Parametrized Model for Secondary Particle Spectra and Angular Distribution of Proton-ISM Interaction

May 23-24, 2005 Presentation in the 1st GLAST Diffuse Emission Working Group

T. Kamae, N. Karlsson, T. Mizuno, J. Cohen-Tanugi, H. Tajima, T. Koi, T. Abe (SLAC, KIPAC, KTH, Hiroshima, Tokyo)

- **1. Description of Simulation and Parameterization Procedure**
- 2. Parameterization of Inclusive Cross-sections for γ , e^{+/-}, and v
- **3.** Angular Distribution of γ-rays
- 4. Parameterization of γ-rays Angular Distribution
- 5. Future Plans

Introduction

Gamma rays

- Need an accurate model to detect "anomalies" and to determine the contributions from the following 3 major mechanisms.
 - $-\pi^0$ decay
 - Inverse Compton
 - Bremsstrahlung
- Focus on $pp \rightarrow \pi^0$
 - Include diffraction process
 - Include scaling violation
 - Rising cross section

Other secondary particles

New experiments starting to detect high energy neutrinos and >100GeV electrons.

- Ice Cube
- PAMELA (Electron up to 2TeV)

Simulating pp interactions

- Break down the inelastic cross-section into two parts
 - Non-diffractive inelastic
 - **Diffractive** inelastic
- Simulate these independently
 - Non-diffractive: Pythia and parameterization by Blattnig et al.
 - Pythia: $62.5 \text{ GeV} \le T_p \le 512 \text{ TeV}$
 - Blattnig et al.: $0.488 \text{ GeV} \le T_p < 62.5 \text{ GeV}$
 - Diffractive: Kamae's MC (based on formulae by Goulianos)

• 1.95 GeV $\leq T_p \leq 512$ TeV

- Force unstable particles to decay instantly
- For neutrinos, use (quasi) V-A matrix element implemented in Geant4 to decay charged pions for diffractive part and low energy part

PP Cross-section

Cross-Section [mb]

Model B – no diffraction and non-rising cross section (used as reference only)

Model A – diffractive process, rising cross section and scaling violation

Blattnig et al.: Parameterization for $\pi^{+,0,-}$ for Proton Kinetic Energy < 50GeV

- Parameterizations of pion spectral distributions and total cross sections as functions of T_p and T_π

- For charged and neutral pions
- Parameter formulae of Stephen and Badhwar
- Fitted to experimental data available as of ~1995
- No theoretical model assumed other than the SB parameterization

Why yet another parameterization model?

•To cover wider energy range from 10MeV to 100TeV

- •Include diffraction dissociation, scaling violation and the rising cross section at higher energies
- •**Robust formula** that can be used in higher level simulators, such as GALPROP
- •To model angular distribution

•To include other secondary particles: electrons, positrons, and neutrinos

Our parameterization model

- 1. Simulate events for mono-energetic protons from 0.488GeV to 512TeV
- 2. Fit secondary particle spectra for mono-energetic protons
 - Non-diffractive:

$$\left(\frac{d\sigma}{d\log E}\right)_{incl} = a_0 \exp\left(-a_1\left(x-a_3+a_2\left(x-a_3\right)^2\right)^2\right) + a_4 \exp\left(-a_5\left(x-a_8+a_6\left(x-a_8\right)^2+a_7\left(x-a_8\right)^3\right)^2\right)$$

– **Diffractive**:

$$\left[\frac{d\sigma}{d\log E}\right]_{incl} = b_0 \exp\left(-b_1\left(\frac{x-b_2}{1+b_3(x-b_2)}\right)^2\right) + b_4 \exp\left(-b_5\left(\frac{x-b_6}{1+b_7(x-b_6)}\right)^2\right)$$
$$x = \log_{10}(T_p)$$

- 3. Fit proton kinetic energy dependency of parameters a₀-a₈ and b₀-b₇
- 4. Force a simple energy-momentum conservation
- 5. Can calculate secondary spectra for any continuum proton spectra: power-law with breaks and cut-off

Parameterized cross-section

Gamma-ray Spectrum for Power-Law Protons

We calculated the gamma ray spectrum using our model for power law protons of index=2 (preliminary results)

Gamma: Index=2

Secondary e⁻ and e⁺ spectra

We also calculated the $e^{-/+}$ spectra using our model for power law protons of index=2

Note: more positrons than electrons due to charge conservations, more apparent at low energies

Angular Distr. of γ-ray: PT Distribution (1/2)

Angular Distr. of γ -ray: PT Distribution (2/2)

Angular Distr. of γ -ray: Polar Angle (1/2)

Power-law with index=2.0: Tp>62.5GeV: Flux(θ)/2x2 min² for different E bands

Angular Distr. of γ -ray: Polar Angle (2/2)

Power-law with index=2.7: Tp>62.5GeV: Flux(θ)/2x2 min² for different E bands

Spectrum of γ-ray: Viewing Angle (1/2)

Power-law with index=2.0: Tp>62.5GeV: $E^2F_{\gamma}(E)$ for different angular regions

Ind2 Th(min)=0,4,10,30,60,120,300,all

Spectrum of γ -ray: Viewing Angle (2/2)

Power-law with index=2.7: Tp>62.5GeV: $E^2F_{\gamma}(E)$ for different angular regions

Ind27 Th(min)=0,4,10,30,60,120,300,all

RX J1713

High-energy particle acceleration in the shell of a supernova remnant F. A. Aharonian, et al. (HESS) Nature, Vol.432, p.75-77 (2004) 4 November

Future Plans

- Gamma, e^{-/+} and neutrino spectra param.: ApJ paper being drafted
- Angular distr. of gamma: Mono-energetic parameterization in progress
- Application to GALPROP: Waiting for the final parameterization
- Study of SNR images and spectra (X-ray to HESS): Just beginning