

Data Flow & Leve1 1 Pipeline

- High level specs in L3 & L4 documents:
 - Level 4 LAT-SS-00505-01

GLAST LAT Project

- Level 3 LAT-SS-00020-01
- Pipeline Server Implementation Plan LAT-TD-00773-01 (draft in review)
- Database Specification LAT-TD-00553-01
- Quick summary of Pipeline scope
 - Process real data EM?, CU, Flight
 - Generate bulk MC
 - Facilitate calibrations (monitoring and specialty datasets)
 - Near real time diagnostics from Level 1 chain
 - Fully automated
 - Quick turnaround

Mission Operations Architecture

LAT Operations Facility Functions

Science Tools – 12 June 2002

LAT Data Path

Instrument Simulations and Reconstruction

What is GLEAM?

Already described by Richard, see his talk: this talk will fill in a few details.

The name (originally an acronym by L. Rochester) for an application that does everything:

- Manage an (optional) GUI interface, with a 3-D display
- Manage the detector description, including full geometry
- Manage a catalog of particle sources, ranging from simple "test-beams" to GRBs; handle geometry of the orbit.
- Run the Geant4 simulation engine to trace particle trajectories, simulating interactions, scattering, decays, etc, and record deposited energy in sensitive detectors ("hits")
- Manage conversion of hits to "digis", corresponding exactly to raw data collected by the detector
- Construct a "trigger" from the deposited information
- Run reconstruction algorithms to analyze strips, CsI xtal info, and ACD tiles.
- Write out the hits, digis, and recon to ROOT files for further analysis
- Read digis at least to avoid re-running simulation
- Summarize the track fit results as a PSF and Aeff

Source: Toby Burnett

Proof!

Source: Toby Burnett

9

Proof, cont.

Level 0.25

Level 0.5

Gleam Data Products

- Current Persistent Store definition will evolve with more experience
 - MC
 - Particle tree, Truth "Hits" in ACD, CAL, TKR
 - Digitization

GLAST LAT Project

- "raw" data from TKR, CAL, ACD
- Trigger word
- Recon
 - ACD
 - Relate tracks to hit tile(s)
 - CAL
 - Output of "clustering"
 - Position, direction from the one cluster
 - Total observed and corrected energies leakage
 - TKR
 - Clusters of strips
 - Pattern recognition, Fit track candidates
 - vertices

Upcoming Gleam Data Products

- Modifying event chain to include Event Interpretation
 - To be initiated this summer
 - Take subsystem recons as input
 - "standard" analysis combine TKR vertices, ACD hit tiles, CAL energy/direction to synthesize event
 - Apply background and quality criteria to classify event
 - Full output will go into Level 0.5 structure
- Extract summary info for Level 1 DB
 - "summary ntuple"
 - Probably not the same as the Level 0.5 ntuple used for instrument studies
- Housekeeping to accompany science data has yet to be defined.
- Still need to deliver "header" info for each dataset

Numerology from pdrApp

- predecessor to Gleam used for PDR performance estimate.
- will have revised numbers from Gleam this summer with iterated structures

Downlink = 3 GB/day @ 2.2M events : raw data ~ 1.5 kB/event

MC simulation takes 0.16 sec/event for all_gamma Recon takes 0.08 sec/event

MC sim generates 1.5 kB/event Recon generates 4 kB/event

GLAST LAT Project

Assume equal MC generation to downlinked data rate during flight operations

A year's re-reconstruction would add 4 TB and 100 CPU-weeks to the load

- negotiate with SLAC Computing Center for additional resources when needed
- an advantage of tapping into a large batch farm!

Science Tools – 12 June 2002

GLAST LAT Project

Processing Requirements - Disk

Disk Usage (GB)

R.Dubois

13

Science Tools – 12 June 2002

Processing Requirements - CPU

Additional Pipeline Products

- Strip files (or tagged events in Level 0.5 DB) for low level calibration (peds, gains etc)
 - Select CNO etc for subsystem calibrations
 - Tag random-trigger events
 - Pipeline could run calibration algorithms if useful; humans will have to check anyhow before results put back into the system.
- Near real-time monitoring
 - Run system test diagnostics and feed back to IOC operations
 - Use full power of correlated analysis to identify problems
 - Will take form of plots and statistics, tracked in pipeline database
- Keep track of Livetime
 - Correlate livetime counters with operational modes and generate history
- Follow up onboard alerts; look for new ones

Science Tools – 12 June 2002

Processing Pipeline

Plenty of margin on CPUs

LAT Data Processing Database

- Heart of data processing facility is a database to handle state of processing, as well as an automated server.
 - relational database tracks state of file based datasets throughout lifetime in the system, from arrival at IOC or MC generation, through Level 1 output.
 - Automated server will poll IOC generated database entries for new Level 0 datasets and take immediate action, as well as generate MC data, and log all actions to the database.

Prototype DB Table Layout

LAT-TD-00553-01 – if you're interested read this

Data Manager Prototype

Existing Data Manager Prototype is set of perl scripts that:

 Performs automated MC batch processing using LSF and SLAC batch farm (e.g. produced 50 M background events, 10 M gammas for PDR studies)

 Provides utilities for processing, filtering , and displaying results of MC runs

• Provides very preliminary scripts for entering results of MC runs into Oracle tables

• Will evolve into Data Manager for Data Processing Facility (DPF) by being split into a server and set of utility packages as described in Data Manager spec

Key Pipeline Concepts

- Media
 - Everything on disk
- Input to the Pipeline
 - FITS files appear on disk; tagged in DB
- The Processing Chain
 - Elements configured in the DB
 - Customize to task (real data, MC, etc)

- Communication with Processes
 - Interface hiding batch system details so that a non-SLAC implementation can use a different mechanism
- Communication with DB
 - Server does all communicating with DB, which is standard SQL
- Communication with Server
 - CLI, gui
 - Authenticate users

- LAT-TD-00773-01 (in prep)
- Archive all files to tape

Additional Details

- Current plan is to export Level 1 db to SSC
 - Several ways to "mirror"
 - Haven't started talking to LAT mirrors yet still early in the game
 - Pipeline database knows about all datasets, so any mirroring should be easy
- DB keeps track of all details of code used to do processing + parameters used
- Can also be used for Level 2 automated processing
- Planning & Implementation
 - DB spec and Implementation plan to be reviewed by LAT-SSC working group
 - Alex Schlessinger targeted to implement pipeline
 - Starting to think of implementation details already
 - Try to have something ready for EM and for CDR MC generation
- On the TODO list: handle burst alerts & tracking livetime