

Gamma-ray Large Area Space Telescope

GLAST Large Area Telescope:

Calorimeter Ground Software

J. Eric Grove Naval Research Lab, Washington DC Calorimeter Ground Software Manager grove@gamma.nrl.navy.mil

J. Eric Grove

Outline

- **Organization and Manpower**
- Scope of Task
 - Energy reconstruction
 - Direction reconstruction
 - Calibration
- Work Plan
- Supporting materials

CAL Software Organization

- Calorimeter Subsystem Manager
 - W.N. Johnson (NRL)
- CAL Software Manager
 - J.E. Grove (NRL)
 - A. Djannati-Atai (CdF)
- CAL software team at NRL
 - Manpower
 - Scientists 1.25 FTE
 - Data Analyst 0.4 FTE

- CAL software team in France
 - Manpower
 - Scientists
 1.5 FTE
 - Grad students
 1.0 FTE
- Given 4.1 FTE in CAL team, WAG levels of effort allocation
 - Design & Doc (50%) 2.0 FTE
 - Coding (15%) 0.6 FTE
 - Testing/Running (35%) 1.5 FTE
 - Total 4.1 FTE
 - Note: not including CAL work at GSFC, SLAC, WU, ...

Scope of Software Task

- □ Primary Responsibilities
 - CAL event reconstruction
 - Energy reconstruction
 - Direction reconstruction
 - CAL calibration
 - Electronic calibration
 - GCR calibration
- □ Secondary or Supporting Responsibilities
 - Simulation
 - Background rejection
 - State tracking
 - Performance state (e.g. dead channels)
 - Failure remediation
 - Instrument Response Function
 - Spectral deconvolution

Energy Reconstruction

- Primary scientific function of calorimeter is to measure energy of incident photons
 - By design, segmentation of CAL provides opportunity to improve knowledge of photon E
 - To first order, incident energy is sum of signals in Csl
 - Several correction factors:
 - Energy loss in TKR
 - Dominant at low E (~100 MeV)
 - Correction: count hits in Si, scale by magic factor
 - Status: algorithm in use, but should be improved
 - » Work in progress in France
 - » Future work in coordination with TKR team
 - Longitudinal leakage
 - Dominant at high E (~100 GeV)
 - Correction: shower profiling or leakage correlation
 - Status: good algorithms in use

Energy reconstruction

- More correction factors...
 - Side leakage

GLAST LAT Project

- ~10-20% of Aeff has significant escape out the side
- Correction: same algorithms as longitudinal leakage
 - » Special cases, different coefs for leakage correlation
- Status: in development in France
- Passive material in CAL
 - Most important contributor: grid walls
 - Correction: change in profiling or correlation coefs
 - Status: in development in France
- Direct deposition in PIN diodes
 - Small correction
 - Status: future work
- Iterative procedure
 - TKR needs CAL energy to seed its direction finder, and CAL needs TKR direction to generate correction factors
 - Status: algorithm exists, but will be rewritten

Energy Resolution

□ How well does it work?

Beam test of prototype CAL

J. Eric Grove

DOE/NASA Baseline-Preliminary Design Review, January 8, 2002

Direction reconstruction

- □ By design, the CAL is hodoscopic
 - Useful for

GLAST LAT Project

- Background rejection
- Calorimeter-only trajectories
- Shower passage through xtal has three coordinates, two from xtal ID and a third at the Center of Light (CoL) position
 - Use light asymmetry to measure CoL
 - Status: good algorithm in use
 - » Depends on good asymmetry maps, to be updated
 - Ensemble of position measurements gives incident direction
 - Status: basic algorithm in use
 - » Two 2D projections
 - » Future work on other algorithms

Positioning by "light asymmetry"

Calibration Needs

- □ What needs to be calibrated?
 - CAL needs to make energy and position measurements
 - Gain scale (conversion of ADC bins to MeV)
 - Map of scintillation response
- □ How often?
 - Timescales likely to be ~ months to year (TBR).
- □ Where do the data come from?
 - Ground calibration of Engineering Model (EM), Qual Module (QM), Calibration Unit (CU), Flight Modules (FMs)
 - Beam tests of EM, CU
 - In-flight calibration of FM

DOE/NASA Baseline-Preliminary Design Review, January 8, 2002

GLAST LAT Project

Calorimeter Calibration

- □ Functional requirements (top level)
 - Pedestals: FSW shall generate the pedestal centroid and width for each gain range for each PIN diode.
 - Pedestal centroid and width for 12288 channels.
 - Code exists, in use; need similar flight s/w process.
 - Electronic gain: eCalib shall generate a linear gain model for each gain range for each PIN diode.
 - Gain slope (bins/fC), slope uncertainty, offset, offset uncertainty for 12288 channels.
 - Prototype code exists, in use.
 - Integral non-linearity: eCalib shall generate look-up table for each gain range for each PIN diode.
 - ~50 ordered pairs (pulse input, ADC output) for 12288 channels.
 - Prototype code exists, in use.
 - Differential non-linearity: eCalib shall generate look-up table for each gain range for each PIN diode.
 - ~4000 values (△ADC output) for 12288 channels.
 - No code exists.

