
2003 Conference for Computing in Nuclear and High Energy Physics, La Jolla, California, 24-28 March 2003 1

Calibration Infrastructure for the GLAST LAT
J. Bogart
SLAC, Stanford, CA 94025, USA

The GLAST LAT [1] calibration infrastructure is designed to accommodate a wide range of time-varying data
types, including at a minimum hardware status bits, conversion constants, and alignment for the GLAST LAT
instrument and its prototypes. The system will support persistent XML and ROOT data to begin with; other
physical formats will be added if necessary. In addition to the ”bulk data”, each data set will have associated
with it a row in a rdbms table containing metadata, such as timestamps, data format, pointer to the location of
the bulk data, etc., which will be used to identify and locate the appropriate data set for a particular application.
As GLAST uses the Gaudi framework for event processing, the Calibration Infrastructure makes use of several
Gaudi elements and concepts, such as conversion services, converters and data objects and implements the
prescribed Gaudi interfaces (IDetDataSvc, IValidity, ..). This insures that calibration data will always be valid
and appropriate for the event being processed. The persistent representation of a calibration dataset as two
physical pieces in different formats complicates the conversion process somewhat: two cooperating conversion
services are involved in the conversion of any single dataset.

1. Introduction

A calibration dataset as used here is information
describing some aspect of the state of the the GLAST
LAT which may change with time. Examples include
hardware status bits, electronics gains and alignment
information. The Calibration Infrastructure pro-
vides services to write and access such datasets, par-
ticularly those needed for the earliest stages of event
processing. Information collectively known as IRFs
(instrument response functions) used in higher-level
analyses will be managed by a different facility.

1.1. The Instrument

The GLAST LAT is scheduled for launch in 2006.
Although an astronomical instrument, it consists
of active components familiar to high-energy physi-
cists: a silicon strip tracker, a cesium iodide crystal
calorimeter, and an ACD (anti-coincidence detector)
consisting of scintillating tiles. However, unlike the
prototypical HEP detector of today,

• There is no significant ambient magnetic field.

• There is no beamline, hence no reason for circu-
lar symmetry. Detector components are almost
all box-like and aligned along orthogonal axes.

• The detetector is small, both in size and, except
for silicon strips, in number of components.

The last especially has impact on the calibration in-
frastructure design. The amount and complexity of
data to be managed is much less than in a typical HEP
experiment, so much less that we need pay only min-
imal attention to efficient use of storage and have no
need for especially clever organizational and searching
schemes.

2. Requirements

Although storage and cpu resources required for
LAT data processing are relatively modest, the pro-
cessing pipeline is no simpler than for standard HEP
experiments; we still need “one of everything” as well
as considerable flexibility both for developers and for
end-users. In particular, the calibration infrastructure

• must support prototypes as well as flight instru-
ment (but can assume that no job will concern
itself with more than one instrument).

• must support remote use, even disconnected use.

• must provide transparent access to appropriate
calibration data for event analysis. In partic-
ular, each calibration data set has a validity

time interval associated with it. If the times-
tamp of the event being analyzed is outside the
validity interval of the in-memory calibration, a
new calibration whose validity interval includes
the timestamp must be fetched without special
intervention by the client.

• must provide comprehensive, even if primitive,
access for clients with a more diagnostic slant.

Like any other component of standard processing, the
calibration infrastructure software must be robust.
Performance and resource requirements are not strin-
gent, but they cannot be ignored, either. The calibra-
tion infrastructure should in no respect be a bottle-
neck.

2.1. Software Environment

All offline software must build and run in at least
two environments: Linux with gcc and Windows with
Visual Studio. Developers are split between the two.
Pipeline processing takes place on the SLAC Linux
farm.

