

Gamma-ray sources detection using PGWave

Gino Tosti, Claudia Cecchi

INFN Perugia

based on Francesca Marcucci PhD thesis

(see http://www.fisica.unipg.it/~marcucci/tesi.pdf)

Catalogs and Diffuse Emissions Working Groups

OUTLINE

- Overview of source detection methods
- The **PGWave** Package
- Results of PGWave test on GLAST DC1, LightSim and EGRET data
- Conclusions and Future work

The Source Detection Problem

The detection of localized signals (1D) or structures (2D) is one of the most challenging aspects of image processing. These methods can be divided in:

"a priori" methods (e.g. Wavelet)"a posteriori" methods (e.g. Likelihood)

The Source Detection Problem

The main difference between "a priori" and "a posteriori" methods is that the former ones do not need any "a priori" knowledge of a source model.

However, both methods assume that:

- •PSF shape
- Background (noise) statistical properties are known

In general, only a combination of the two approaches can help to reach the result we are looking forand this is particularly true in Gamma-Ray Astrophysics.

G. Tosti et al.

PGWave

PGWave* is the "a priori" source detection method developed by INFN-Perugia and used to analyse DC1, EGRET and LightSim simulated data. It is a medley of several methods:

- Wavelet Transform
- Thesholding
- Sliding Cell
- Iterative Denoising

* Download the *wavelet* package from the GLAST CVS to test it

PGWave characteristics

PGWave was designed to be:

- Fast & Efficient (source detections using Wavelets)
- Reliable (it yields only a small number of spurious detections)

and include options for:

 Characterization of sources (position, spectral properties and total flux)

PGWave may be a candidate for the Quick Look analysis of LAT data.

G. Tosti et al.

Catalogs and Diffuse Emissions Working Groups

The Wavelet Transform (WT) of input maps

• **PGWave uses** WT as a 2-D spatial filter

• WT is a multiscale transform providing a representation of data to easily extract both position and shape of features (for images or light curves).

• WT decomposes the signal in translated and scaled versions of an original function (the mother wavelet).

• WT enhances the signal contribution and attenuates the background.

WT have been widely used in X-ray astronomy and both CHANDRA and XMM Analysis Software includes WT based packages for source detection.

WT of input count maps

PGWave uses the Mexican Hat WT

gamma-ray detectors have PSF well described by one or more gaussian functions;
MH has a shape similar to the detector PSF;
It is insensitive to bg gradients;
Widely used in optical/X-ray

Def.:
$$w(x, y, a) = \int \int \psi(\frac{x - x'}{a}, \frac{y - y'}{a}) f(x', y') dx' dy'$$

With:

$$\psi\left(\frac{x}{a}, \frac{y}{a}\right) = \psi\left(\frac{r}{a}\right) = (2 - \frac{r^2}{a^2})e^{-\frac{r^2}{2a^2}}$$
$$(r^2 = x^2 + y^2)$$

SLAC, 23-24 May 2005

2

Catalogs and Diffuse Emissions Working Groups

WT of input count maps

ES: CYGNUS REGION

INPUT count map

Wavelet transform (scale 4)

Background estimation

The background map is produced by filtering the image:

1)Gaussian filter on count map to reduce non uniformities.

2)Sigma clipping (Stobie algorithm) or median filter.

3)Flat-Fielding

-EGRET diffuse galactic emission map is used to introduce in the smoothed background map (steps 1 and 2) small scale structures.

-The procedure is derived from the flat-field technique used in optical/IR but in this case we introduce structures

Background estimation

CORRECT BG ESTIMATION → Reduce spurious detection arising from complex structures of background emission

spurious detections

correspondence in EGRET bg map

Catalogs and Diffuse Emissions Working Groups

Threshold estimation

ES: CYGNUS REGION

G. Tosti et al.

INFN

THRESHOLD map

OVER THRESHOLD map

Damiani et al. (1997) method for threshold estimation has been used.

Acceptance test (S/N density)

PGWave follows a procedure similar to sliding cell to perform the final acceptance/rejection test

 estimate (at each iteration) the typical ratio between the count map and background densities in a box of scale size

 discrimination between false detections and true sources based on this ratio

(The value of the ratio to accept sources decreases with iteration step)

G. Tosti et al.

Source Fitting

At each iteration the accepted sources are fitted with a double or single gaussian function (that well represents the PSF) and if the fit converges their contribution is subtracted and the result count map is used as input for next iteration

The advantages are...

Substraction of brighter sources

→ Detection of faint and/or overlapped sources....

Without subtraction

LEGEND: Green=simulated Blue= 1 iter White= 2 iter

After subtraction

Substraction of brighter sources

PGWave Analysis of simulated GLAST DC1 data

Application to simulated GLAST DC1 data

Method was tested on 6 days DC1 all sky (scanning mode) GLAST simulated data. The produced photon list was used to generate binned count maps with, the expected PSF is well described by a narrow gaussian with exponential tails.

