VTX, All Layers, 3500 < CalEnergyRaw, $\cos (\theta)<-.3$

SLIDE 11 from Bill's workbook

		he Remaining	Event	
Lewels: PreFilter Lewels;	\#	Variable	Mean)
Ginw 25.415	$1 \times$	McId	11.00	Splash)
	2 M	McCharge	-1.00	
Bris: 10	$3 \quad \mathrm{M}$	McEnergy	10,452.20	nt Well Reconstructed
	4 M	MczDir	-0.58	, Well Reconstructed
AcdActiveDist >-10\| CalTrackAngle > . 5	5 M	McDirErr	3.23E-4	
\| CalTrackDoca > 40	6 T	TkrNumTracks	10.00	
	7	Tkr1Chisq	1.92	
	8	Tkr 1 Hits	18.00	This is NUTS!
	9	Tkr1FirstLayer	8.004	The event clearly has to
	10	Tkr15SDVeto	0.00	be pointing at an ACD
	11	AcdTotalEnergy	6.09	be pointing at an ACD
	12 A	AcdTileCount	4.00	Side tile and there
	13 A	AcdDoca	138.04	is no SSD Veto.
	14 A	AcdActiveDist	-200.00	
	15 E	EvtRun	214,710.00	
	16 E	EvtEventid	2,692.00	The Doca Calc. says the
	17 E	EvtElapsedTime	199,885,000.00	event had a track well
	18 E	EvtLiveTime	199,885,000.00	within a tile - so why is
	19 B	BestEnergy	10,461.30	
	$21 \quad 8$	BestEnergyProb	0.96	e ActiveDistance set to
	22 A	AcdRibbonEnergy	0.00	its rogue value?
	23 A	AcdDocaTileEnergy	0.18	
	24 A	AcdActDistTileEne...	0.00	
	25 A	AcdUpperTileCount	3.00	
	26 A	AcdLowerTileCount	1.00	
	27 A	AcdTotalTileCount	4.00	

EvtRun	$214,710,00$
EvtEventId	$2,692,00$
EvtElapsedTime	$199,885,000,00$

This is a glast-ts generated event. Can Toby find it? (It comes from either series 2 or 3)

We NEED a picture of it!

So what's the problem?

- Have a well-reconstructed track and AcdDOCA
- Bill realized that reconstructed tracks that are at small angles wrt a tile face will have very large (absolute value) ActiveDist due to the way it is presently calculated:
- projecting the track to the plane of the tile and calculating the 2-d distance to the tile edge.
- Instead, if the minimum 3-d DOCA between the track and the four tile edges is used, this problem will not occur.
- One hitch is determining whether the track pierces the tile of not.

An Improved Active Distance Algorithm - courtesy of Bill

Present Alg. Calc's the 2 D in the plane of the ACD tile to the nearest edge. Its >0 when the track intersection falls inside the tile and <0 when outside.

This has the problem of giving large outside distances for track that are approx. parallel to the plane of the tile even though the track maybe quite close.

New Alg. Proposal

1) When the track intersects the tile - keep the previous calc. its what you want when analyzing the tile response.
2) When outside: CASE 1
——Point-to-Line DOCA
Track
CASE 2
For each edge of the tile calc. the DOCA for that line to the Track. Only Accept solutions where the DOCA vector joins the Tile Line within the limits of the Tile. Keep the smallest.

When no solutions are found for CASE1, the Track falls into a "corner" region. Calc. the DOCA to each corner of the Tile - keep the smallest

