CAL EMI/EMC Testing
History and Plans
14 April 2004

Johnson, Ampe, Dizon, Raynor, Lovellette
Naval Research Lab
Oscar Ferreira
LLR Ecole Polytechnique
Attempted LAT qualification program for EMI/EMC specifications.

Configuration:
- EM1 TEM and TEM Power Supply.
- EM CAL Module.
- No shielding from GRID or other LAT components.

Results:
- TEM Power Supply was not of sufficient quality to support EMI/EMC testing.
- CAL had significant Radiated Emissions and modest Susceptibility – closing CAL joints w/ copper tape improved both.
- Grounding arrangement of TEM/TPS is very important – copper sheet from TPS to ground improved performance significantly.

Actions: Plug the holes
- Modify CAL closeouts and side panels for better EMI/EMC containment.
Engineering Model
Test Configurations

TEM + PS on Test Table

CAL + TEM/TPS on CAL Stand on Test Table

Tests performed on TEM + PS alone and then repeated with CAL + TEM + PS.

Significant grounding issues. Note copper sheet between TEM/PS and table
TEM/TPS Emissions dominate CAL
Adding CAL adds many clock harmonics
EM CAL + TEM/TPS

Adding extra grounding including large Cu sheet from TEM/PS to table reduces broad band noise – NOT FLIGHT CONFIG.
Clock harmonics are above specification.
Register Testing

Muon event digitization and readout

CAL ADC readout adds broad band noise.
Appears to be DC-DC converter power supply harmonics.
Several Areas of Susceptibility – changes somewhat from day-to-day

- **Vertical polarization**
 - Date: 7/9/03
 - 1.000 – 1.090 GHz: many extra triggers
 - 1.090 – 1.107 GHz: OK
 - 1.107 – 1.176 GHz: many extra triggers
 - Date: 7/10/03
 - 1.000 – 1.179 GHz: extra triggers without ok region in middle

- **Trigger discriminator level setting**
 - For ground test discriminator levels (~ 3 MeV)
 - 900 MHz horizontal, problems at 11 V/m
 - 448 MHz vertical, 1 V/m
 - For flight discriminator levels (~ 100 MeV) the situation is much better but there may still be some issues.

- **Do not see any communications errors.**
Radiated Emissions / Susceptibility

Modifications being incorporated in design

- **Metal part surface treatment**
 - All aluminum parts – electroless nickel.

- **Side Panel attachment**
 - Double number of fasteners
 - Create lip on top frame
 - Use EMI gasket

- **Closeout plate joint in vertical corners**
 - Use EMI O-strip and groove.

Outstanding Issues – no easy solution

- **Structure EMI shield at base plate tabs**
 - Open area for AFEE cable
 - Open area (the same) for venting

- **AFEE – TEM cable – no connector shells, incomplete shielding**
- Added ceramic bypass caps on GCFE digital supply
- Larger ceramic cap on GCRCs
- Split AFEE row group of 12 ADCs into two groups of 6, each group with larger ceramic bypass cap
Side Panel

Fasteners x2

EMI Gasket
Chomerics Elastomer
0.5 mm thick

Conductive elastomeric seal

Side panel
Closeout Plates

New Groove
2nd Groove seals to top frame

Dovetail Groove

Cho-seal O-strip

Cho-seal type conductive elastomer O-strip (compressed on picture)
Corner Details

Add lip to top frame
AFEE-TEM Cable Issues

- AFEE Card Exposed. No Seal of Side Panel around cable area.
- Incomplete shielding of cable. No connector shields.
- No bulkhead seal of TEM connectors. No shield on TEM connector.
Flight EMI/EMC Test Configuration

GLAST Calorimeter

Flight EMI/EMC Test Configuration

Ground Plane and Grid Simulator

Grid Side Wall Simulator

CAL Module

TEM/TPS
Flight EMI/EMC Test Configuration

GLAST Calorimeter

Grid Side Wall Simulator

Ground Plane and Grid Simulator

CAL Module

Copper Sheet ground available from Ground Plane to TPS.

TEM/TPS

TEM/TPS/Cable Shield
Outstanding Issues

- Shielding of CAL – TEM cable and box attach points.
- Test specification – difficulty in separating CAL and TEM/PS performance issues.
- Test configuration – identification of subsystem configuration which represents LAT environment, shielding, etc.