Accounting for uncertainties of the diffuse foreground model in GLAST likelihood analyses

Martin Pohl

ISU

Uncertainty in diffuse emission

How large are the statistical uncertainties?

Diffuse emission from the inner galaxy:

$$I_{\ln E}(E) \approx (2 \cdot 10^{-4} \text{ ph. cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}) \left(\frac{E}{100 \text{ MeV}}\right)^{-1}$$

Resolution element as 68% single photon containment area

$$\Omega_{\rm res}(E) \approx (8 \cdot 10^{-3} \text{ sr}) \left(\frac{E}{100 \text{ MeV}}\right)^{-2}$$

The photon flux per resolution element therefore is

$$F_{\ln E}(E) \approx (1.6 \cdot 10^{-6} \text{ ph. cm}^{-2} \text{ s}^{-1}) \left(\frac{E}{100 \text{ MeV}}\right)^{-3}$$

Then the detected number of photons per resolution element during the sky survey is

$$N(E,t) \approx 0.2 A_{\text{eff}} t F_{\ln E}(E) \approx 10^5 \left(\frac{E}{100 \text{ MeV}}\right)^{-3} \left(\frac{t}{\text{yrs}}\right)$$

and the relative statistical uncertainty is

$$\sigma \simeq \frac{1}{\sqrt{N}} \simeq \frac{1}{300} \left(\frac{E}{100 \text{ MeV}}\right)^{1.5} \left(\frac{t}{\text{yrs}}\right)^{-0.5} = \frac{1}{10} \left(\frac{E}{1 \text{ GeV}}\right)^{1.5} \left(\frac{t}{\text{yrs}}\right)^{-0.5}$$

At 1 GeV we have $\Omega_{\rm res} \simeq 0.3$ sq.deg.

 \rightarrow We can statistically detect small-scale structure!

Technically the limit is the single photon resolution divided by the detection significance.

$$\Omega_{\text{limit}} \approx \sigma \,\Omega_{\text{res}} \simeq (0.1 \text{ sq.deg.}) \,\left(\frac{E}{1 \text{ GeV}}\right)^{-0.5} \,\left(\frac{t}{\text{yrs}}\right)^{-0.5}$$

VGPS HI data

arcmin resolution

Galactic Longitude

What we have:

Dwingeloo HI data

 $\sim 0.6^{\circ}$ resolution

The low resolution of HI gas data gives problems:

- foreground model can't contain substructure at $\theta \leq 0.6^{\circ}$
- we cannot correct for HI self-absorption and variable T_s .

GLAST will resolve fine structure that is not in the foreground model.

How do we account for this in the likelihood analysis?

- Location-dependent information on resolution?
- Angular-scale dependent uncertainty information?

How do we derive the foreground model anyway?

We could derive the model on the data themselves!

- Take out anything that looks like a point source.
- Use MaxEnt to find the mother distribution of the remainder.

Benefits:

- the model fits the data.
- have a single map to compare with propagation models.

Disadvantages:

- substantial effort required to find and analyze extended sources.
- difficult to find weak point sources in the galactic plane.
- don't use available information on ISM.
- small-scale ISM structure may also look point-like.

Alternative: fit a cosmic-ray/ISM model to the data!

Problem:

40.000 square degrees are 40.000 independent data points at 500 MeV.

- \longrightarrow 2.000 square degrees are 2σ off
- \longrightarrow 100 square degrees are 3σ off

Additional regions where the model just doesn't fit!

What to do if you analyze a trouble region?

Angular structure may still be approximately right on certain scales ...

Angular-scale dependent uncertainty information?

How to incorporate uncertainty in foreground?

- Have a few multipliers for the foreground model (total intensity, spectral skew)
- The multipliers operate on predefined angular scales
- The foreground model gives the expectation values (=1)
- The model also gives the allowed range of the multipliers
- The analysis tool includes these in the likelihood function

multiplier
$$G_i(\theta, \phi) \longrightarrow$$
 likelihood function $\mathcal{L}' = \mathcal{L} \exp\left(-\frac{(G_i - 1)^2}{(\delta G_i)^2}\right)$