

GLAST Heat Pipe Center

Manufacturing Readiness Review

December 16, 2003

Product Center Manufacturing Readiness Review

Outline

- MRR Objective
- Engineering
- Producibility/Processes
- Tooling
- Facilities
- Risk Mitigation

- Schedules
- Cost
- Material
- Personnel
- Supporting Organizations
- Actions/Issues

MRR Objective

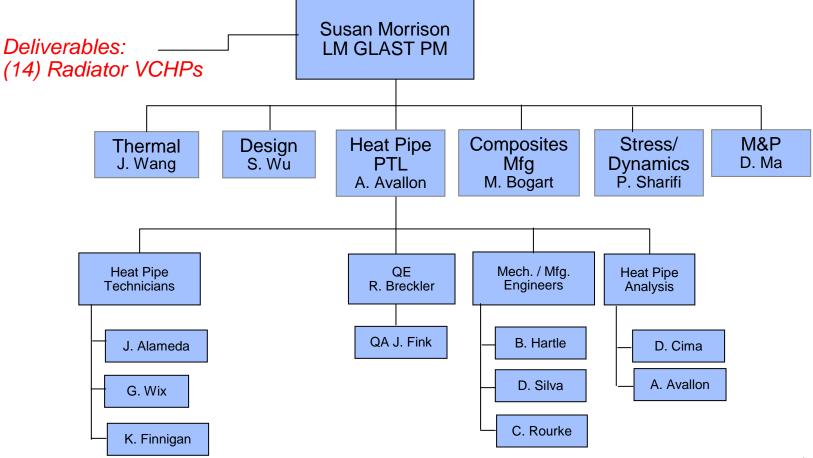
Establish Product Center readiness to manufacture GLAST Variable Conductance Heat Pipes (VCHPs)

This covers requirements different from the GLAST Constant Conductance Heat Pipe (CCHP) MRR conducted on 7-28-03

On selected charts, items in red are additions to the items covered in the earlier CCHP MRR

MRR Checklist

Requirement	Covered	Notes
Overview		
1 IPT Structure	X	TPC Command Media
2 Hardware Drawings	X	TPC Command Media
3 SOW	X	TPC Command Media
4 Program Schedule	X	TPC Command Media
5 Cost Quote	X	TPC Command Media
6 Reporting Metrics	X	TPC Command Media
Engineering		
1 Drawings Reviewed by Engineering	X	
2 Mfg/Producibility Problems Resolved	X	
3 Specifications Reviewed	X	
4 Drawing Release Status/Required Plans	X	
5 Program Specific Guidelines/ Documentation Reviewed/Understood	X	
6 Test Plans/Procedures Approved	X	
7 Test Equipment in Place	X	
Producibility/Processes		
1 Drawings Reviewed for Producibility	X	
2 Mfg Processes Validated	X	
3 Process Flow Charts Updated	X	
4 MPS's & PIB's Complete	X	
5 Repair Standards Approved	X	
6 Acceptance/Workmanship Standards Identified/Reviewed	X	TPC Command Media
7 Quality Plan Approved	X	TPC Command Media
Planning		
1 MWI's Approved	X	
2 Unique Quality System & Traceability Req'ts Understood/Implemented	X	
3 MWI's Validated against MPS/PIB/Docs by Mfg Personnel	X	
4 Outside Manufacturing Commitments in Place	X	
ooling		
1 Project Tooling Proofed & Tool List in Place	X	Tooling in review
2 Mfg Aids Proofed	X	Tooling in review
3 Special Standard Tools Identified/Available	X	Tooling in review
4 Shipping Containers & Packaging Ready	X	Tooling in review



MRR Check	list	(cont'	d))
luo uo o ut	Coverad	N	Nat	

Requirement	Covered	Notes
Facilities		
1 Dedicated Facilities Ready	X	
Risk Mitigation		
1 FMEA Plan in Place	X	PIB Function
2 Action Plan	X	TPC Command Media
Schedules		
1 Detailed Fab Schedules (1-8-5) in Place & Achievable	X	
2 Schedule Commitments by Supporting Activities	X	
3 Schedule Tracking Plan in Place	X	
4 Schedule Assumptions Reviewed, Re-Assessed, Documented	X	
5 Shop Loading Plan Developed & Coordinated with Shops	X	
Cost		
1 Cost Assumptions Reviewed, Re-Assessed, Documented	X	TPC Command Media
2 Cost Commitments Understood by Team Members	X	
3 Cost Tracking Method/Responsible Person in Place	X	TPC Command Media
Material		
1 Supplier Plans/Schedules Integrated	X	
2 Raw Material Available or Scheduled	X	
3 Purchased Parts Identified & Scheduled	X	
4 MSPs Identified & Scheduled	X	
5 Customer or Engineering Furnished HW/Tools Commitments Documente	d X	
6 "As Required" Materials Identified & In Place	X	
7 Material Shortages Identified and Plan in Place	X	
Personnel		
1 Required Manpower Available	X	
2 Training Complete or Planned	X	
Supporting Organizations		
1 EHS Review Complete	X	Part of City Inspection/Buyoff
2 Supporting Organization Schedule/Cost Commitments in Place	X	Part of quotes

