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1. Introduction 
In the past, calibration reconstruction has used the arithmetic mean of the signal from the 
two ends of a hit CDE to estimate the energy deposited in that CDE ((Plus + Minus)/2).  
This estimator is independent of where along the crystal the energy deposition occurred, 
given the approximations that the light yield as a function of position (also known as light 
taper or light attenuation) is linear, and that the slopes of the light yield curves from 
either end are equal. 

More recently, we have considered changing the single CDE energy estimator to the 
geometric mean of CDE end signals (SQRT(Plus*Minus)).  This is the correct approach 
if, instead of a linear light yield curve, the crystals have an exponential curve.  In this 
case, the geometric mean is independent of position if the efolding lengths are the same 
for both ends. 

In reality, none of these assumptions are rigorously true for all CDEs.  The light 
attenuation curve is typically some combination of linear and exponential components 
and, furthermore, changes from CDE to CDE. 

We now have enough test data to conclusively test the results of these assumptions.  In 
particular, we can look at the deviations of the energy estimators from a constant for 
energy deposition at various positions along the crystal.  In addition, we can study the 
differences between big and small (i.e. low energy and high energy) PIN diodes in these 
respects. 

2. Test Setup and Data 
These tests use flight CDE test data measured as part of the post CDE manufacture 
testing process at Swales Aerospace.  The test configuration is a two-layer hodoscope, the 
top layer of which contains the twelve test CDEs and the bottom the twelve fiducial 
CDEs.  By requiring no more than a single CDE muon hit in each layer, the range of 
incident angles for the muon, and, hence, the range of path lengths, is restricted by the 
geometry of the layers.The CDEs at the edge of each layer have a somewhat broader 
distribution of path lengths since they have no way to reject events exiting the side of the 
crystal on the side with no adjacent CDE. 

This arrangement defines 12 longitudinal “slices” for each test CDE, corresponding to 
events with a hit in the test CDE plus a hit in one of the 12 fiducial CDEs below.  Each 
slice is roughly 27 mm long, corresponding to the width of the fiducial CDE. 



The tests are run by an on-line GSE process.  Analysis consists of collecting single slice 
spectra from both PINs (the small PIN is set up in muon gain mode so as to have a usable 
signal) from the plus and minus ends of each CDE.  The spectra are then fit using a log-
normal model (which accounts, to some extent, for the non-landau shape of the peak 
brought about by the path length distribution and other effects).  A variety of quantities, 
such as light yield and asymmetry are computed from the resulting most probable values 
and stored in csv files in \\glastserv\glast2\FM\CdeData\Database\*.csv.  Each csv file 
contains the results of a single run, consisting of parameters for each of 12 test CDEs. 

3. Analysis 
Analysis of the CDE test data is performed in two steps, single CDE analysis and 
statistical analysis. 

3.1. Single CDE Analysis 
The first step used plotCdeSlices_big_vs_small c.pro (in IDL v.6) to read in each CDE 
and analyze the results into a set of plots per CDE.  The deviations keyword turns the 
lower two plots on and off, while the stat keyword can be set to GEOMETRIC or 
ARITHMETIC depending on whether geometric mean or arithmetic mean energy 
calculation is desired.  The prodstats keyword can be assigned a variable that will contain 
an array of statistics for each CDE, including standard deviation and maximum 
deviations for the fluctuations of energy from a constant as a function of position along 
the crystal. 

The analysis code for these results generates the following plots and statistics for each 
CDE (one run of the code will use either geometric or arithmetic means): 

Upper Left Plot: 
1. Light yield, normalized to the mean light yield, vs slice, for each PIN (big and 

small) from each CDE end 

2. Linear fit to each of the above 

3. Arithmetic or geometric mean of the two ends for big PIN, small PIN, and one of 
each (“mixed” PINs) 

Lower Left Plot: 
1. Residuals of the big PIN light yields from the linear fit model vs slice 

2. Residuals of the arithmetic or geometric mean of the ends from a constant set to 
their mean value over all slices (which is 1 by construction) vs slice 

3. Standard deviation, maximum deviation, and maximum deviation excluding the 
end slices of the mean residuals discussed in 2 above. 

Lower Right Plot 
1. Same as 1,2,3 in the Lower Left Plot, for the small PIN 

2. Same as 2,3 in the Lower Left Plot, for “mixed” PINs 

Upper Right Plot 



1. Asymmetry curve (log (P/M) vs slice) for big PIN, small PIN and “mixed” PINs 

3.2. Statistical Analysis 
The second analysis step uses the program histostats.pro, which reads in the 
aforementioned array of statistics from the previous analysis (produced using the 
prodstats keyword), histograms the stats and plots the histograms.  For each of big PINs, 
small PINs and “mixed” PINs, histograms of standard deviation from a constant vs 
position, maximum deviation, and maximum deviation excluding the end slices are all 
plotted. 

4. Results 
Figures 1 and 2 show sample plots for the same CDE for the geometric (Figure 1) and 
arithmetic (Figure 2) mean energy estimators. 
 

 
 
Figure 1 Single CDE light yield and energy estimation using geometric mean of ends 



 
 
Figure 2 Single CDE light yield and energy estimation using arithmetic mean of ends 
 

The big and small PIN light yield curves are not necessarily the same.  Typically, the 
small PIN light yield shows less slope as a function of position than that of the big PIN.  
This may be due to differences in direct vs diffuse illumination of the two PINs.  In 
Figure 2, note that the small PIN light yield has less slope than the big PIN except in the 
lower right quadrant (high slice number, far from PIN), where the two are virtually 
identical.  This asymmetric behavior is not unusual. 

Despite this behavior, though, the assumption that the geometric mean as an energy 
estimator is independent of energy deposit position is a remarkably good one.  Even in 
the case of “mixed” PINs i.e. when we use the large PIN from one end and the small from 
the other end, the fluctuations of the geometric mean are less than 2%.  The performance 
of the arithmetic mean is also acceptable, although not quite as good. 

Also, as we have assumed in the past, the asymmetry curves are rather linear except near 
the ends of the crystal.  Our new muon calibration scheme no longer depends on linearity 
of the asymmetry curves.  Instead, it stores a cubic spline representation of the curve, 
which can reproduce any functional behavior. 



 

 
Figure 3  Statistics on deviations of geometric mean energy estimator from position independence. 
 

 
Figure 4  Statistics on deviations of arithmetic mean energy estimator from position independence. 



Figure 3 and Figure 4 show statistics of how well the assumption that each energy 
estimator is independent of position holds up over 1620 flight CDEs.  In all cases, the 
most probably standard deviation is well below 2%.  The geometric mean estimator 
fluctuates from a constant vs position with a standard deviation ~1%, while the arithmetic 
mean estimator is at ~1.5%.  These numbers do not change very significantly for different 
PIN configurations (big PIN, small PIN or mixed PINs). 

The maximum deviations are a little worse for the arithmetic mean estimator, extending 
out to about 6% for the big PIN, as opposed to about 4% for the big PIN using the 
geometric mean estimator. 

5. Conclusion 
We believe that these tests indicate that the assumption that either the geometric mean 
energy estimator or the arithmetic mean estimator is independent of energy deposition 
position is valid to within required precision.  The geometric mean estimator is somewhat 
the better of the two, especially when considering maximum deviations from the 
assumption of position independence. 

While deviations from constant are noticeably worse near the ends of the crystal, at the 
position resolution of these data, they are still small enough to be acceptable.  Further 
study of the behavior of these estimators near the crystal ends, using better position 
resolution based on TKR information, is in progress. 

 


