
UI6A. User Environments and Scripting Languages:

Embedding vs Extending

Date: 16 Aug 2002 (draft v0)
Contributors: J. Chiang (GSFC-UMBC)

Purpose

Analyzing data interactively generally presupposes the existence of a user environ-
ment. Assuming that we will want to automate certain complex or repetitive analysis
tasks, that environment will need a scripting or macro capability. A central imple-
mentation issue is whether to embed a scripting language into our own home-brewed
user-environments or to provide our basic analysis tasks as extensions of existing
scripting languages. This memo summarizes the arguments for and against each
approach and serves as a brief manifesto in favor of scripting in general.

Embedding

A relevant example of an environment with an embedded scripting language is Xspec,
the X-ray spectral fitting program that uses Tcl. A user runs the program by typing
xspec at the shell command line and thence enters the Xspec environment. A
number of commands are available that implement specific analysis tasks. A typical
sequence might look something like the following1:

XSPEC> data phafile ! specify the data file to be analyzed

XSPEC> model wabs*(pow + gauss) ! define a spectral model consisting

! of three components: intervening

! absorption, a power-law continuum,

! and a Gaussian emission line

XSPEC> fit ! fit the model to the data

XSPEC> plot ldata chi ! plot the data, the fit, and the

! contribution to chi^2

XSPEC> save model my_model ! save the model and fitted parameter

! values to a file

XSPEC> newpar 7 2e-5 ! set the value of parameter 7 by hand

XSPEC> eqw 3 ! compute the equivalent width of

! component 3

XSPEC> error 6 ! compute the errors for parameter 6

Note that each command performs a single, well-defined task. Now, suppose that
we have a series of .pha files — file1, file2, ..., file20 — that contain data
for observations of a single source over twenty different epochs; and suppose that we
wish to characterize the spectral variation of the source over time. We could enter,

1For brevity, the screen output of each command and certain input steps, such as the entering of
starting values for the various model parameters, have been omitted.

1

by hand, something like the above sequences of commands for each .pha file; or we
could execute the following Tcl script:

tcsh> cat fit_many_files.tcl

for {set i 1} {$i < 21} {incr i} {

data file$i

@my_model

fit

save model my_model$i

}

Here the Xspec command @my model loads the saved model and parameters. To run
this script from Xspec one types

XSPEC> source fit_many_files.tcl

and twenty model files — my model1.xcm,..., my model20.xcm — are created that
contain the best-fit parameters for each epoch. These data can then be processed off-
line or from within Xspec to extract additional information, such as equivalent widths
or uncertainties. Tcl scripting gives one the flexibility to customize and perform these
tasks rather easily.

In Xspec, Tcl is fully interpreted at the command line, so that one can still do
some repetitive tasks without writing a special script. This loop will compute the
fitted line equivalent widths for each of the twenty epochs:

XSPEC> for {set i 1} {$i < 21} {incr i} {@my_model$i; eqw 3}

One could also write Tcl procedures to augment the existing list of native Xspec com-
mands. A fairly straight-forward example is the script http://lheawww.gsfc.nasa.
gov/~jchiang/SSC/makeerrors.tcl which computes uncertainties for a number of
model parameters automatically. The embedding of Tcl in Xspec thus provides
the two principal benefits of scripting: repetitive and time-consuming sequences of
tasks can be automated; the basic set of analysis tasks can be augmented by writing
procedures.

There are some downsides to the embedding approach. First, a specific choice
of scripting language is imposed on the user by the software developers. Although
Tcl has some syntax features that are desirable from the implementation perspective,
those same features are not very intuitive and make it difficult to use. The developers
could choose a more user-friendly language such as Python, but that would likely
make the implementation more difficult, since in order to incorporate the scripting
language along with the analysis commands, a lot of programming work has to be
done. Specifically, the software must parse and separate the scripting language com-
mands from the analysis commands. The former must then be fed to the proper
scripting language API routines for execution while the latter must trigger the corre-
sponding function calls within the C/C++ code itself.

It is worth noting that if the user interface and basic analysis commands are
properly designed, the user should be able to analyze her data without using the
scripting language. The scripting capability doesn’t benefit her in this case, but she
can still use the software to do her analysis.

2

Extending

In the extending approach, one encodes the analysis tasks as modules that can be
loaded by an already existing scripting or macro language. The coding could be
done in the scripting language itself, or for faster execution time, in C/C++. In this
case, the scripting language’s own interactive command line interpreter (assuming it
has one) becomes the user environment. At first glance, this approach may seem
no less difficult to implement than embedding. If we use C/C++, our code still has
to go through the API to communicate with the scripting language; C constructs
such as structures or even simple arrays usually do not have directly compatible
representations in the host scripting language — special accessor functions would
have to be written; and there are certain technical issues (such as keeping track of
reference counts) that are specific to each language and its API. Therefore, we may
have to pick just one or two languages to extend and thereby still enforce a scripting
language choice on the user. Finally, because each scripting language has its own
syntactic quirks, the user would probably still need to have some knowledge of at
least one of the supported languages.

