Mechanical Systems
Mechanical / Thermal Hardware
October 2005 Status

Marc Campell, Subsystem Manager
Grid Qual Static Load Test

• Test Status
 – Testing has gone very smoothly with good results
 – Test set up between load cases has taken much longer than expected

• Progress since last month
 – Load frame proof tested
 – Grid de-mated from flexures
 – Load case (LC) 7 flexures only test completed
 – Grid re-mated to flexures
 – LC 3 Drumhead stiffness & LC 4 Torsional stiffness tests completed
 – LC 2 OBS lift strength testing set up complete, ECD 11/30
 – LC 1 Flight loads strength testing ECD 12/8
Grid Qual Static Load Test

- LC 5 & 6 stiffness testing without CAL baseplates deleted
 - Test results from LC3 & 4 have been reduced and show good correlation to the model
 - Tap test of the Grid performed with good correlation to predicted frequencies
 - 34 Hz torsion mode within 8.5%
 - 182 Hz Drumhead mode within 14%
 - GSFC concurs with LC deletion
Grid Qual Static Load Test (cont)

- Load Case 7
Grid Qual Static Load Test (cont)

- Load Case 3
Grid Qual Static Load Test (cont)

- Load Case 4
Grid Qual Static Load Test (cont)

- Load Case 2
Concerns

Lockheed Martin – open items
• All hardware delivered
• Waiting for final End Item Data Package

Lockheed Martin – financial
• LM has billed through July and only $185k remains on contract value for Aug. & Sept. activities including T/VAC testing
• No additional invoices received so far
Open Flight Design Issue

- Radiator sine vibration test options
 1. Qualify by analysis
 2. Static Load test of Radiator - LAT interface at SLAC
Radiator - Qualify by analysis

- Bonded structures usually require workmanship testing per GEVS, however…
 - Insert Witness coupons were fabricated along with panels
 - These were used to establish B basis
 - Acoustic testing loaded these inserts normal to the panel
 - In plane shear loads not checked by Acoustic
- Pro’s
 - Insert testing has shown >10x design load capability in shear
 - Minimizes handling of Radiators
 - No cost & schedule impacts
- Con’s
 - Workmanship of interface not tested in shear
 - Interface will see shear loads in OBS sine vibe test, but probably not to Radiator Qual levels. Problem found at this time would severely impact the Mission
 - Uphill battle to convince Baird/Fransen of this approach
- Next steps
 - Review LM insert coupon test data
 - Update analysis with as built mass and use updated LAT model
 - Determine if positive margins can be obtained with no test factor of safety applied (currently not)
 - Review locations of the negative margins
Radiator – Static Load Test of Interface

• Radiators would be mounted to flight like interfaces on the Acoustic test fixture
 – Load fixtures would mount to handling inserts on the X sides of the panel
 – Panel is pulled at –Z corner to produce shear load and moment at RMB interface
 – X and Z load components are approximately 200 lbs
 – Handling insert coupons were tested in shear and B basis capability is 525 lbs

• Pro’s
 – Workmanship test of critical interface
 – Flight-like load distribution into insert pattern
 – Test fixtures and flight like interfaces exist
 – Can perform additional tap testing to look for MECO modes if required

• Con’s
 – Additional handling of Radiators
 – Potential contamination of Radiators
Radiator – Static Load Test of Interface (cont)

Next steps

• Agree on test approach
• Detail out Static Load Test implementation
 – Fixture tie down, load application, data acquisition, strain gage requirements, pass/fail criteria, cleanliness approach
 – Fabricate fixtures
• Complete review of LM Acoustic test data to see if MECO modes can be found or if additional testing is required
• Conduct TRR
• Conduct test
• Process required waivers
 – No sine vibe of Radiators
 – No 0 – 150 Hz sine sweep for MECO modes
Static Load Test Test Configuration

Frame Simulating the S/C Bus

+Y Radiator

loads

-Y Radiator

Loads

Struts 4x

Pedestal not available
Frame would be bolted to I beams on floor

Flight like brackets from SLAC (dye penetration tests run with no issues found)
MECH Qualification Program

