Pulsar Blind search in the DC2 data

Marcus Ziegler
Bill Atwood
Brian Baughman
Robert Johnson
Data Selection

As input all sources listed in the LATSourceCatalog_v1 were used (=> 380 sources)

James Chiang and Johann Cohen helped to write a Python script to:
- Pick a source from the catalog
- Select all photons within a 2° radius around the source
 (energy dependent cut based on GLAST PSF did not improve the signal)
- Correct the photon arrival time
- Output the data into a text file

-> Calculate differences and Perform the FFT
Finding a Pulsar Candidate

Source MRF0035

Look for frequency with the highest power

Found F0 = 19.371213 1/s
DC2 Catalog = 19.371221 1/s
Test statistic (signal/noise)

-> Calculate the RMS of the power spectrum

Test Statistic (signal to noise) = \(\frac{\text{max_power_in_FFT}}{\text{RMS}} \)

Take a closer look at sources with s/n > 45

Work with Joe Dolan in progress to get a measure of the significance of the found peaks. (See how likely it is that a random fluctuation created a peak of the same height)
Sources with large s/n

- **Beacon MRF0054**: Unknown large s/n source in the galactic plane. No matching pulsar in the database.

- **Vela**:

- **Geminga (2nd harmonic)**
Covered phase space

Scan for pulsars (0.5 Hz to 64 Hz)
$F_{\dot{}}/F$ up to 3×10^{-9} (300 steps @ 1×10^{-11})

Scan for ms pulsars (0.5 Hz to 512 Hz)
$F_{\dot{}}/F$ up to 3×10^{-11} (6 steps @ 0.5×10^{-11})

A maximum time difference of 65,000s was used
-> Calculation took about 2 weeks on a PC

Scan found
16 Radio Loud pulsars
3 Radio Quiet pulsars
Blind Search Catalog with reprocessed DC2 Data

<table>
<thead>
<tr>
<th>Source_Name</th>
<th>L</th>
<th>B</th>
<th>Test Stat.</th>
<th>F0</th>
<th>F1</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF0054</td>
<td>60.7250</td>
<td>-0.1490</td>
<td>45147</td>
<td>5.885925293</td>
<td>-5.89E-13</td>
<td>Unknown Pulsar</td>
</tr>
<tr>
<td>MRF0178</td>
<td>270.4636</td>
<td>-2.1509</td>
<td>39249</td>
<td>432.7524414</td>
<td>0</td>
<td>PSR_J0904m5008</td>
</tr>
<tr>
<td>MRF0168</td>
<td>263.5487</td>
<td>-2.7792</td>
<td>36248</td>
<td>11.19723511</td>
<td>-1.46E-11</td>
<td>PSR_B0833m45 Vela</td>
</tr>
<tr>
<td>MRF0197</td>
<td>333.9964</td>
<td>-13.5126</td>
<td>8255</td>
<td>144.9731293</td>
<td>0</td>
<td>PSR_J1735m5757</td>
</tr>
<tr>
<td>MRF0138</td>
<td>195.1298</td>
<td>4.2706</td>
<td>6575</td>
<td>8.435333252</td>
<td>0</td>
<td>PSR_J0633p1746 2xGeminga</td>
</tr>
<tr>
<td>MRF0035</td>
<td>106.5808</td>
<td>2.9079</td>
<td>5842</td>
<td>19.37121582</td>
<td>-3.10E-11</td>
<td>PSR_J2229p6114</td>
</tr>
<tr>
<td>MRF0152</td>
<td>227.1264</td>
<td>0.0131</td>
<td>5279</td>
<td>303.3667603</td>
<td>0</td>
<td>PSR_J0717m1235</td>
</tr>
<tr>
<td>MRF0154</td>
<td>313.6165</td>
<td>0.1659</td>
<td>3286</td>
<td>14.66723633</td>
<td>-1.91E-11</td>
<td>PSR_J1420m6048</td>
</tr>
<tr>
<td>MRF0058</td>
<td>43.4240</td>
<td>-0.3462</td>
<td>2429</td>
<td>3.916915894</td>
<td>-3.92E-13</td>
<td>Unknown Pulsar</td>
</tr>
<tr>
<td>MRF0143</td>
<td>359.2044</td>
<td>1.0902</td>
<td>1693</td>
<td>3.097106934</td>
<td>0</td>
<td>PSR_J1739m2903</td>
</tr>
<tr>
<td>MRF0157</td>
<td>283.1113</td>
<td>-0.6045</td>
<td>1671</td>
<td>7.148910522</td>
<td>-3.57E-12</td>
<td>PSR_J1015m5719</td>
</tr>
<tr>
<td>MRF0081</td>
<td>9.4664</td>
<td>-11.9035</td>
<td>1345</td>
<td>2.973205566</td>
<td>0</td>
<td>PSR_J1852m2610</td>
</tr>
<tr>
<td>MRF0182</td>
<td>333.6831</td>
<td>-3.7332</td>
<td>798</td>
<td>2.936828613</td>
<td>0</td>
<td>PSR_J1638m5226</td>
</tr>
<tr>
<td>MRF0155</td>
<td>354.2894</td>
<td>-0.3422</td>
<td>481</td>
<td>3.766281128</td>
<td>-1.88E-13</td>
<td>Unknown Pulsar</td>
</tr>
<tr>
<td>MRF0151</td>
<td>337.1501</td>
<td>0.1752</td>
<td>300</td>
<td>6.492370605</td>
<td>-1.95E-12</td>
<td>PSR_J1637m4642</td>
</tr>
<tr>
<td>MRF0187</td>
<td>184.5983</td>
<td>-5.8240</td>
<td>244</td>
<td>59.81793213</td>
<td>-7.54E-10</td>
<td>PSR_B0531p21 3xCrab</td>
</tr>
<tr>
<td>MRF0184</td>
<td>350.5521</td>
<td>-4.7896</td>
<td>168</td>
<td>1.952316284</td>
<td>0</td>
<td>PSR_J1741m3927</td>
</tr>
<tr>
<td>MRF0057</td>
<td>16.8639</td>
<td>-0.9900</td>
<td>79</td>
<td>3.581832886</td>
<td>-1.07E-12</td>
<td>PSR_J1825m1446</td>
</tr>
<tr>
<td>MRF0342</td>
<td>34.6358</td>
<td>-0.8559</td>
<td>45</td>
<td>3.73916626</td>
<td>-2.24E-12</td>
<td>PSR_J1856p0113</td>
</tr>
<tr>
<td>MRF0077</td>
<td>12.1927</td>
<td>-5.6679</td>
<td>42</td>
<td>6.218170166</td>
<td>-3.17E-11</td>
<td>?</td>
</tr>
</tbody>
</table>
Flux Sensitivity

