

SLAC Internal Review, April 16-18, 2002

DRAFT Rev 3

Gamma-ray Large Area Space Telescope

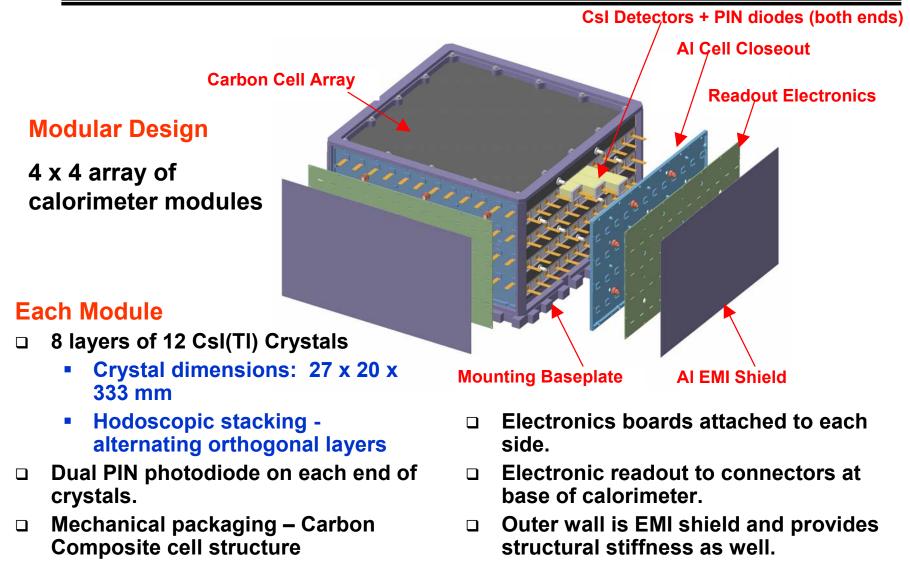
GLAST Large Area Telescope:

Calorimeter Overview WBS 4.1.5

W. Neil Johnson Naval Research Lab, Washington DC Calorimeter Subsystem Manager

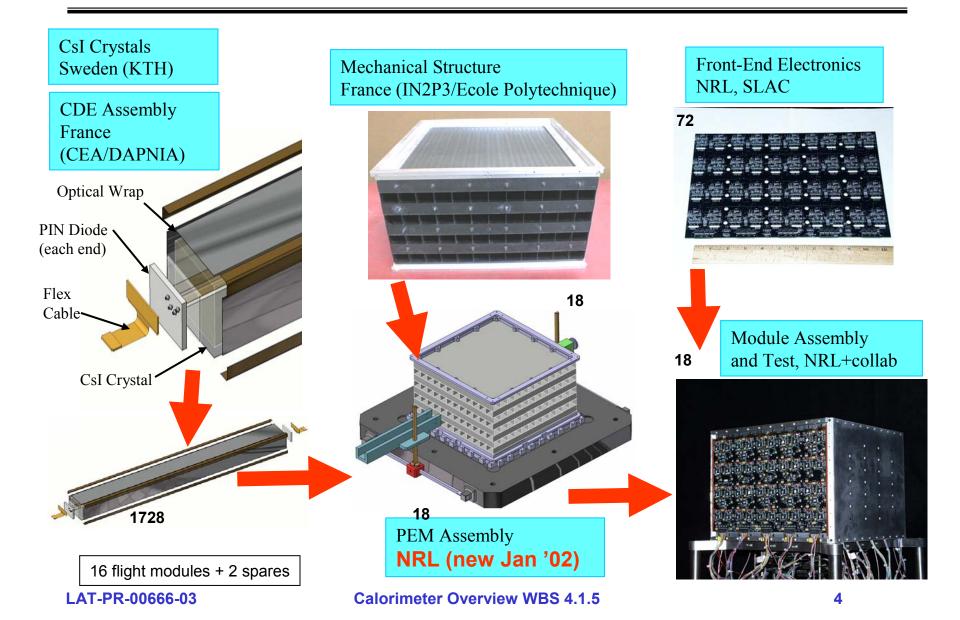
johnson@gamma.nrl.navy.mil

LAT-PR-00666-03



Outline

- Level III Requirements Summary
- □ Heritage
- □ Status
- WBS Interfaces
- Schedule Milestones
- Cost Plan