<table>
<thead>
<tr>
<th>Qual Test</th>
<th>Status</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-Top Flange Heat Pipe bond process qual</td>
<td>Complete. Report released</td>
<td>Comp</td>
</tr>
<tr>
<td>Grid Box Assy Static Load test</td>
<td>Planning in work. Perform on Grid #2</td>
<td>Dec 05</td>
</tr>
<tr>
<td>X-LAT Plate Thermal Vac test</td>
<td>Complete less MRB on final results</td>
<td>Comp</td>
</tr>
<tr>
<td>Radiator Variable Conductance Heat Pipe new extrusion</td>
<td>Passed burst test, heat capacity test after charging</td>
<td>Comp</td>
</tr>
<tr>
<td>Radiator Acoustic</td>
<td>at LMMS</td>
<td>Comp</td>
</tr>
<tr>
<td>Radiator Thermal Vacuum</td>
<td>at LMMS</td>
<td>Comp</td>
</tr>
<tr>
<td>TCS-Radiator Thermal Balance</td>
<td>at LMMS</td>
<td>Comp</td>
</tr>
<tr>
<td>Radiator Sine Vibration</td>
<td>Test alternatives in work</td>
<td>Jan 06</td>
</tr>
<tr>
<td>Radiator Heat Pipe Thermal Joint</td>
<td>Continue coupon tests at NTS</td>
<td>Jan 06</td>
</tr>
</tbody>
</table>
Triple Joint Qualification

- Radiator integration sequence
 - Coupon testing of repeated make & break of joint has been tested. Results were inconclusive due to test facility problems.
 - Disassembly facilitated by use of mold release agent
 - Test will be repeated
 - PO ready to be placed at NTS or
 - Perform in B33 upon completion of E-box testing
 - Coupon rework required to test as individual coupons started
Cost/Schedule Reports for 4.1.8 Mechanical Systems Presentation
October 2005 Month End
Cost Report

GLAST LAT Project Mechanical Systems

Report

<table>
<thead>
<tr>
<th>Category</th>
<th>Actual</th>
<th>Planned</th>
<th>Actual</th>
<th>Planned</th>
<th>Detail</th>
<th>NOV05</th>
<th>DEC05</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.8 MECHANICAL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.8.1 MANAGEMENT</td>
<td>-819</td>
<td>27</td>
<td>4,150</td>
<td>3,898</td>
<td>28</td>
<td>23</td>
<td>389</td>
</tr>
<tr>
<td>4.1.8.2 RELIABILITY & QUALITY ASSURANCE</td>
<td>0</td>
<td>0</td>
<td>399</td>
<td>393</td>
<td>0</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>4.1.8.3 MECHANICAL SYSTEM DEVELOPMENT</td>
<td>0</td>
<td>0</td>
<td>1,088</td>
<td>1,088</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.1.8.4 THERMAL SYSTEMS DEVELOPMENT (LM)</td>
<td>0</td>
<td>0</td>
<td>1,043</td>
<td>1,043</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.1.8.5 THERMAL CONTROL SYSTEM (SLAC)</td>
<td>32</td>
<td>0</td>
<td>830</td>
<td>929</td>
<td>0</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>4.1.8.6 RADIATORS, HEAT PIPES, THERM TEST, X-LAT (LM)</td>
<td>701</td>
<td>0</td>
<td>8,198</td>
<td>8,391</td>
<td>0</td>
<td>0</td>
<td>193</td>
</tr>
<tr>
<td>4.1.8.7 GRID</td>
<td>0</td>
<td>0</td>
<td>656</td>
<td>640</td>
<td>0</td>
<td>0</td>
<td>-16</td>
</tr>
<tr>
<td>4.1.8.8 FABRICATION, ASSEMBLY, AND TEST</td>
<td>37</td>
<td>0</td>
<td>706</td>
<td>947</td>
<td>0</td>
<td>0</td>
<td>241</td>
</tr>
<tr>
<td>4.1.8.9 LAT I&T SUPPORT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>104</td>
<td>0</td>
<td>0</td>
<td>104</td>
</tr>
<tr>
<td>4.1.8.A MISSION I&T SUPPORT</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>138</td>
</tr>
<tr>
<td>CAPW[3] Totals:</td>
<td>-50</td>
<td>38</td>
<td>17,069</td>
<td>17,444</td>
<td>39</td>
<td>33</td>
<td>1,142</td>
</tr>
</tbody>
</table>

Conclusion

The Cost Report provides a detailed breakdown of the cost incurred and estimated cost to complete for various categories within the GLAST LAT Project's mechanical systems. The report includes actual and planned hours worked, cumulative hours, and remaining hours for completion. The totals show a balanced approach towards the project's financial management, ensuring that the project stays on track with its budget and timeline.