Calorimeter Calibration

- □ Functional requirements (top level)
 - Scintillation efficiency: pre-flight beam tests shall determine scintillation efficiency (i.e. light yield as fcn of GCR charge) for sample crystals.
 - TBD (~5) coeffs and uncertainties.
 - No code exists
 - Light yield: GCRCalib shall calculate the light yield (i.e. electrons per MeV) at the center of each log for each PIN diode.
 - Light yield, statistical error, systematic error for 6144 diodes.
 - Prototype code exists, in use.
 - Light attenuation: GCRCalib shall produce maps of light attenuation (i.e. light yield as a fcn of longitudinal position) for each face (P, M) and the sum of faces (P+M) for each log.
 - TBD (~6) coeffs and uncertainties for 9216 maps.
 - Prototype code exists, in use.
 - Light asymmetry: GCRCalib shall produce maps of light asymmetry (i.e. (P-M)/(P+M) as a fcn of longitudinal position) for each log.
 - TBD (~6) coeffs and uncertainties for 3072 xtals.
 - Prototype code exists, in use.

DOE/NASA Baseline-Preliminary Design Review, January 8, 2002

Work Plan

- □ High priority, short term
 - Calibration s/w (ground calibration)
 - Simulation support:
 - Digi algorithms (ideal and realistic instrument)
 - Add heavy ion physics to G4 package
 - On-going support for sim and recon
- □ Moderate priority, intermediate term
 - Iterative recon
 - Generalizing leakage-correlation algorithm
 - GCR calibration s/w
- □ Low priority, long term
 - On-going support for sim and recon
 - State tracking, failure mitigation in recon

Due 5/02 Due 5/02

Due 10/02

J. Eric Grove

Supporting Materials

- □ Appendix 1: Energy reconstruction
- □ Appendix 2: Direction reconstruction
- □ Appendix 3: Iterative recon
- □ Appendix 4: Calibration requirements
- □ Appendix 5: Cosmic ray calibration
- □ Appendix 6: State tracking
- □ Appendix 7: Spectral deconvolution

Appendix 1: Energy Reconstruction

- Primary scientific fcn of CAL is to measure energy of incident photons.
 - Much of the incident energy escapes the calorimeter
 - At low E, small fraction of E reaches CAL.
 - For Einc = 100 MeV, <Eobs> ~ 50 MeV
 - At high E, most E blows out the back.

– For Einc = 100 GeV, <Eobs> ~ 40 GeV

- By design, segmentation of CAL provides opportunity to improve knowledge of incident energy of photon.
- □ Functional requirements (top level)
 - Energy per xtal: Recon shall calculate the energy deposited within individual Csl xtals.
 - Incident energy: Recon shall estimate the incident photon/particle energy.

- □ Correcting for energy escaping out the back of the CAL
 - Simplest: Geometric correction.
 - Look-up table corrects deposited energy and shower pathlength to typical incident energy.
 - Derived from mean shower profiles.
 - Resulting incident total energy will have low tail from shower fluctuations, late-starting showers.
 - More advanced: Shower-profile fitting.
 - Mean longitudinal profile is well-described by gamma distribution:

$$\frac{dE}{dx} \propto \frac{1}{\lambda} \left(\frac{x}{\lambda}\right)^{\alpha - 1} e^{-x/\lambda}$$

- Profile fitting corrects the low E depositions of late-starting showers, i.e. it removes some of the low-energy tail
- Shower fluctuations are *still* significant, shower leaks out the back of calorimeter.

□ Leakage correlation method

GLAST LAT Project

- Alternative to shower profile fitting
- Amount of energy leaking out the back of the CAL is related to the number of daughters escaping the last layer.
 - Best estimate of number of daughters escaping is energy deposited in last layer.
 - Einc = Esum + β (Esum) × Elast
 - $\beta(\text{Esum}) \approx 1.1 + 0.56 \times \text{Esum[GeV]}$
- Works as long as shower maximum is within CAL.
 - Gives better energy resolution than shower profiling.

□ Shower profile fitting

GLAST LAT Project

- Mean longitudinal profile is well-described by gamma distribution: $\frac{dE}{dx} \propto \frac{1}{\lambda} \left(\frac{x}{\lambda}\right)^{\alpha-1} e^{-x/\lambda}$
- Code exists and is in use
- □ Leakage correlation
 - Amount of energy leaking out back of CAL is related to number of daughters escaping last CAL layer.
 - Best estimate of number of daughters is energy deposited in last layer
 - Einc = Esum + β (Esum, θ) × Elast
 - Code exists, is in use, needs generalization
- Leakage correlation generally gives better resolution than profiling

ile <u>E</u>dit <u>D</u>ocument ⊻iew <u>W</u>indow <u>H</u>elp

☞ 6 🗉 🕐 9, 15, 14 4 → > 1 🗭 🖻 🖪 🛤

ile <u>E</u>dit <u>D</u>ocument <u>V</u>iew <u>W</u>indow <u>H</u>elp

le <u>E</u>dit <u>D</u>ocument <u>V</u>iew <u>W</u>indow <u>H</u>elp ▷ ろ ▣ ♥ ९, <u>T</u>, I ◀ ♦ ▶ I ◀ ♥ □ □ ■ ♣

Appendix 1: Energy Resolution

□ How well does it work?