Calorimeter Module Overview

Calorimeter Production Overview

CAL Level III Requirements

Reference: LAT-SS-00018

Parameter	Requirement	Verification	Expected Performance
Energy Range	20 MeV – 300 GeV 20 MeV – 1 TeV (goal) 5 MeV – 100 GeV, single crystal	Simulation, Beam Tests	Required performance ~2 MeV threshold (BOM)
Energy Resolution (1 sigma)	< 20% (20 MeV < E < 100 MeV) < 10% (100 MeV < E < 10 GeV) < 6% (10 GeV < E < 300 GeV, incidence angle > 60 deg)	Simulations and EM and LAT calib unit Beam Tests	Simulations demonstrate required performance
Energy Resolution (1 sig) Single Crystal	< 2% for Carbon lons of energy >100 MeV/nuc at a point.	EM (and Calib Unit) beam test	< 0.5% (correlation of ends removes Landau)
Design	Modular, hodoscopic, Csl > 8.4 RL of Csl on axis	Inspection	> 8.5 RL
Active Area	>1050 cm ² per module < 16% of total mass is passive mtrl.	Inspection	>1100 cm ² per module
Position Resolution	< 3 cm in 3 dims, min ionizing particles, incident angle < 45 deg.	Test with cosmic muons, all modules	< 1.75 cm in longitudinal measurement
Angular Resolution	15 × cos(θ) deg, for cosmic muons in 8 layers	Test with cosmic muons, all modules	8.5 × cos(θ) deg
Dead Time	< 100 μs per event < 20 μs per event (goal)	Test	< 19 µs per event

CAL Level III Requirements (cont)

Parameter	Requirement	Verification	Expected Performance	
Low Energy Trigger	>90% efficiency for 1 GeV photons traversing 6 RL of CsI < 2 μs trigger latency	Simulations	> 93% < 1 μs	
High Energy Trigger	>90% efficiency for 20 GeV photons depositing at least 10 GeV < 2 μs trigger latency	Simulations, Calib unit test in beams	> 91% < 1 μs	
Size (module)	 < 364 mm in width (stay clear) < 224.3 mm in height (stay clear) clear) 	Inspection	363 mm 224 mm	
Mass	< 1492 kg (93.25 kg/module)	Test	< 1476 kg	
Power	< 91 Watts (conditioned) (5.69 W/module)	Test	< 67 Watts (conditioned)	
Temperature Range	 - 10 to +25 C, operational - 20 to +40 C, storage - 30 to +50 C, qualification 	Subsystem TV Test, 4 cycles	Required performance	
Reliability	> 96% in five years	Analysis	> 99% in five years (15/16 modules) LAT-TD-00464-01	

SLAC Internal Review, April 16-18, 2002

Calorimeter Heritage

Csl Detector Systems in Space

GLAST LAT Project

- 1970's HEAO 1 & 3 (Csl (Na))
- 1990's CGRO OSSE (Csl (Na))
- 2002 Integral IBIS (CsI(TI)+PIN diodes)
- **Csl Calorimeters in High Energy Physics**
 - B-Factory experiments at Cornell, SLAC and KEK
- □ GLAST LAT Experience (NASA ATD Program)
 - 1996 16 crystal prototype in SLAC beam test
 - 1997 24 crystal hodoscopic prototype in SLAC beam test
 - 1998 2 beam tests MSU (heavy ions) and CERN (muons)
 - 1999 CERN beam test
 - 1999 2000 full sized (80 crystal) hodoscopic prototype w/ flightlike electronics (BTEM CAL) in LAT tower beam test at SLAC
 - 2000 GSI beam (heavy ions C, Ni) BTEM CAL
 - 2001 Balloon Flight of the BTEM CAL

Jan 2002 Review Recommendation Status

- Calorimeter should not be baselined until the French commitments are finalized and changes in the scope of the U.S. contributions are fully understood
 - French contributions organized according to plan agreed upon by French collaborators and agencies (IN2P3, CEA, CNES); not final, because of CNES funding uncertainties.
- The French collaborators, LAT management, and the relevant agencies should quickly reach and implement a final agreement on the responsibilities of the French institutions
 - Responsibilities documented in draft MoAs, WBS, and NASA-CNES International LoA. CNES PRR review passes French plan (March 5), but funding now uncertain. Assurance of CNES funding awaits action by the Director General of CNES and review by his science council (April 19).
- **Establish a new budget and schedule**
 - Revisions to previous plan (delivered to PMCS on 7/20/01) to be implemented by Delta Review date.

Status of other actions

□ Update of cost estimate and contingency analysis

- Bottoms up costing completed. Contingency analysis is complete.
- New since Jan '02: Detailed costs and schedules have been developed that reflect the responsibility changes in Jan '02. These currently reside in CAL working copy of PMCS system and in Change Requests.

□ Resolve PIN diode glue problems

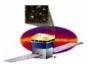
 Resources have been applied. Test and selection program identified. Backup solution identified. Testing of prime candidate is complete. Active programs in France and USA to develop and qualify the process.