Application to simulated GLAST DC1 data

Application to simulated GLAST DC1 data

PGWave detections on 6 day all sky simulated data:

the rest with 3EGC	72 detection	139 19 2	d<0.5 deg d<1.0 deg d<1.5 deg	 24 associated to faint blazars 7 associated to <i>unid-halo</i> 6 associated to GRB's the rest with 3EGC
--------------------	--------------	----------------	-------------------------------------	---

12 spurious detection

4 because of bad fitting/subtraction

Computing Time : 600s - 4 iterations on a 25°x25° region

(PGWave uses direct convolution. Better performances can be obtained using FFT for the largest Wavelet scales. Work is in progress to use the *fftw* package)

Application to simulated GLAST DC1 data

For the brightest sources we proceeded to their characterization...

INFN

PGWave Analysis of LightSim* GLAST data

*see Marcucci PhD thesis, download the *light_sim* package from the GLAST CVS to test it

Test of PGWave with LightSim GLAST data

GLAST Simulated data produced with LightSim

Fastness:

G4 simulation: 2 days (60 CPUs) LightSim: 5 hours (1 CPU)

Test of PGWave with LightSim GLAST data

ES: AC REGION

DC1	IR	<u>F</u>
18 goo	bd	
1 spui	riou	s (fit)
Glast2	25	IRF
53 goo	bd	

0 spurious

AC REGION

55 days DC1 IRF **48** good **7** spurious (5 from fit) Glast25 IRF **137 good 10** spurious 26 (9 from fit)

G

Sp

<

be

Test of PGWave with LightSim GLAST data

	region		6 days			1 month			$55 \mathrm{~days}$		
$\mathbf{C1}$		\mathbf{G}	\mathbf{s}	S_fit	G	\mathbf{S}	S_fit	\mathbf{G}	\mathbf{S}	S_fit	
	\mathbf{AC}	18	0	1	34	6	5	48	2	5	
	GC	19	2	0	45	2	2	86	6	1	
	127060	3	0	0	8	0	0	17	0	0	
		6	6 days			1 month			55 days		
lastzo	total	297			647				763		
urious	\mathbf{G}		289		616				703		
00/		(288 v	288 within 0.5°)		(613) within 0.5°)			(7	(702 within 0.5°)		
0%	s		6		10				34		
st fit →	C 04		0		10				0.9		
4%	s_nt	fit 2		21				26			

G= good

S= spurious **S**_**fit** = spurious because bad fitted

PGWave Analysis of EGRET Data

Analysis of EGRET Data

PGWave was used to analyze 4 typical regions: Anti Center, Cygnus, 3c279 and Vela

Catalogs and Diffuse Emissions Working Groups

Analysis of EGRET Data

NA ME	1	ь	counts (C)	α_1		
$3 \odot 279$	305.7 ± 0.5	57.5 ± 0.5	$(14.5\pm4)\times10^2$	-1.90 ± 0.06		
	(304.982)	(57.03)	(1487)	(-1.96 ± 0.04)		
Vela	263.9 ± 0.3	-2.5 ± 0.3	$(10.4\pm1)\!\times\!10^2$	-1.71 ± 0.03		
	(263.527)	(-2.86)	(10320)	(-1.69 ± 0.01)		
Crab	184.9 ± 0.4	-5.5 ± 0.4	$(55.1\pm7){\times}~10^{2}$	-2.17 ± 0.02		
	(184.53)	(-5.84)	(5314)	(-2.19 ± 0.02)		
Geminga	195.5 ± 0.3	4.7 ± 0.3	$(65.3 \pm 8) \times 10^2$	- 1.70 \pm 0.10		
	(195.06)	(4.32)	(6329)	(-1.66 ± 0.01)		

Table 5.8: Results of finer analysis of EGRET data for 4 typical γ -ray sources, compared with $\mathcal{3}EG$ values (in brackets).

GLAT-TAN

40 -

30 -

20 -

10-

0.

290

300

First application to EGRET extended sources: CenA

70

60

50

40

30

20

10

0.001

330

EGRET bg

310

GLON-TAN

0.0002 0.0004 0.0006 0.0008

(intensity (ph/cm^2-s-sr))

320

First application to EGRET extended sources: CenA

Analysis of EGRET Data

Summary of the results on the 4 EGRET Fields:

•All Identified 3EG sources were detected by PGWave, except a faint source close to 3C279

•All PGWave undetected sources are 3EG unidentified and for some of these sources no excess were found on the counts map.

•PGWave "new" sources are always associated with real counts excess and most of these were detected at a distance less than 30' from well known radio and/or X-ray sources.

Conclusion: PGWave and LAT Catalog compilation

Catalogs and Diffuse Emissions Working Groups

Future developments

Next step: PGWave-3D \rightarrow (x,y,t)/(x,y,E)

Constant sources are cilinder in 3D space

variable sources can be detected in 3D space becouse they exist only for short intervals

.....work is in progress

