

Gamma-ray Large Area Space Telescope

GLAST Mission Large Area Telescope Project

GSFC Monthly Review -- July July 30, 2003

Lowell A. Klaisner, Project Manager Stanford Linear Accelerator Center klaisner@slac.stanford.edu

GSFC Monthly Review, July 30, 2003

GLAST Mission - LAT Project

LAT Organization Chart

Rebaseline

- Rebaseline Proposal
 - LAT Funding increased by \$17.2 million
 - Fabrication Phase (LAT construction project) increased by \$11.7 million
 - Commissioning Phase increased by \$5.5 million
 - Presented to the JOG
 - Approved in principle
 - Funding problem in FY 04
 - NASA adding \$3 million
 - DOE no funds available
 - \$5 million bridge loan is available from Stanford University
 - Present to a DOE Lehman Mini-review July 31, 2003
 - DOE ESAAB scheduled for August 1, 2003

Fabrication Phase

- The Fabrication Phase of the LAT project is defined as all work on the LAT during the DOE Capital Equipment Project.
- The end of the DOE Capital Equipment Project occurs at the successful completion of the Critical Decision 4 review.
 - The proposed criterion for CD-4 is the successful completion of the Pre-Environmental Test Review.
- Work in the Fabrication Phase is funded by:
 - The DOE Capital Equipment Project (MIE)
 - DOE Commissioning and Operating funds
 - NASA GLAST Mission funds
 - Foreign Contributions
 - Participation of the LAT Collaborating institutions

Commissioning Phase

- The LAT project enters the Commissioning Phase after the completion of the Fabrication Phase
- The work for the LAT project in this phase is:
 - Responsibility for the LAT environmental test
 - Pre-Shipment Review
 - After successful completion of this review the responsibility for the LAT instrument is accepted by the NASA GLAST Project Manger
 - Support of Observatory Integration
 - Support through launch and initial calibration on-orbit
- Funding for this phase comes from:
 - DOE Operating funds
 - NASA GLAST Mission funds
 - Participation by the LAT Collaborating institutions

Proposed additions to budgets

By element in the LAT project	FY03	FY04	FY05	FY06	Total
Fabricate CDEs using US funds	\$1.6	\$2.6			\$4.2
Tracker	\$0.5	\$1.0			\$1.5
ACD		\$0.9			\$0.9
Electronics Manufacturing costs		\$0.8			\$0.8
Mechanical Design / Fab		\$2.0			\$2.0
Schedule Delay		\$1.0	\$1.7	\$2.7	\$5.4
Increase to Contingency		\$0.7	\$1.7		\$2.4
Total	\$2.1	\$9.0	\$3.4	\$2.7	\$17.2

All values in millions of dollars

Delta Costs and Funding

Commissioning / Operating	FY03	FY04	FY05	FY06	Total
Costs added to Commissioning / Operating					
LAT environmental test			\$1.0	\$2.7	\$3.7
Instrument Operations Center	\$0.2	\$1.0	\$0.6		\$1.8
Total	\$0.2	\$1.0	\$1.6	\$2.7	\$5.5
Funding added to Commissiong / Operating					
NASA GLAST Mission Funds			\$0.5	\$1.4	\$1.9
DOE Operating Funds	\$0.2	\$1.0	\$1.1	\$1.4	\$3.6
Total	\$0.2	\$1.0	\$1.6	\$2.7	\$5.5
Fabrication Phase					
Net costs added to Fabrication Phase					
Total Costs Added to Fabrication Phase	\$2.1	\$9.0	\$3.4	\$2.7	\$17.2
Costs identified as Operating/Comm.	\$0.2	\$1.0	\$1.6	\$2.7	\$5.5
Difference	\$1.9	\$8.0	\$1.8	\$0.0	\$11.7
Funding added to Fabriaction Phase					
NASA Glast Mission Funds	\$1.8	\$3.0	\$1.9		\$6.7
DOE Capital Equipment Project (MIE)	\$0.1	\$0.0	\$4.9		\$5.0
Stanford University bridge loan		\$5.0	-\$5.0		\$0.0
Total	\$1.9	\$8.0	\$1.8	\$0.0	\$11.7
Total					
Source of funds					
NASA	\$1.8	\$3.0	\$2.4	\$1.4	\$8.6
DOE	\$0.3	\$1.0	\$6.0	\$1.4	\$8.6
Stanford University bridge loan		\$5.0	-\$5.0		\$0.0
Total	\$2.1	\$9.0	\$3.4	\$2.7	\$17.2

Total Fabrication Phase Cost and Funding

	Previous	FY03	FY04	FY05	Total
Baseline Fab Phase Cost	\$35.4	\$35.1	\$24.6	\$12.8	\$107.9
Baseline Fab Phase Funding	\$37.6	\$33.5	\$31.0	\$19.6	\$121.7
Baseline Fab Contingency		\$0.6	\$6.4	\$6.8	\$13.8
Contingency as % of this years cost			26.0%	53.1%	
New Fab Phase Cost	\$35.4	\$34.8	\$31.9	\$12.9	\$115.0
New Fab Phase Funding	\$37.6	\$35.4	\$39.0	\$21.4	\$133.4
New Fab Contingency		\$0.6	\$7.1	\$8.5	\$16.2
Contingency as % of this years cost			22.3%	66.0%	
Baseline cost at risk*	\$54.3				
Contingency as percent fo cost at risk	25%				
with funded schedule float**	33%				
New cost at risk*	\$63.7				
Contingency as percent fo cost at risk	25%				
with funded schedule float**	32%				