Define responsibilities for procurement, qualification and testing of ASICs

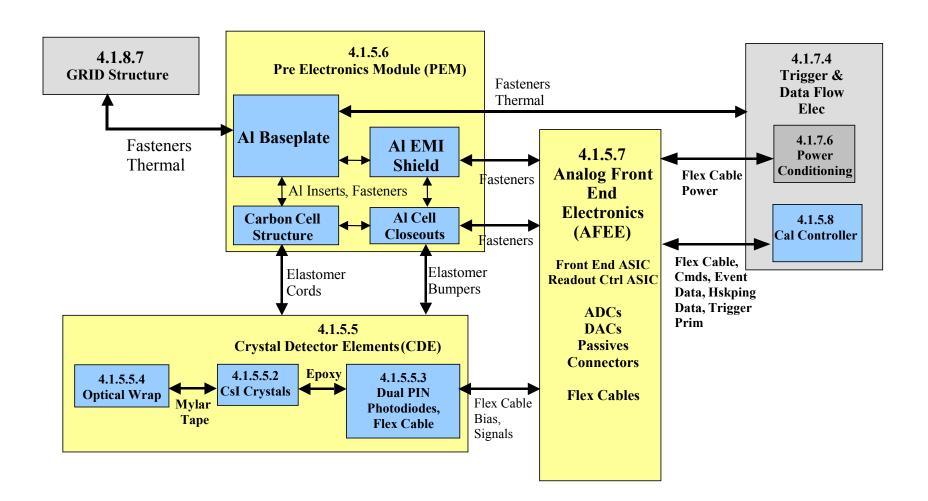
 Done. SLAC designs and tests GCFE (analog front end) prototypes. NRL designs and tests GCRC (digital readout). NRL does all performance testing, production, qualification, and test (the rest).

Calorimeter Hardware Status

- **Graph Specification and procurement of Csl crystals is in place.**
 - 130 crystals have been received and tested.
 - Flight crystals are included in the existing contract
- **Specification and procurement of dual PIN photodiode prototypes is complete**
 - 400 photodiodes have been received.
 - Spec for flight units is in development.
- □ A bonding analysis program has been completed on requirements for materials to be used to bond the PIN photodiodes to the CsI crystals.
 - Simulations studied stresses caused by CTE differences
 - Various epoxies and elastomers were tested in up to 100 thermal cycles
 - Prime candidate bonding material, DC93-500 a silicone elastomer, will be submitted to materials review process
- **Csl crystal wrapping materials have been investigated.**
 - Prime candidate material, VM2000 specular reflector film from 3M, will be submitted to materials review process
- **Prototype (VM2) mechanical structure design and tooling has been completed**
 - VM2 has been assembled and has successfully completed thermal and vibration testing (new).
 - The same tooling will be used to fabricate the Engineering Model
 - Slight modifications are expected for flight units

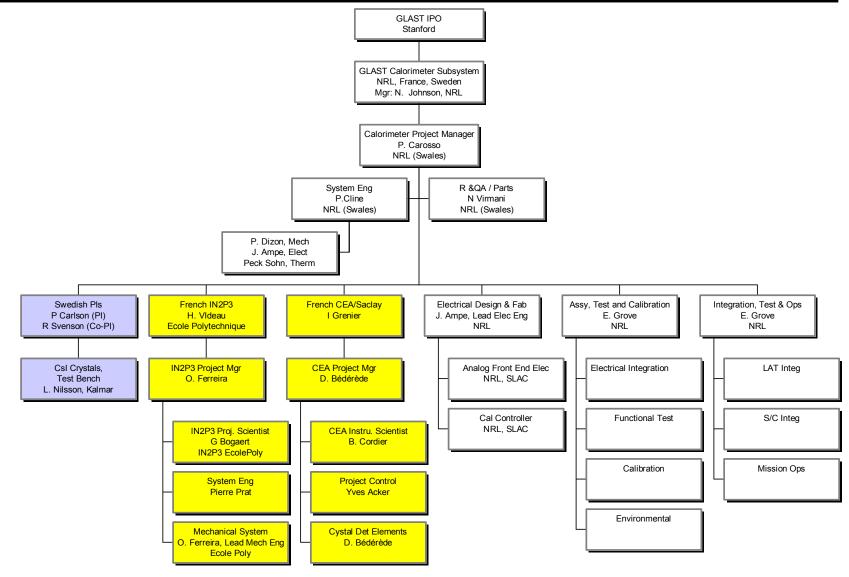

LAT-PR-00666-03

Calorimeter Overview WBS 4.1.5



Calorimeter Hardware Status (cont)

