A Parametric Energy Recon for GLAST

A 3rd attempt at Energy Reconstruction

Keep in mind:
1) The large phase-space of GLAST –
 20 MeV – 300 GeV, FoV ~ 2.5 str, etc.

2) The multiple detector features
 - Tracker Thin & Thick layers
 - Large gaps between Cal Modules
 - Lack of depth (8.5 r.l. Cal at normal inc.)
MC Sources

To help separate out various effects and run MC efficiently a new type of source was made: All trajectories pass through a designated piece of the detector.

$\Delta \Omega$: $\cos(\theta) < -0.2$

(CalX0, CalY0) is the reconstructed entry point on the top Cal Face.
Shower Model

Wallet Card: \[\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)} \] where \(t \) is the depth in rad. lens.

\(a \) and \(b \) are parameters:
- \(b \) scales the radiation length
- \(a \) set the location of the energy centroid: \(\langle t \rangle = \frac{a}{b} \)

Data: Verticle at the \((\text{CalX0}, \text{CalY0}) = (180, 180)\)

Variation in depth due to Track conversion point adding .1 \(\rightarrow \) 1.5 rad. lens.

Monte Carlo Shower Profiles

Data: Verticle at the \((\text{CalX0}, \text{CalY0}) = (180, 180)\)

Variation in depth due to Track conversion point adding .1 \(\rightarrow \) 1.5 rad. lens.

\(b \) Parameter Fits

Linear: \(b = .44 + .03 \log_{10}(E/1000) \)

Quad: \(b = .453 - .024 \log_{10}(E/1000) + .026 \log_{10}(E/1000)^2 \)
Shower Model

The Shower Profile from 100 MeV -> 100 GeV

The Leakage Fraction

Bill Atwood, SCIPP/UCSC, May, 2005
Xtal Shower Profiles – Conversion in Thin Tracker

A Full CAL Module - 1 GeV Verticle Gammas in the center of the CAL
Fits to Transverse Profiles – Thin Conversions

Note growth as depth increases
Xtal Shower Profiles – Conversion in Thick Tracker

Bill Atwood, SCIPP/UCSC, May, 2005
Fits to Transverse Profiles – Thick Conversions

These are narrower...
Correction Algorithms

Losses due to Gaps and Transverse Shower Spread

Estimate the fraction of the shower in a Gap at each layer

Simple Case

CAL Module

Projected Shower Profile

The fraction outside is

\[f(\text{outside}) = \frac{1}{2} - \frac{y}{r} \sqrt{1 - \left(\frac{y}{r}\right)^2} - \sin^{-1}\left(\frac{y}{r}\right) \]

Real Case

Projected Shower Profile

Ellipse: Simpson Integration of Simple Case

X-Y Edges: Treat separately – Subtract overlap

Energy dependence on Radius: Below 1 GeV – broaden by ~ 2 by 100 MeV

Transverse Energy Density: 2 samples – .8*R_m and 1.8*R_m

\((R_m \text{ is the Moliere Radius } \sim 50 \text{ mm}) \)

Dip Angle Dependence: Close-up gaps as cos(\theta)
Correction Algorithms

Edge Loss Correction
at 100 MeV

Edge Loss Correction
at 10 GeV

Becomes more abrupt
Correction Algorithms

Losses due to Shower Leakage

The set of E_{obs} (observed energy), $<t>$ (Cal energy centroid in rad. len.), and t_{TOTAL} (Cal + Tracker rad. len.) form a consistent set to predict E_0 (the incoming energy) using the Gamma Function Shower Model:

$$E_{obs} = \int_0^{t_{TOTAL}} E_0 b(bt)^{a-1} e^{bt} dt \quad \text{and} \quad a = b\langle t \rangle$$

This can be inverted via iterating:

$$E_0 = E_{obs}$$

$$a = b(E_0) \cdot \langle t \rangle$$

$$E_0 = E_{obs} \frac{1}{t_{TOTAL}} \int_0^{t_{TOTAL}} b(bt)^{a-1} e^{-bt} dt$$

For convergence to $< 1\%$ requires a few iterations at 1 GeV and ~ 10 iterations at 100 GeV
Correction Algorithms

Examples of Contained Fractions at 10 GeV

As θ increases so does t_{TOTAL} and leakage goes down (contained fraction increases)

For tracks near vertical ($\cos(\theta) < -0.9$) as track gets near the gap, t_{TOTAL} goes down and the leakage goes up (contained fraction decreases)

Critical to have a good estimate of t_{TOTAL} and $<t>$

Achieved by Simpson Integration/Sampling of Calorimeter

Bill Atwood, SCIPP/UCSC, May, 2005
Tracker Energy

Tracker treated as a Sampling Calorimeter:

- every $\Delta \chi$ count the number of tracks

Complications:

1) Large gaps between samples
 *This leads to large losses "out the sides"
2) Super Layers are ~ 4.3 time thicker in rad. lens.
 *This leads to balancing the two sections

Process: Estimate energy in Tracker from that observed in Cal.

Ratio of slopes is constance ~ 4.3

Fix the ratio:
Thick/Thin = 4.3
Tracker Energy

Next – set overall size to flatten energy vs layer number:

Problem: Increasing Tracker contribution flattens response, BUT it creates a "pedestal" of \(\sim 4\%-5\% \)

CalEneSumCorr vs TkrEnergyCorr

\[
\begin{align*}
\text{norm} &= .68 \\
\text{norm} &= .80
\end{align*}
\]
Glast Energy

Survey of Correction from 100 MeV → 100 GeV

100 MeV

Full

Cos(θ) Dependence
CalX0 > 50

CalX0 Dependence
Cos(θ) < -0.80

Thick Layers
Cos(θ) < -0.9
CalX0 > 70

Bill Atwood, SCIPP/UCSC, May, 2005
Glast Energy

1 GeV

Full

All Layers

$\cos(\theta) < -0.8$

$\text{CalX0} > 50$

$\cos(q) < -0.80$

CalX0 Dependence

$\text{CalX0} > 50$

$\text{Cos(\theta) Dependence}$
Glast Energy

10 GeV

Full

All Layers

\[\cos(\theta) < -0.8 \]

CalX0 > 50

\[\cos(q) < -0.80 \]

CalX0 Dependence

CalX0 > 50

Bill Atwood, SCIPP/UCSC, May, 2005
Glast Energy

100 GeV

Full

CalX0 > 50

Cos(θ) Dependence

CalX0 > 50

Cos(q) < -.8

CalX0 Dependence