*Cost at Risk = Estimated cost to compete minus EPO costs

** The schedule has 14 weeks of schedule contingency funded at \$3.9 million total when included the contingency becomes \$17.7 million and \$20.1 million respectively

Contingency Analysis

(Escalated K\$)	Project Estimate											
WBS Item	To Date To Go				Conting		igency		Total Cost			
	Cost	*		Cost	Тс	otal Cost	%			\$	PI	us Cont.
4.1.1 Instrument Management	\$ 8,1	.97	\$	7,049	\$	15,246		13%	\$	911	\$	16 ,157
4.1.2 Systems Engineering	\$ 3,5	99	\$	2,993	\$	6,592		12%	\$	366	\$	6,958
4.1.4 Tracker	\$ 8,3	881	\$	4,091	\$	12,472	3	7%	\$	1,514	\$	13,986
4.1.5 Calorimeter	\$ 8,9	65	\$	13,593	\$	22,558	2	2%	\$	3,019	\$	25,576
4.1.6 ACD	\$7,0	90	\$	6,104	\$	13,194	3	0%	\$	1,806	\$	15,000
4.1.7 Electronics	\$ 5,9	67	\$	11,932	\$	17,899	3	3%	\$	1,663	\$	21,832
4.1.8 Mechanical Systems	\$ 4,9	961	\$	7,495	\$	12,456	3	0%	\$	2,249	\$	14,705
4.1.9 Instrument Integration & Test	\$ 1,9	72	\$	4,836	\$	6,808	3	4%	\$	1,663	\$	8,471
4.1.A Performance & Safety Assurance	\$ 1,1	.49	\$	437	\$	1,586		15%	\$	66	\$	1,652
4.1.B Instrument Operations Center	\$ 5	49	\$	485	\$	1,034		10%	\$	48	\$	1,082
4.1.C Education & Public Outreach	\$ 9	34	\$	1,656	\$	2,590		0%	\$	-	\$	2,590
4.1.D Science Analysis Software	\$ 1,4	78	\$	2,009	\$	3,487	2	2%	\$	451	\$	3,938
4.1.E Suborbital Flight Test**	\$ 1,3	321	\$	0	\$	1,321		0%	\$	-	\$	1,321
C	<i>t</i> = 4 =	1.2	*	(2(01	*	117 242		/ 0/	*	1/ 022		122.2/7
Subtotal	\$ 54,5	63	\$	62,681	\$	117,243		6%	\$	16,023	\$.	133,267
Unallocated Contingency									\$	133	\$	133
Total Project Estimate	\$ 54,5	63	\$	62,681	\$	117 ,243	ź	:6%	\$	16,157	\$	133,400
*"To date cost" refers to cost through June 30, 2003. "To go cost" refers to cost after June 30, 2003.												
**4.1.E Suborbital Flight Test is completed.												
***Total contingency for project calculated against remaining costs at risk. Costs not at risk are costs to date and E/PO.												

GSFC Monthly Review, July 30, 2003

LAT Working Schedule

Tracker and Calorimeter will be installed in the

Level 1 and 2 Milestones

	Existing	Proposed	
Level 1 Milestones DOE/NASA Joint Oversight Group)		
DOE Critical Decision (CD) 0 Approval	June 25, 2001	June 25, 2001	Actual
CD-1 Approval	July 1, 2002	July 23, 2002	Actual
CD-2 Approval	December 13, 2002	November 8, 2002	Actual
CD-3 Approval	July 15, 2003	August 31, 2003	
Flight Grid Complete	September 15, 2004	September 15, 2004	
CD-4 Approval	March 15, 2006	March 15, 2006	
Level 2 Milestones Federal Project Managers			
Launch Balloon Flight	August 1, 2001	August 1, 2001	Actual
Instrument Preliminary Design Review	January 8, 2002	January 8, 2002	Actual
Instrument Critical Design Review	April 30, 2003	May 16, 2003	Actual
TKR, CAL FMA, B Available for Calibration Unit	February 17, 2004	See note:	
Start LAT Integration	June 15, 2004	August 24, 2004	
Pre Enviornmental Review	February 15, 2005	July 21, 2005	
Instrument Pre-Ship Review (PSR)	July 7, 2005	December 1, 2005	
Note: The calibration test has been moved until		Proposed changes	
after LAT integraion. Units FM A and B of the		in Blue	

in Blue

LAT Engineering Model Testing Timeline

GSFC Monthly Review, July 30, 2003

1 X 4 Grid

GLAST Mission - LAT Project

Engineering Models

Calorimeter EM

Tracker Minitower

GSFC Monthly Review, July 30, 2003

GLAST Mission - LAT Project

Next 3 months

- Close key design issues
 - CAL-GRID Interface
 - X-LAT plate to electronics boxes thermal interface
 - Plating of contact surfaces for EMI
 - Mounting of the MCMs for Tracker
 - Plan to reduce the risk of scrapping Silicon ladders
- Complete rebaseline funding
- Update PMCS to current plans
 - Simplify PMCS
 - 3 month goals tied to PMCS
- Add key personnel
 - Chief Engineer
 - EMI/EMC expertise
- First meeting of the Instrument Advisory Committee
- Consolidate management meetings
- Have more fun

rev.