

Science Analysis Software Development Status Part 2: Science Tools

S. W. Digel Stanford Linear Accelerator Center

LAT Collaboration Meeting, 29 September 2004

Outline

- What's a science tool?
- Where we are
- Where we are headed for DC2
- How we are getting there

What's a science tool?

- Jargon for the analysis software and databases that we'll need for deriving scientific results from the LAT data
- Implicit in the term is that the analysis is high-level, like studying cosmic sources of γ-rays
- Also implicit in the term is that the analysis relies on an abstract characterization of the LAT – via its response functions – and to a lesser extent some faith that background rejection will meet the SRD requirements
- The Standard Analysis Environment is the group of science tools that we have agreed to develop jointly with the SSC for us and for guest investigators to use
 - Remember the big complicated diagram
- Within the LAT team we've got additional tools to develop
 - e.g., interstellar emission model, transient source searches, source catalog generation, in-flight (high-level) calibration monitoring

Speaking of the Standard Analysis Environment

has hyperlinks http://glast.gsfc.nasa.gov/ssc/dev/binned_analysis/SAE_design_chart.html

SAE status - synposis

- Response functions
 - Still using DC1 version, with what has turned out to be awkward parameterization for numerical integrations
- Observation simulation
 - Orbit/attitude not particularly realistic yet although as of this week, a prototype O1 tool for writing FT2 files exists
 - At least at the prototype level, GRB, blazar, pulsar, and extended sources are available within the simulation
- Data access
 - From GSSC: <u>http://glast.gsfc.nasa.gov/cgi-bin/ssc/U1/D1WebDC1.cgi</u>
 - From SLAC: <u>http://www.slac.stanford.edu/www-glast-dev/cgi/index.cgi</u>
 - Data subselector works
 - Catalog access classes (U9) have been implemented

SAE status (2)

- Source analysis
 - GRB
 - Event binning, response matrix generation have been implemented
 - Joint analyses with GBM via XSPEC are now in principle possible
 - Pulsar
 - Arrival time corrections
 - Ephemeris database & periodicity tests
 - Source characterization (likelihood)
 - Precomputation of 'exposure'
 - Flexible specification of source model
 - Generation of TS maps
 - Binned likelihood (for point sources)

SAE work for DC2

- Response functions
 - Need to characterize response functions after reconstruction and background rejection have converged
 - Defining parameterizations, event classes
 - Goal is for the high-level simulator (O2) produce gamma-ray distributions indistinguishable from filtered Gleam output
- Observation simulation
 - Orbit/attitude we might decide that we need, say, pointed mode; also we need to keep track of earth occultations
- Data access
 - At SLAC: not clear yet; the data server will certainly be keeping track of more than just the low-level data
 - Event display server version of FRED will be implemented

SAE work for DC2 (2)

- Source analysis
 - GRB
 - Scripting for binned analysis via XSPEC fits of series of spectra
 - Unbinned spectral analysis (A9) derivative of likelihood
 - Pulsar
 - Binary pulsar timing corrections
 - Possibly a periodicity search algorithm (A4)
 - Source characterization
 - Binned analysis for diffuse sources
 - Characterization of binned vs. unbinned analysis
 - Zenith angle cuts
 - Source model definition tool catalog access

Aside: Sensitivity vs. speed tradeoff in blind searches for periodicity

VS.

Fig. 2. The power spectrum from an FFT of 2^{28} time bins for the EGRET viewing period 1.0 observation of Geminga. The spectrum has been normalized by the average power, so that the power shown here multiplied by 2 is expected to be distributed as χ_2^2 in the absence of periodicity. The power is not plotted if the normalized power is less than 7. The Geminga pulsar rotation frequency and its 2^{nd} and 4^{th} harmonics are readily apparent at 4.2, 8.4, and 16.9 Hz. The power of the 2^{nd} harmonic dominates because of the shape of the light curve two nearly equal peaks separated by ~180°

Direct FFT with search in period derivative Mattox et al. (1996)

Geminga (2-day intervals)

'Evolutionary period search' Brazier & Kanbach (1996)

LAT Collaboration Meeting, 29 September 2004

SAE work for DC2 (3)

- General & wish list
 - Integration of plotting in science tools
 - IRF visualization

From prototype periodicity testing tool (A3)

Brown, Hirayama, Peachey

Non-SAE science tools work

Attend the splinter session this afternoon to get up to date on source catalog and interstellar emission model.

- Interstellar emission model Briefly, for DC2 we will have an updated model, with improvements in ISM, ISRF, models of CR distribution, and γ-ray production function, coordinated through GALPROP
- Source catalog generation Briefly, the source characterization (position, flux, etc.) will be via likelihood analysis; the current plan is that we will need a faster source detection method to 'feed' likelihood; these will be scripted together with
- Transient source detection [i.e., finding blazar flares] is related to but distinct from catalog generation
 - Finding sources (on various time scales) and deciding whether they have (probably) been seen before with (probably) the same flux
 - GRB 'trigger' in L1 processing and prompt characterization of bursts (whether as initial alerts or refinements of alerts generated onboard)

How we are getting there

- For SAE, with the vitally important contributions from members of the GSSC
- Ideally, incrementally & steady progress, with implementation phased with the Data Challenges
 - The 6-week 'build cycle' concept has taken hold, advocated by James Peachey at the GSSC
 - Build 3 (pre DC2) is underway; we will reach build 8 before DC2
 - The idea is to build and test on short cycles, to avoid a 'train wreck' at the data challenges; of course, not everything can be worked on for every cycle
 - The current build will include a 3-week sanity 'check out' period for the newly-implemented features of the science tools

Summary

- The design of the SAE has matured the focus is on the details
- Much of the functionality that we want for DC2 has been implemented in prototype form, and will be exercised in a 3week 'check out' during this build cycle
- For the remainder of the development time leading up to DC2, specific needs have been identified in each area
- The comittment of the GSSC to the SAE has been critically important to making progress during this time of intense focus on I&T support within SAS

Potential backup slides follow

		GLAST Event
		The Photon database currently holds 6118601 photons starting collected between 18-07-2005 00:00:00 and 24-07-2005 20:31:50.
		D1/D2 Database Access User Manual Which database do you want to query?
Step 1 Data source selection	Data source selection	Database: Photon and Spacecraft Data
		Do you want to search around a position?
Step 2 Event selection criteria	Filter data sources: Filter Reset	Coordinates: Enter RA, DEC (J2000) in the form " hh mm ss.s, dd mm ss.s " or " dd.d, dd.d " Search Area Dimensions: 15 Circle
Step 3 Output file		Note: Box and Ellipse searches have been temporarily disabled.
information	0.5.01	For the circle, enter the radius in degrees. For a Rectangle, enter the length, width, and rotation, comma separated in
Step 4	UDCI	degrees. For an ellipse, enter the semi-major axis, semi-minor axis, and rotation,
Summary	© BGEfiles	comma separated in degrees. Rotation is defined astronomically. Zero degrees is north, positive angles are to the east.
	Next	and/or search by time?
		Time: MID
		For Gregorian dates, please enter in the format DD-MM-YYYY HH:MM:SS, with the start and (optional) end time separated by commas. Enter the start and (optional) end MJD in the form
		For MET (Mission Elapsed Time), enter any integer values >= 0, separated
		by commas. If you would like to search from the beginning of the mission, put in START
		instead of a start value. If you would like to search up until the most recent point, put in END instead of an end value.
http://www.slac.stanford.edu/www-glast-dev/cgi/index.cgi		
and/or search by energy?		

LAT Collaboration Meeting, 29 September 2004