MOKT001

2 2003 Conference for Computing in Nuclear and High Energy Physics, La Jolla, California, 24-28 March 2003

We prefer to use, and almost universally do use,
tools which are both free and open source: free be-
cause we cannot ask collaborators to pay exorbitant
per-seat charges and open source so that we can make
patches immediately ourselves if necessary. Several
of our most critical tools have come from elsewhere
within the high-energy physics community. One such
is the Gaudi framework. [2] The calibration infrastruc-
ture adheres to the Gaudi model of conversion from
persistent to in-memory (“transient”) data.

3. Data and Metadata

It is extremely important that the collection of cali-
brations be readily searchable by various criteria: type
of calibration, validity interval, instrument calibrated,
flavor,1 etc. However, once the desired calibration
data set is found, the chief clients of calibration typi-
cally want access to the complete calibration data set,
not just some extracted piece. In essence each cali-
bration data set is comprised of two components with
different functional requirements. One is the bulk

data, the calibration information about the instru-
ment, such as a collection of pedestals. Since the en-
tire collection will be read into memory before use
by most applications, the internal organization does
not have to be particularly well-matched to access
patterns of the applications, but it should be self-
describing and, for large data sets, reasonably com-
pact. The other component is metadata, informa-
tion about the bulk data. The amount of metadata
per calibration is small and its structure is uniform
across all calibration types so that it can be readily
searched.

3.1. Metadata

A natural storage format for the metadata is in a
relational database table. MySQL satisfies our func-
tional requirements and is moreover free, open-source
and straightforward to use. Each calibration is reg-

istered by entering a new row in the table. The
columns in the table fall into three categories: those
used primarily in searching (calibration type, start
and end of validity interval, and several others), those
used to access the bulk data (such as a filename and
an indicator of format), and those which contain in-
formation primarily intended for human readers, such
as a text description of the conditions under which the
calibration was done. See Table I for the complete list

1An application-defined string associated with the calibra-
tion which may, for example, indicate intended use, such as
“digi”. Defaults to “vanilla”.

3.2. Data formats

Currently only XML is used for bulk data; support
for ROOT is in development. Using a human-readable
format has been an aid in debugging the new system,
but XML is not well-suited to data sets involving large
numbers of floating-point values. New calibrations of
this nature will be written as ROOT files as soon as
full support is available. There will be no need to
convert old files since the file format is discovered dy-
namically from the metadata for each data set.

Another potential drawback of XML files compared
to a binary format like ROOT is their bulk. If space
becomes a problem support for a third format, com-
pressed XML, will be added. Typical calibration files
now in use are reduced by about a factor of 100 by
standard compression techniques.

4. Analysis Client Interface

4.1. Standard Gaudi Model

The Gaudi Detector Data Service, Persistency Ser-
vice, and Conversion Service paradigms provide much
of what is needed to meet the requirements of GLAST
analysis clients, though only the Persistency Service
could be used untouched. The most straightforward
use of these services might go something like this:

• The client asks the Data Service for calibration
information while processing an event

• If data is present and current, we’re done.

• Otherwise the Data Service requests data from
the Persistency Service

• The Persistency Service determines the appro-
priate Conversion Service for data in question
and makes a request

• The Conversion Service finds the correct Con-
verter for this type of calibration data and in-
vokes it

• The Converter finds persistent form of correct
data and reconstitutes it to the appropriate in-
memory location

The collaborating services pass a data structure
known as an opaque address among themselves
which contains whatever information is needed to
identify and convert the persistent form of the dataset.
This data structure must be retrievable from the ini-
tial client request, which typically identifies a dataset
by its location in the data hierarchy known as the
TDS (Transient Data Store). The correct dataset is
further implicitly determined by the timestamp of the
event currently being processed.

