### Number of Reconstructed photons



Assume tagger efficiency is 100%

Calculations for Run 300 113687 events - 0.9% converter 1.47 X0 TRK



If we require tagged photons in data we get about 0.43 % and agrees well with calculations. However, stats were not enough and we did not require a tagged photon rather a correlation between energy in the tagger and in the calorimeter

#### Calculation for 2.7% converter



# Tagger

- Tagger efficiency is high.
- We only used Energy of the tagger but not to tag events with one single photon
- We believe our correction method (30%) to give us PSF of the order of 10%

| Beam Type            |        |        |          |             |  |
|----------------------|--------|--------|----------|-------------|--|
|                      | Photon | Hadron | Electron | Cosmic Rays |  |
| Engineering<br>Model | No     | No     | No       | Yes         |  |
| Calibration<br>Unit  | Yes    | Yes    | Yes      | Yes         |  |
| LAT Flight           | No     | No     | No       | Yes         |  |

We assume functionality tests (TBD) are done by subsystems (TBR) at their local institutions. Some subset will be done during beam test and its impact has to be taken into account in the scheduling

|                           | ACD                                                           | Tracker                                                                                   | Calorimeter          |
|---------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------|
| Engineering Model<br>(EM) | 14 tiles<br>•<br>(10 migrate to the<br>calibration unit)<br>• | Dummy trays<br>Thin 3% (13)<br>Thick 18% (2)<br>ive trays<br>Thin 3% (2)<br>Thick 18% (2) | Fully instrumented ? |
| Calibration<br>Unit (CU)  | 10 tiles                                                      | Fully instrumented                                                                        | Fully instrumented   |
| LAT Flight (LAT)          | Fully instrumented                                            | Fully instrumented                                                                        | Fully instrumented   |

For the calibration units we have discussed two possible configurations.



### 4 Photon Beam configurations - 3 months



## Descoping...

- Remove 5,6,7 or argue that one needs to test all 16 towers
- Remove 9 because interfaces are not too different
- 3 and 8 must be studied with MC before we make a decision

The main motivation for the high energy photon beam is to characterize the Point Spread Function (PSF), Effective Area (A) and Field of View (FOV) for off-axis incidence for photon energies > 100 MeV. The energy resolution (E) will also be measured but its main characterization will occur in the positron beam.

|                | 0 Deg        | 30 Deg       | 60 deg       | 80 deg       |
|----------------|--------------|--------------|--------------|--------------|
| 100 MeV        | A, PSF,E     | A, PSF,E     | A, PSF,E     | A, PSF,E     |
| 500 MeV        | A, PSF,E     | A, PSF,E     | A, PSF,E     | A, PSF,E     |
| 1 GeV          | A, PSF,E,FOV | A, PSF,E,FOV | A, PSF,E,FOV | A, PSF,E,FOV |
| 10 <i>G</i> eV | A, PSF,E     | A, PSF,E     | A, PSF,E     | A, PSF,E     |

For every point in the test matrix we require 4000 reconstructed (with Energy measured by a photon tagger) This is driven by the PSF measurement. In BTEM 99/00 we obtained from 400-1000 photons for data and 2500 for MC runs.

#### No azimuth angles due to LAT symmetry



Configuration 1= 160 hours of beam.
Configuration 2= 480 hours of beam.
Configuration 3= 480 hours of beam.
Configuration 4= 480 hours of beam.

Total of 1600 hours of beam. Assume the beam uptime to be 80%, so we need a total of 1920 hours of beam = 80 days. We add 10 days for unforeseen problems to **obtain 3 months of run time.** We need an additional month to set up the beam and the instrument (TBR), the set-up time may take longer due to the fact that we are dealing with Flight Qualified towers.

The main motivation for the low energy photon beam is to characterize the Point Spread Function (PSF), Effective Area (A) and Field of View (FOV) for off-axis incidence for photons of energies < 100 MeV. The energy resolution (E) will also be measured but its main characterization will be done with cosmic rays. This will also be useful for developing algorithms to estimate the energy loss in the tracker (L).

|        | 0 Deg          | 30 Deg       | 60 deg       | 80 deg       |
|--------|----------------|--------------|--------------|--------------|
| 20 MeV | A, PSF,E,L     | A, PSF,E     | A, PSF,E     | A, PSF,E     |
| 50 MeV | A, PSF,E,FOV,L | A, PSF,E,FOV | A, PSF,E,FOV | A, PSF,E,FOV |

#### No azimuth angles due to LAT symmetry



Configuration 1= 80 hours of beam.
Configuration 2= 240 hours of beam.
Configuration 3= 240 hours of beam.
Configuration 4= 240 hours of beam.

Total of 800 hours of beam. Assume the beam uptime to be 80%, so we need a total of 960 hours of beam = 40 days. We add 5 days for unforeseen problems to **obtain 1 1/2 months of run time.** We need an additional month to set up the beam and the instrument



## To do List - for next meeting

- Find Van der Graaf @SLAC and check how one can use it
- Apply for coherent beam (3 months)
- Apply for ESA (6 months)
- Prepare a Test Matrix for positron beam
- Plan for hadron beam tests at BNL
- Incorporate timing issues in the discussion