Integration & Calibration Subcommittee Meeting

Eduardo do Couto e Silva Stanford Linear Accelerator Center March 23, 2000 For this meeting, let's NOT discuss...

- Beam tests for the LAT Flight Unit
- Polarization
- Special calibration for GRB and AGN localization and timing
- Calibration files and instrument response functions

What's the spirit of the Beam tests ?

- Prove to the project that we meet the science requirements (stick to the minimum)
- Check that the hardware is working (DAQ included) for different triggering modes
- Validate MC Prove to ourselves that we meet the science requirements (should not overtest)

In orbit we want to measure flux $\# \gamma = Aeff \times Flux$

we must know very well Quality cuts and Background rejection cuts

Beam Test we must know very well the flux and the number of photns

$$\gamma$$
 = Aeff × Flux

Multiple photons Beam dispersion Energy resolution

we must evaluate Quality cuts and Background rejection cuts

How well do we need to know?

Parameter	Knowledge	Comments
Effective Area (>100 MeV)	? %	
Effective Area (<100 MeV)	? %	Changes rapidly
Photon Energy (>100 MeV)	10 %	
Photon Energy (< 100 MeV)	5 %	Need good tagger
PSF 68%	10 %	
PSF 95%	20 %	Need high stats
Angle of incidence	? %	
Beam Flux	? %	
Deadtime	? %	Need good duty cycle

BEAM TYPE	PRO	CON
(photons)		
Backscattered laser (EGRET)	•E dispersion = 20% at 20 MeV, 10% up to 3 GeV	 Low intensity Intensity fluctuations (used a NaI to monitor) Multiple photons No tagger
"usual" GLAST with radiators of different thickness (incoherent brehmstrahlung)	•Simple to implement	 Need to believe correction method for multiple photons Need fine tuning to get 20 MeV Need tagger
Coherent brehmsstralung	•Monochromatic •Less run time needed	 May need tagger Some multiple photons from Low energy Maybe available only in 2003 Can we get 20 MeV ?

Beam Tests Location

- If outside SLAC, need to evaluate costs and risks
- Even at SLAC we need controlled environmental conditions for test beam
- Need to define protocols for transfer of equipement

A = effective area PA = peak effective area PSF = point spread function E = energy resolution FOV = Field of View

Energy vs Angle (photons)

Do we need a 5^{th} angle for FOV ?

Can we get a 5% tagged beam?

	0 deg	30 deg	55 deg	80 Deg
20 MeV	A,PSF,E		PSF	
100 MeV	A,PSF,E		PSF	
1 GeV	PA,PSF,E, FOV	FOV	FOV,PSF	FOV
10 GeV	PA,PSF,E		PSF	
300 GeV	A,PSF,E		PSF	8

Energy vs Angle EGRET (photons)

Energy	(inclination)		(azimuth)	
		anony	(azimum)	
15 MeV	0 deg	1	0	
20 MeV	10 de	9	22.5 deg	
35 MeV	20 deg		45 deg	
60 MeV	30 deg			
100 MeV	40 deg			
200 MeV		•30 to	200 K trigge	red photons/bin
500 MeV				•
1 GeV		•2 months of Beam Test		
3 GeV		• < 150	runs	
10 GeV		× 130		

9

Timing

- Test triggering modes as function of Energy
- How much time we dedicate to self triggering mode ?
- Shall we only verify that the GPS works or shall we interface with spacecraft to learn more about GPS calibration?

Engineering Model

- EM 3 Si trays, full CAL, 1 (?) ACD tile
- August 2002 because of CDR (M.N), May 2002 (T.K.)
- Can we learn something about the beam or about our requirements ?
- Shall we only plan cosmic rays?

2 towers (Qual), May 2003 (M.N.) 4 towers, August 2003, pushing for the CAL

Which configuration for the Calibration Unit?

Tower alignment is now determined by mounting tolerances which are the order of 100 μm