Thermal Center / GLAST IPT Organization

6

_ _ _ _

-- /

DRAWING #'s	QTY.	PART NAME	REL. STATUS
2A15703		Top Flange	Released
2A15704		X-LAT	Released
2A15705		Down Spout	Released
8558549		End Cap and Fill Tube	Released
Spec #'s			
2A15699		Top Flange	Released
2A15700		X-LAT	Released
2A15701		Down Spout	Released
ATP's			
2A15707		Top Flange	Released
2A15708		X-LAT	Released
2A15709		Down Spout	Released
Shop Orders			
N83716	5	Top Flange	Complete
N83717	10	X-LAT	Complete
N83718	7	Downspout -501	Complete
N83719	7	Downspout -502	Complete
N83720	18	Fill Tubes	Complete
N83721	30	Fill Tubes	Complete
N83722	18	End Caps	Complete
N83723	12	End Caps Complet	

Design Drawing Status

Drawing Release Status/Required Plans

DRAWING #'s	TITLE	REL. STATUS
2A15706	GLAST Radiator VCHP Assembly	Released, Revision N/C
2A15722	GLAST Reservoir Assembly 75cc	Released, Revision A
2A15723	GLAST Reservoir Wick Assembly	Released, Revision N/C
SPECIFICATIONS		
2A15702	GLAST LAT Radiator Variable Conductance Heat Pipes	Released, Revision N/C
		·
TEST PROCEDURES		
2A15710	GLAST Radiator Variable Conductance Heat Pipes	Approved, Revision N/C
SHOP ORDERS		
N83877	VCHP, 2A15706-503	Completed
N83878	VCHP, 2A15706-505	Completed
N83879	Reservoir Wick, 2A15723	Completed
N83776	Reservoir Assy, 2A15722	Completed

VCHP Costs – Estimated Labor Hours

	VCHP Fabrication and Test
Non-Recurring	732
Recurring	1422
Total	2154

Drawings Reviewed by Engineering and Producibility

•Per TPC-3000 Heat Pipe Products Design Implementation and Control, Integrated Product Team shall conduct a design review for each design at the completion of detailed design development

•Program-led Integrated Product team includes representatives from thermal, structures and materials engineering; Product Center provides design, manufacturing and producibility expertise

•Program and Product Center have reviewed all released drawings, assembly and piece-part level

VCHP Relevant Specifications Reviewed

Processes

- •LAC 3158 Heat Pipe Cleaning
- •LAC 3575 Marking Methods
- •LAC 3601 Machining
- •LAC 3865 Orbital Arc Welding of CRES and Titanium Alloys
- •AMS 2770 Heat Treatment of Aluminum Alloys
- •MIL-C-5541 Surface Treatment

VCHP Relevant Specifications Reviewed

Purchasing

- •EPS 04-024 Aluminum 6063 Extruded Heat Pipe Casings
- •EPS 06-025 Aluminum 6061 Extruded Bar
- •EPS 31-722 Ammonia
- •ASTM A269 Seamless and Welded Austenitic Stainless Steel Tubing for General Service
- •QQ-S-763 Steel Bars, Wire, Shapes and Forgings, Corrosion Resistant
- •AMS-5518 Steel Sheet, Corrosion Resistant

Test Equipment in Place

•All required test equipment is in place, calibrated and/or certified:

•Proof Pressure/Burst Test Cell

•Pressure Gauge (MSL101561) Cal. Due 12/14/03

•Pressure Gauge (MSL185166) Cal. Due 12/14/03

•Heat Treat Oven (M096702) Cal. Due 11/23/03

•NCG Test Station-Omega (C027888) Cal. Due 3/14/04

•Performance Test Stands

•Fluke (M238550) Cal. Due 7/31/03

•Labview (M262093) Cal. Due 11/9/03

•Surface Tables - No Cal. Required

•Leak Tester (M261424) Cal. Due 11/2/03

•Digital Thermometer (MSL 08651700) Cal. Due 11/19/06

•Scale (S503653) Cal. Due 5/20/05

•Gruenburg Oven (M095979) Cal. Due 11/23/03

Manufacturing Processes Validated

Process	Where Performed	Equipment	Process Proofed	Certified Process
Machine Reservoir	Machine Shop	Lathe	Х	
Weld Reservoir	Outside Vendor	Vendor Equipment	Х	MIL 1252
Preclean Parts	B195B Cleaning Facility	Flush Box	Х	LAC 3158
Wick Installation	TPC	NA		NA
Orbital Arc Weld	TPC	Arc Machines Welder	Х	LAC 3865 - Pending

Process Instruction Bulletins (PIBs) Complete

PIB No.	PIB Title	Rev.	Status
575	Reservoir Wick Height Test	А	Approved
626	Variable Conductance Heat Pipe Charging	-	Approved
648	Orbital Arc Welding using AMI Welder	N/C	In Work

Rework Standards in Place

•Standard leak rework procedure used on all programs for transition/fill tube/reservoir welds

- •Standard leak rework procedure used on all programs for fill tube pinch off
- •Called out directly on heat pipe drawings

Acceptance/Workmanship Standards Identified/Reviewed

•TPC-5000 Heat Pipe Manufacturing, Test & Process Control Operating Procedure, defines minimum requirements for product qualification, acceptance and Operator Verification Instructions

•Quality engineer and PTL jointly define QA inspect points in process flow

Quality Plan Approved

•PTL must ensure that product complies with LM Product Delivery System Manual

- •Product Center Quality Engineer reviews program quality plan and ensures compliance
- •TPC-2000 Program Planning Operating Procedure specifies additional Quality plan requirements and Product Center specific requirements

Tooling Summary

•All GLAST CCHPs use previously-developed tooling (except for bend tooling).