<table>
<thead>
<tr>
<th>h1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
</tbody>
</table>

Pulsar with lowest flux:
Off plane (b=11.9):
PSR_J1852m2610 flux 3×10^{-7} Ph/cm2s

In plane (b= -0.9):
PSR_J1856p0113 flux 7×10^{-7} Ph/cm2s
Recover light curve for source MRF0168 (Vela)

Vela Radio Position \(Ra = 128.83 \) \ Dec = -45.18
MRF0168 Position \(Ra = 128.842 \) \ Dec = -45.168701

Light curve:
Barycenter time correction for MRF0168 position. Pulsar spin parameter from radio position.

Barycenter time correction for MRF0168 position. Optimized pulsar spin parameter for MRF0168 pos.

Radio : \(Ep = 220838550 \) \(F0 = 11.19723954 \) \(F1 = -1.5664e-011 \) \(F2 = 6.26E-22 \)
Optimized : \(Ep = 220838550 \) \(F0 = 11.19723929 \) \(F1 = -1.5578e-011 \) \(F2 = -2.30E-20 \)
Light curves of pulsars without radio data

- **Light_Curve MRF054 100 bins**
 - Epoch MET = 220838550
 - F0 = 5.885928323969
 - F1 = -1.306230 e-012
 - F2 = 1.0 e-021

- **Light_Curve MRF0058 100 bins**
 - Epoch MET = 220838550
 - F0 = 3.91691474178
 - F1 = -1.936137 e-013
 - F2 = 6.0 e-022

- **Light_Curve MRF0155 100 bins**
 - Epoch MET = 220838550
 - F0 = 3.766282209980
 - F1 = -3.677283 e-013
 - F2 = -3.3 e-021

- **Light_Curve MRF0155 100 bins**
 - Epoch MET = 220838550
 - F0 = 3.766282209980
 - F1 = -3.677283 e-013
 - F2 = -3.3 e-021
Summary + Future plans

Thank you for this excellent data set to perform a realistic blind search!

Bill’s differencing method is an easy and fast way of finding pulsations from pulsars

16 + 3 pulsars were found and the spin parameters/light curve can be derived

Things to improve

- Add up harmonics to increase the sensitivity
- Understanding statistical significance
- Get PC with more memory to perform larger FFTs
 (we are also looking into a hardware FFT implementation)
- Implement the algorithm into the the science tools
Basic Idea

Calculate the Fourier-Transform of the time differences of the photon arrival times Δt_n.

\[\text{take only differences with } \Delta t < \text{max} _ \text{diff} \]

max_diff used for DC2 data = 65 000s