Almost all of these issues would be serious considerations were it not for SWIG
(Simplified Wrapper and Interface Generator, http://www.swig.org/). SWIG is a
development tool that generates the wrapper code required to make C/C++ functions
available as methods in a number of different languages, including Perl, Python, Tcl,
Ruby, and Java. One can take the same C/C++ functions and compile extensions
for each of the supported languages almost effortlessly. All of the API calls are auto-
matically coded for each language and accessor functions are created to manipulate
the contents of the C/C++ data structures. Furthermore, if the scripting language is
used simply as “glue”, as in the Xspec/Tcl examples above, the accessor functions
are largely unnecessary since SWIG provides pointers to C/C++ arrays and struc-
tures that can be passed to the extension modules just as in normal C/C++ function
calls.

To see how well SWIG works, I wrote a simple data analysis package, line fit,
that fits a straight line to (x,y) data. It has two commands, one to read the data
from a file and another to do the linear regression. The source code, compilation, and
sample sessions for Perl, Python, and Tcl are given in the appendix. After sorting
out how it all works in one language, it was trivial to implement and use in the other
two.

Summary

If you haven’t already guessed, I’m a big fan of extending, especially after trying a sim-
ple embedding exercise in Python (see http://www.python.org/doc/current/ext/

high-level-embedding.html) and having a peek at the Xspec source code. Here’s
my summary of the reasons for and against either embedding or extending:

3

Embedding

• For:

– The user doesn’t have to learn the scripting language to analyze the data.
(Although she does have to learn our command syntax, but...)

– We can tailor the command syntax of our tasks to suit the needs and
desires of the users.

• Against:

– We impose a scripting language choice on the user.

– It’s a substantial amount of programming effort to implement. (Check out
the Xspec source code if you don’t believe me.)

Extending

• For:

– It’s much easier to implement. SWIG allows for trivial support of the big
three scripting languages — Perl, Tcl, and Python — plus several more.

– The user gets to use her favorite scripting language(s).

– Extension writing encourages desirable design features, such as task com-
partmentalization, and using SWIG, quick prototyping and development.

– We can direct our efforts at the analysis algorithms, rather than imple-
menting the user interface.

• Against:

– The user must learn at least one supported language; plus, Perl doesn’t
have an interactive command line interpreter. However, the Tcl environ-
ment is very Xspec-like, and a GUI could protect the casual user from ever
directly interacting with a scripting language.

– This is somewhat uncharted territory. This model for implementing an
analysis environment as an extension of a traditional scripting language
hasn’t really been done before in high energy astronomy to my knowledge.
However, CIAO’s Sherpa and CHiPS programs are effectively implemented
as extensions of S-Lang; and adding cfitsio as a class in ROOT extends
that language. Furthermore, tools have been written in IDL for analyzing
EGRET data and HST data — those examples amount to extensions of
IDL. There is a difference, however, between traditional scripting languages
such as Perl and Tcl and languages such as S-Lang, ROOT, and IDL.

4

Appendix: The line fit Extension Module

With some minor tweaking of the makefiles, I was able to compile and run line fit

on a couple different linux boxes, all running different versions of the various scripting
languages.

Source Code

tcsh> cat line_fit.c

#include <stdio.h>

#include <math.h>

#include "my_globals.h"

int fit() {

int i;

float Sx=0., Sy=0., Sxx=0., Sxy=0., det;

for (i=0; i<npts; i++) {

Sx += xx[i];

Sy += yy[i];

Sxx += xx[i]*xx[i];

Sxy += xx[i]*yy[i];

}

det = abs(npts*Sxx - Sx*Sx);

if (det != 0.) {

intercept = (Sy*Sxx - Sxy*Sx)/det;

slope = (Sxy*npts - Sy*Sx)/det;

chi2 = 0.;

for (i=0; i<npts; i++) {

chi2 += pow((yy[i] - (slope*xx[i] + intercept)),2);

}

return 0;

} else {

fprintf(stderr, "fit error: det = 0\n");

return 1;

}

}

int read_data(char file[]) {

float x, y;

int i=0;

FILE *fp;

if ((fp = fopen(file, "r")) == NULL) {

printf("read_data: can’t open %s", *file);

5

return 1;

}

while (fscanf(fp, "%e %e", &x, &y) != EOF && i < NMAX) {

xx[i] = x;

yy[i] = y;

my_data[i].x = x;

my_data[i].y = y;

/* printf("%e %e\n", x, y);*/

i++;

}

npts = i;

fclose(fp);

return 0;

}

float get_fltarr_val(float array[], int i) {

return array[i];

}

void print_struct_array(struct point data[]) {

int i;

for (i=0; i<npts; i++) {

printf("%6.2f %6.2f\n", data[i].x, data[i].y);

}

}

tcsh> cat my_globals.h

#define NMAX 100

float slope, intercept, chi2;

int npts;

float xx[NMAX], yy[NMAX];

struct point {

float x;

float y;

};

struct point my_data[NMAX];

Here’s the “interface” file required by SWIG to generate the wrapper code:

tcsh> cat line_fit.i

%module line_fit

%{

6

#include "my_globals.h"