•Minimal re-work required to accommodate design changes

Tool Number	Tool Name	Status
ISBA158-301-01-32F	Weld Fixture(SA7-140)	in-house
SA7-140-01-99U	Valve Support Fixture	in-house
SA7-152-01-31F	Bend Tool(Rad.1.64")	built and checked
SA7-140-152-01-31F	Bend Tool(Rad.1.25")	built and checked
RH100	Pinch	in-house
	Weld Alignment Tool	in-design

Mfg Process Risk Mitigation

Process	Potential Failure Mode	Potential Effect(s) of Failure	Recommended Action
Machining of Parts	Parts out of tolerance	Product doesn't meet spec.	Manufacturing spares available
			One weld rework available, mfg
			spares (NO re-work available
Welding	Helium Leak	Product doesn't meet spec.	for Top Flange)
NCG Test	Excessive NCG	Product doesn't meet spec.	Contingency re-charge
Functional Test	Low transport	Product doesn't meet spec.	Contingency re-charge
Ammonia Leak Test	Ammonia Leak	Product doesn't meet spec.	One pinch rework available
Bending	Parts out of tolerance	spec.	Manufacturing spares available

Material

commercial	Ammonia gas	1	Airgas	In House
commercial	Helium gas	1	Airgas	In House
commercial	Neon gas	2	Airgas	In House
SA7-152	6063-T6 per AMS 4156 extrusion (qty. in lengths of 10 feet)	14	TDA	In House
AMS-5518	301 CRES 1/2 Hard , 0.016" THK (qty. in sheets)	1		In House
AMS-A269	321 CRES Seamless Tube 9/16 O.D., 0.109 Wall (qty. in feet)	10		In House
06-025-0400860	6061-T6511F 4.0" Diam. Bar per AMS-QQ-A-200/8 (qty. in feet)	10		In House
06-025-0300860	6061-T6511F 3.0" Diam. Bar per AMS-QQ-A-200/8 (qty. in feet)	10		In House
06-025-6282564	6061-T6511 0.6282 square bar(qty. in inches)	180	Lusk Metals	In House

Personnel

•Three full-time heat pipe technicians trained in all aspects of heat pipe manufacturing

- •Two full-time engineers trained in design, analysis and manufacturing
- •One Q/A trained in all aspects of heat pipe manufacturing

Process	Training Completed	Certified
Weld	Wix, Alameda, Finnigan	Wix,Alameda, Finnigan
Leak Test	Wix, Alameda, Finnigan	N/A
Pinch	Wix, Alameda, Finnigan	Wix, Alameda
Tri-Tool	Wix, Finnigan	N/A
Proof Pressure Bench	Wix, Alameda, Finnigan	N/A
Charging Station	Wix, Alameda, Finnigan	N/A
Heat Treat	Wix, Alameda, Finnigan	N/A
Gruenberg Oven	Wix, Alameda, Finnigan	N/A
NCG Testing	Wix, Alameda, Finnigan	N/A
Functional Testing	Wix, Alameda, Finnigan	N/A

Personnel Training

End Item Data Package

•Required by the SOW:

•Heat Pipe as built drawing package

•Copy of shop orders used for Heat Pipe fabrication

•Copies of all Heat Pipe discrepancy reports

•Test reports for Heat Pipe environmental or performance tests

•Required by LMSSC Command Media "Hardware Certification":

•Signed product certificate for Heat Pipes

•As-designed vs. as-built comparison for Heat Pipes

Thermal Products Actions/Issues

Issue #2 – VCHP Control Gas

•LM produces VCHPs with either nitrogen or mixed gas as the control gas

•All heat pipes are verified to meet a minimum helium leakage rate of 10⁻⁸ scc/s

•For VCHPs subjected to system-level tests (i.e. GLAST), LM typically uses a control gas mixture containing helium to eliminate natural convection effects in ground test

•Natural convection cells have been shown by LM to substantially increase heat leak from reservoir to pipe during cold-blocked testing, resulting in increased heater power requirement

•GLAST LAT has ACD subsystem which is sensitive to minute quantities of helium

•Nitrogen control gas can be used, but with the impact of reduced validity of subsequent Thermal Control Subsystem (TCS) verification tests

•TCS performance would normally be adequately verified in an engineering/qualification phase, reducing program technical risk (as strongly recommended by LM Thermal Products for GLAST Program)

•GLAST uses protoflight verification strategy-