- CAL Analog ASIC (GCFE) prototype with complete flight-model functionality and interfaces is being tested
 - Performance testing at SLAC and NRL
 - Latchup testing completed at NRL
 - Full functional and performance test completed on V4 parts. V5 in test.
- **CAL digital ASIC (GCRC) first submission occurred Dec 2001**
 - First parts received in March. Functionality verified, needs slight mods.
 - LVDS drive needs to be increased.
- Commercial off-the-shelf (COTS) ADCs, DACs, voltage references and opamps have been tested for radiation susceptibility –
 - Selected parts meet the radiation requirements in the GLAST IRD.
- **CAL** analog front end electronics boards (AFEE) have been prototyped
 - GCFE test board controls single GCFE. Used for performance testing, ADC interface and radiation susceptibility testing
 - Verification model (VM) AFEE contains complete row of GCFE and FPGA version of GCRC readout controller.
 - VM2, currently in test, is fully populated AFEE w/ ASIC or FPGA GCRC
- Preliminary CAL FMEA Analysis
 - reliability of 0.998 for 15/16 fully functional modules
 - reliability of 0.94 for 16/16 partially functional modules



CAL Subsystem & External Interfaces

Calorimeter – Institutional Organization

LAT-PR-00666-03

Calorimeter Overview WBS 4.1.5

Calorimeter Level III Milestones

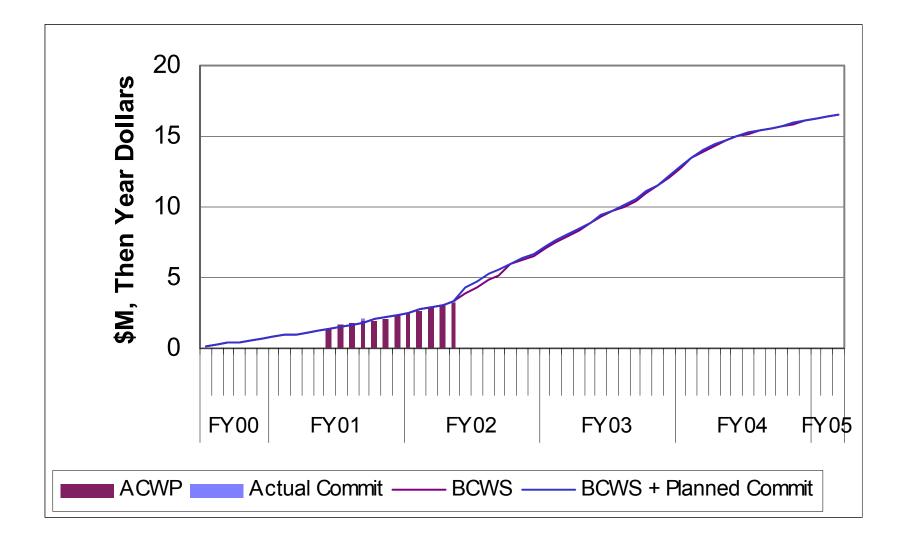
Calorimeter Subsystem Requirements Review	03/28/01
Calorimeter PDR	07/27/01
VME Com Card (TEM Sim)-from Elec to CAL	11/05/01
VM Versions of CAL AFFE-CAL to Elec	04/12/02
Calorimeter CDR (proposed earliest)	01/04/03
Pre-EM TEM-from Elec to CAL	06/14/02
CAL AFFE Engr Model-CAL to Elec	09/01/02
Sub System Production Readiness Review-CAL	02/21/03
Sub System Qual Readiness Review-CAL	03/03/03
(6) EM2 TEM-from Elec to CAL	03/17/03
Calorimeter Modules A & B RFI (for Calibration)	08/15/03
Sub System-CAL RFI's1st Article	08/15/03

Calorimeter Level III Milestones (cont)

EM from CAL to I&T (earliest)	01/04/03
Sub System Qual Review-CAL	09/18/03
Calorimeter Modules 1 & 2 RFI (for Calibration)	11/03/03
Flight Calorimeter Tower 3, 4 RFI	01/02/04
Flight Calorimeter Tower 5, 6 RFI	01/15/04
Flight Calorimeter Tower 7, 8 RFI	01/29/04
Flight Calorimeter Tower 9, 10 RFI	02/12/04
Flight Calorimeter Tower 11, 12 RFI	02/26/04
Flight Calorimeter Tower 13, 14 RFI	03/10/04
Flight Calorimeter Tower 15, 16 RFI	03/24/04
Flight Calorimeter Tower 1,2 RFI from I&T to I&T	04/26/04