%}

extern float intercept, slope, chi2;

extern int npts;

extern float xx[NMAX], yy[NMAX];

extern struct point my_data[NMAX];

extern int fit();

extern int read_data(char file[]);

extern float get_fltarr_val(float array[], int i);

extern void print_struct_array(struct point data[]);

Compilation

For Python,

tcsh> make

gcc -c line_fit.c -I/usr/include/python1.5

swig -python line_fit.i

gcc -c line_fit_wrap.c -I/usr/include/python1.5

ld -shared line_fit.o line_fit_wrap.o -o line_fitmodule.so

for Tcl,

tcsh> make

gcc -c line_fit.c -I/usr/local/include

swig -tcl line_fit.i

gcc -c line_fit_wrap.c -I/usr/local/include

ld -shared line_fit.o line_fit_wrap.o -o line_fit.so

and for Perl,

tcsh> make

gcc -c line_fit.c -I/usr/lib/perl5/5.6.0/i386-linux/CORE

swig -perl5 line_fit.i

gcc -c line_fit_wrap.c -I/usr/lib/perl5/5.6.0/i386-linux/CORE

ld -shared line_fit.o line_fit_wrap.o -o line_fit.so

That’s it! The only customization that’s required in going from one language to
another is specifying the library and include paths and the SWIG flag.

Sample Sessions

Here’s a sample session in Python (with comments indicated by !):

7

tcsh> python

Python 1.5.2 (#1, Mar 3 2001, 01:35:43) [GCC 2.96 20000731

(Red Hat Linux 7.1 2 on linux-i386

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> dir() ! dir() tells you what you have in the

! global namespace

[’__builtins__’, ’__doc__’, ’__name__’]

>>> from line_fit import * ! load the module

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’cvar’, ’fit’, ’get_fltarr_val’,

’print_struct_array’, ’read_data’] ! now you have the line_fit variables

! and methods

>>> cvar ! these are the globally defined

! C variables

Global variables { my_data, yy, xx, npts, chi2, slope, intercept }

>>> read_data ! entering without () tells you it’s

<built-in function read_data> ! a function

>>> read_data(’lf_1.dat’)

0 ! returns a 0 to show everything’s ok

>>> print cvar.slope, cvar.intercept ! we haven’t fit yet, so these are 0.0

0.0 0.0

>>> status = fit()

>>> print cvar.slope, cvar.intercept, cvar.chi2

2.30121946335 0.505137145519 0.420483201742

>>> cvar.my_data ! this is a pointer to a C structure

’_a00f0240_p_point’

>>> print_struct_array(cvar.my_data) ! it can be passed as an argument

1.00 2.82 ! to the C function as usual

2.00 5.09

3.00 7.59

4.00 9.77

5.00 11.87

6.00 13.98

7.00 16.62

8.00 19.27

9.00 20.91

10.00 23.69

>>> get_fltarr_val(cvar.yy, 1) ! values can be passed as well

5.08518981934

>>>

tcsh> cat lf_1.dat ! this is the data file we just fit

1 2.82137

2 5.08519

3 7.59315

8

4 9.77053

5 11.8671

6 13.9833

7 16.6191

8 19.2732

9 20.9109

10 23.6946

A Tcl session illustrates some of its syntax differences with Python:

tcsh> tclsh

% load ./line_fit.so line_fit

% read_data lf_1.dat

0

% fit

0

% puts $slope

2.30121946335

% puts $intercept

0.505137145519

% puts $chi2

0.420483201742

% puts $xx

_40d90140_p_float

% puts $my_data

_20d60140_p_point

% print_struct_array $my_data

1.00 2.82

2.00 5.09

3.00 7.59

4.00 9.77

5.00 11.87

6.00 13.98

7.00 16.62

8.00 19.27

9.00 20.91

10.00 23.69

% get_fltarr_val $yy 3

9.77052974701

% exit

As far as I know, Perl doesn’t have an interactive command line interpreter. Here’s
a Perl script that does the same analysis:

tcsh> cat line_fit_example.pl

#!/usr/bin/perl

9

use line_fit;

line_fit::read_data(’lf_1.dat’);

line_fit::fit;

printf "%6.2f ", $line_fit::slope;

printf "%6.2f ", $line_fit::intercept;

printf "%6.2f\n", $line_fit::chi2;

print $line_fit::xx,"\n";

print $line_fit::my_data,"\n";

line_fit::print_struct_array($line_fit::my_data);

Executing this script from the shell:

tcsh> line_fit_example.pl

2.30 0.51 0.42

_p_float=SCALAR(0x812f9b4)

_p_point=SCALAR(0x812fa20)

1.00 2.82

2.00 5.09

3.00 7.59

4.00 9.77

5.00 11.87

6.00 13.98

7.00 16.62

8.00 19.27

9.00 20.91

10.00 23.69

The line fit source code and makefile are available as a tarball, http://lheawww.gsfc.nasa.
gov/~jchiang/SSC/line fit.tar.gz.

10

