceptance and sign-off occurs at LAT level

• **Timescale for Results**
 - few hours (TBR) after completion of the data taking
 - Turn around is determined by the complexity of tasks
 - Preliminary verification will be performed for 1, 2 and 8 Towers (TBR) during LAT integration
• Plot goes here
DETAILED Analyses

For Reference only

• Requirements
 • Look for serious, and probably subtle, problems
 – Those which compromise the quality of the science data
 • Provide feedback to the LAT Integration team
 – (discussed later in this review)

• Datasets
 • particle sources
 – obtained using Cosmic Rays and VDG photons

• Results
 • Discussed on weekly basis
 – Instrument Analysis Group chaired by Eduardo
 • Reviewed biweekly
 – Analysis Group chaired by Steve Ritz
 • Final Report
 – 2 weeks after last data taking run from LAT integration

• Timescale for Results
 • 2 weeks (TBR) after completion of the data taking
 • Determined by time available between delivery of towers
 • On-going support through the Instrument Analysis Workshop Series
Monte Carlo Simulations
VDG Data Taking

1 Tower
(Single bay, special grid)

2 Towers

8 Towers

LAT
Examples with Monte Carlo Simulation (1)
Wrapping it all up...
Work to do for 2 Towers

- Applicable to data taking from Cosmic Rays and VDG photons
 - **Data Processing**
 - Pipeline still being tailored to Integration needs
 » Need to optimize throughput
 » What else will we find out?
 - **Monitor Data Quality**
 - Get calibrated DAC settings as part of configuration reports
 - Allow a broader set of query options in the database
 - **Calibrations**
 - Test final scripts after delivery
 - Correlate calibration constants with housekeeping
 - Develop infrastructure for LAT calibrations (several runs)
 - **Data Analysis**
 - Develop cuts for E2E tests
 - Develop analysis procedures (need data)
 - **Other**
 - Revisit manpower plan after data taking
Areas of Concern (or Risks)

• Data Processing
 • Not sufficient testing time with pipeline

• Calibrations
 • Not sufficient time to debug infrastructure for calibration code, especially
 – correlations with metadata and housekeeping
 – Validation procedure

• Data Analysis
 • Contributed manpower is mostly of 50% FTEs
 • Need 1 or 2 full time people added to the team
Summary

• If tower delivery occurs on Dec 22
 – we will be ready to start
 – Data Processing
 – Data Quality Monitoring
 – Calibrations
 – Data analysis

• May not be so smooth because of
 – Lack of sufficient debugging time for the new tools
 – e.g. pipeline
 – Lack of sufficient testing time with real hardware
 – e.g. data analysis for E2E tests (two towers only)
SVAC tests – Single Tower in EM bay (1/2)

- Data taking runs with
 - muon telescope and the TEM diagnostics enabled
 - ~ 30 Hz
- 2 hours of cosmic rays (~ 200,000 events)
 - with the nominal flight settings at vertical orientation
 - 170 bytes/event so 38 MBytes
 - with the GND μ settings at vertical orientation
 - 270 bytes/event so 58 MBytes
- 1 hour of cosmic rays (~ 100,000 events)
 - GND μ settings with TEM diagnostics ON at vertical orientation
 - 320 bytes/event so 68 MBytes
 - GND μ settings with zero suppression off at vertical orientation
 - 1700 bytes/event so 186 MBytes
 - GND μ settings at horizontal orientation with VDG OFF
 - 270 bytes/event so 58 MBytes
 - GND μ settings at horizontal orientation with VDG ON
 - 270 bytes/event so 58 MBytes
Data Flow Overview

10 + 15 + 10 + 5 + 5 = 55 min

1 hr
Record data
70 MB

5 min
Online pipeline
70 MB

110 MB
Offline pipeline
digi
Analysis

360 + 60 = 420 min

1100 MB
Offline pipeline
recon
Analysis

E. do Couto e Silva