Calorimeter Level IV Milestones

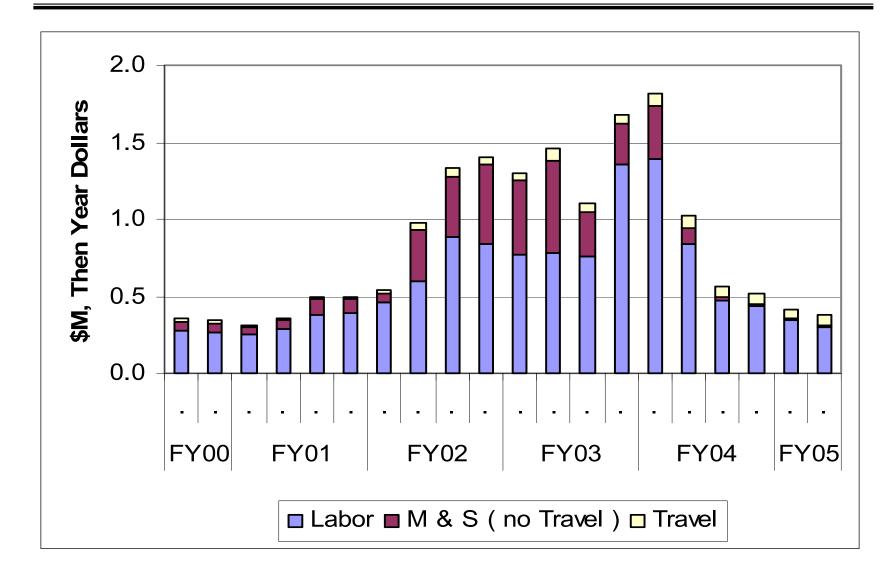
Delivery VM CsI (24) to France	06/12/01
Ratification of PIN-CsI bonding concept	08/14/01
EM CRYSTALS - CsI Delivery to S (106 logs)	09/10/01
VM2 structure ready	09/14/01
VM2 - Last 3 CDE ready for integration	11/19/01
CDE ready for EM assembly	07/30/02
EM start assy	08/10/02
VM2 Testing Complete	03/29/02
GCRC for EM Ready	03/20/02
Shipment of EM PEM to NRL	04/16/02
Flight Diodes order realization	06/19/02
Manufacturing Readiness Review w/ Foreign partners	09/16/02
FM A CDE ready	11/18/02
Digital ASIC Parts Available - Flight	11/27/02
EM Test Program Complete	03/12/03


Calorimeter Level IV Milestones

GCFE ASIC Parts Available - Flight	02/19/03
1st Flight AFEE Boards Ready	04/10/03
FM A Module Comprehensive Functional Test	04/28/03
FM A Preship Review (delivery to SLAC)	06/05/03
Last Flight AFEE Boards Ready	10/16/03

SLAC Internal Review, April 16-18, 2002

Calorimeter Cost & Commitments (US)



Calorimeter Overview WBS 4.1.5

SLAC Internal Review, April 16-18, 2002

Calorimeter Cost Profile (US)

Cal Summary Schedule

Description	2000	2001	2002	2003	2004	2005 2006
Key Milestones						
LAT Instrument PDR	♦ LAT Instrument PDR					
Ready for CAL CDR	Ready for CAL CDR					
Qual Modules A & B Ready for Integ (Calib Unit)	Qual Modules A & B Ready for Integ (Calib Unit)					
Flight Modules 1&2 Ready for Integ (Calib Unit)	Flight Modules 1&2 Ready for Integ (Calib Unit)					
Flight CAL Tower 7, 8 Ready for Integration	◆ Flight CAL Tower 7, 8 Ready for Integration					
Flight CAL Tower 11, 12 Ready for Integration					Flight CAL Tow	er 11, 12 Ready for Integration
Flight CAL Tower 13, 14 Ready for Integration					Flight CAL Tow	ver 13, 14 Ready for Integration
Flight CAL Tower 15, 16 Ready for Integration					Flight CAL To	wer 15, 16 Ready for Integration
Flight CAL Tower 1, 2 Ready for Integration					Flight CAL 1	Tower 1, 2 Ready for Integration
Launch						🔶 Laur
+Crystal Detector Element Design						
+Mechanical Structure Design						
		Δ	L			
+Electronics Design						
+Csl Crystal Production						
				$\overline{\nabla}$		
+Prototype Fab & Test						
+Engineering Model						
+Flight Component Fab						
			4			
+Flight Qual Model Assy & Test						
					L	
+Flight Modules Assy & Test						
+Flight Modules 15 & 16 Ready for Integration						
			+			