MOKT001

2003 Conference for Computing in Nuclear and High Energy Physics, La Jolla, California, 24-28 March 2003 3

Field name Category Notes

serNo search unique index, automatically assigned

instrument search identify prototype or flight instrument

calibType search alignment, hot channels, etc.

flavor search normally “vanilla”

vstart search timestamp start of validity for this calibration

vend search timestamp end of validity for this calibration

completion search one of ok, incomplete, abort

procLevel search production, development, test or superseded

prodStart search, info timestamp when calib. became production

prodEnd search, info timestamp when calib. was superseded

locale info, possibly search location of instrument when calibration was done

enterTime info time at which entry was registered (automatic)

creator info procedure creating this entry

uid info human responsible for this entry

inputDesc info comments concerning data input to calib. procedure

notes info any other comments

dataIdent access filename or analogous access information

dataFmt access support XML and soon also ROOT

fmtVersion access allows schema evolution of bulk data format

Table I Metadata Table Fields

4.2. Double Conversion

The two constituents of a GLAST LAT calibration
dataset are each converted more or less according to
the above scheme. First the metadata is converted.
Since there is only one kind of metadata, there is no
need for separate converters; the conversion is han-
dled directly by the MySQL Conversion Service. The
result of this conversion is to determine the physical
form of the bulk data (e.g., XML), form a suitable
opaque address incorporating the access information
from the metadata, and invoke the Persistency Service
again with this address. The conversion service finds
the correct converter. In the case of XML bulk data,
a base converter class parses the XML into a DOM
in-memory representation, handles conversion of data
common to all calibration types, such as certain fields
from the metadata, then invokes a method which has
been overridden by derived classes in order to handle
the calibration type-specific data.

4.3. Transient Data Store (TDS)
Organization

Since analysis clients generally need access to an
entire calibration dataset the TDS hierarchy (some-
times referred to as /bf TCDS, for Transient Calibra-
tion Data Store, to distinguish it from the event TDS)
is simple and uniform, with all the data stored only in
leaf nodes, as shown in Figure 1. There is a root node,

a second level corresponding to calibration type, and
a third level, the leaves, representing flavor. This or-
ganization allows multiple flavors of a single calibra-
tion type to be accessible concurrently. A “vanilla”
leaf node is always present for each calibration type.
Other flavor nodes are determined at run time from
job options parameters.

5. An Example Analysis Client

The first calibration types to be supported were
dead and hot channel lists for the tracker. Tracker
utility software already included several Gaudi ser-
vices; adding a Bad Strips Service was a natural ex-
tension.

Hot channels and dead channels are kept as sepa-
rate datasets by the Calibration Infrastructure; it is
not even necessarily the case that they are generated
at the same time or from the same input. However
analysis applications typically want a single merged
list of bad channels. The Bad Strips Service and an
associated Gaudi algorithm, TkrCalibAlg, are respon-
sible for the merging and for insuring that the list is
kept up to date. Active elements and the flow of data
in this process can be seen in Figure 2. For each new
event,

• The algorithm verifies that dead and hot chan-
nel data are in the TCDS and causes them to
be updated (to datasets whose validity interval

MOKT001

4 2003 Conference for Computing in Nuclear and High Energy Physics, La Jolla, California, 24-28 March 2003

Calib

TKR_HotChan CAL_LightAtt

...

Digi Vanilla

... ...

/Calib/CAL_LightAtt/Vanilla/Calib/TKR_HotChan/Vanilla /Calib/TKR_HotChan/Digi

Vanilla

Figure 1: Part of node hierarchy in TCDS. Only the bottom nodes have associated calibration data.

includes the timestamp of the current event) if
necessary

• It checks to see if the serial number (here just
the serial number entry for the corresponding
MySQL row, but any unique identifier would do)
of either dataset has changed.

• If so, it asks the Bad Strips Service to merge the
new datasets.

• Analysis algorithms may now use the Bad Strips
Service to access the merged and updated bad
strips list.

An additional benefit of this design, incorporating a
separate tracker utility layer, is that the full machin-
ery of the Calibration Infrastructure may be bypassed
in case it is not needed, for example with MC data.

5.1. Other clients

The initial focus has been on supporting analysis
clients in the Gaudi environment. For non-Gaudi
clients, tools for access to the Calibration Infrastruc-
ture and the data it maintains are so far rudimen-
tary, but comprise a suitable base for more complete
and formalized services, particularly for access to the
metadata, as the project matures.

Creation of new bulk datasets typically happens
outside Gaudi and is not a function of the Calibration
Infrastructure. It is the responsibility of the detec-
tor subsystems to provide such data in a supported
format; that is, one which the Infrastructure conver-
sion services can convert. A new dataset becomes
generally available after it has been registered (which
is an Infrastructure function) by writing a new row

in the metadata table. Similarly, non-Gaudi applica-
tions may use callable Infrastructure services to read
or search the metadata database (or may use SQL
queries directly), but in most cases the public API for
bulk data for such applications is just the format of
the data.

6. Improvements and Extensions

6.1. Metadata management

For a robust production environment, additional
tools to access and manage the metadata will be nec-
essary. Write access to the database is already re-
stricted, but even legitimate writers can make mis-
takes. Several kinds of errors can and should be
caught. Consistency and completeness checks can
catch more subtle problems involving more than one
row.

6.2. Production database alternatives

The production MySQL database and bulk data at
SLAC are not conveniently accessible for all users.
We plan to provide mirrors for production European
users. Since the dataIdent field of the metadata
(which identifies the bulk data belonging to a partic-
ular calibration) may and typically does contain en-
vironment variables, the metadata itself may be left
untouched in the mirrors.

Isolated developers present a somewhat different
problem. They may be disconnected from the net-
work entirely, but their needs are typically less: they
don’t need access to all calibrations. One way, already

MOKT001

2003 Conference for Computing in Nuclear and High Energy Physics, La Jolla, California, 24-28 March 2003 5

TCDS:
hot channels,
dead channels

Calibration
conversion
services,
converters

Tkr Services:
updated, merged
bad channels

algorithmalgorithm

algorithm

 rdbms
Metadata

XML
files

Figure 2: Flow of tracker calibration data.

successfully demonstrated, to provide a fully-local cal-
ibration infrastructure is to install a MySQL server on
the user’s machine, fill it with a dump of the contents
of the production database, and copy over bulk data
files as needed. Another possibility which avoids the
complex process of MySQL installation would be to
provide an alternate implementation of the metadata
storage and access, such as a simple ascii file repre-
sentation of the metadata for a minimal collection of
calibrations.

6.3. Additional calibration types and
formats

So far only a fraction of the total number of ex-
pected calibration types are supported by the Cali-
bration Infrastructure; others will be implemented as
required by clients.

ROOT is the preferred choice for calibration files
involving many floating point numbers, both because
it is a compact binary format and because it is already
heavily used for persistent event data and as an anal-
ysis platform. A ROOT Conversion Service is under
development.

6.4. Parameters database

GLAST offline has as yet no formal mechanism for
keeping track of the many parameters that go into a
particular software run. Blessed collections of such
parameters share many attributes with calibrations.

The Calibration Infrastructure or a near-clone could
be used for this purpose.

7. Conclusions

The Calibration Infrastructure is in active use for
several tracker and calorimeter calibrations. There is
much to do before the full facility as envisioned is in
place, and certain features of even the current limited
implementation have not been thoroughtly exercised,
but there is no reason to doubt that the design will
accommodate all currently-anticipated future needs.

Acknowledgments

The author wishes to thank Andrea Valassi (CERN)
for guidance in the design of the two-stage conversion
process and Leon Rochester (SLAC) for suggesting the
concept of flavor and for contributing to the design
and implementation of the bad strips architecture.

Work supported by Department of Energy contract
DE-AC03-76SF00515.

References

[1] GLAST mission statement, http://www-glast.

stanford.edu/mission.html
[2] Gaudi project home page, http://proj-gaudi.

web.cern.ch/proj-gaudi/

MOKT001