Beam test of prototype CAL

Energy loss in TKR

GLAST LAT Project

- To increase the effective area (by increasing the pairconversion efficiency), the last layers of the TKR have thicker radiators.
- Below ~200 MeV, significant energy is lost in TKR <u>before</u> CAL.
- How can we correct for energy loss in passive material?
 - Idea: Energy lost in radiators is related to number of hits in Si layers surrounding them.

$$- \Delta E_{Tkr} = \sum \alpha_{lay} Nhits_{lay}$$

• Better idea: TKR event reconstruction connects the hits in Si; thus they could estimate number of particles *and* pathlength through radiator.

Appendix 2: Direction Reconstruction

- □ Calorimeter-only trajectories
 - By design, the CAL is hodoscopic
 - Shower passage through xtal has three coordinates, two according to xtal ID and a third at the Center of Light position
 - Ensemble of position measurements gives incident direction
 - TKR has primary responsibility of shower imaging, but
 - Conversion deep in TKR can benefit from CAL information
 - Low-E photons may benefit from CAL clustering (i.e. energy per pair daughter)
 - CAL-only imaging may be useful in some cases (e.g. timing studies)
- □ Functional requirements (top level)
 - Position calculation: Recon shall calculate positions of interactions within individual Csl xtals.
 - Direction calculation: Recon shall estimate the incident photon direction from CAL information, and support TKR direction recon.

Appendix 2: Position Reconstruction

- **\Box** Each crystal provides three spatial coordinates for ΔE .
 - Xtal ID gives two coordinates, z and x or y.
 - Gives resolution $\sigma_z = 20/\sqrt{12} = 6$ mm and systematic bias to center of xtal
 - Difference in signal between ends of xtal gives third coordinate.
 - "Longitudinal" position
 - Gives much better resolution, $\sigma_x = 0.4 3$ mm, and no bias.
 - Resolution is fcn of ΔE , spread of shower, and shower multiplicity
- □ Longitudinal position determination
 - If light falls linearly with distance along xtal, then position is proportional to difference in signals at two ends.
 - Scaling the difference by the total light removes the energy dependence from the position.
 - Thus, the "light asymmetry measure"

$$A = \frac{(Right - Left)}{(Right + Left)}$$

App 2: Positioning by "light asymmetry"

App 2: Position Resolution, SLAC '97 Beam

Appendix 2: Direction Reconstruction

- How should we convert the positions in the xtals into an incident direction?
 - Typical number of xtals hit is ~30 (recall 8 layers).
 - Cloud of spatial coordinates with differing weights.
- Candidate algorithms

GLAST LAT Project

- Minimize squared perpendicular distance to track axis
 - Uses longitudinal and xtal ID positions, uneven weights
 - Requires numerical search in 4-D parameter space
- Minimize squared distance to each layer crossing
 - May use only longitudinal positions (which are more precise, unbiased)
 - Analytic solution in xz and yz planes. Very fast.
- Connect the dots, top and bottom
 - Works quite well on corn-rows
- And others...

CAL Angular Resolution, SLAC '97 Beam

Appendix 3: Iterative Recon

- Outline of process
 - 1. CAL: Convert to charge units
 - Use electronic calib. Convert from ADC bins to charge at FEE.
 - 2. CAL: Calculate energy in each xtal
 - Convert to MeV at center of xtal. Assume position = center of xtal.
 - 3. CAL: Calculate total energy deposited
 - Simple xtal sum
 - 4. CAL+TKR: Make simple energy corrections
 - Scale by avg-profile correction, $f(Eobs,\theta)$?
 - Add simple TKR energy correction, i.e. scale by num hits?
 - 5. CAL: Simple energy centroid
 - Calculate centroid in XZ and YZ planes using logID positions.

Appendix 3: Iterative Recon

- □ Outline of process (cont.)
 - 5. TKR: Direction recon
 - Insert the real TKR stuff.
 - 6. TKR: Energy recon
 - Do the best TKR energy-loss correction, following daughters or whatever.
 - 7. CAL: Recalculate energy in each xtal
 - Use TKR direction. Accounts for failures and light tapering maps.
 - 8. CAL: Recalculate total energy deposited
 - Total all xtal energies, having accounted for failures and taper.
 - 9. CAL: Recalculate simple energy centroid
 - Repeat simple centroid, having accounted for failures and taper.

Appendix 3: Iterative Recon

Outline of process (cont.)

10. ACD+CAL+TKR: Particle ID (necessary here, or later?)

- Some complicated algorithms to confirm photon or particle.
- 11.TKR(+CAL): Direction recon
 - Do the real TKR direction recon. Use CAL info to improve direction for late conversions, if possible.
- 12. CAL+TKR: Energy recon
 - Use best CAL and TKR information to estimate incident energy.
 - Use profiling, leakage correlation, TKR info, whatever.

13. Iterate steps 10-12 as necessary

- Pedestal Calibration
 - Pedestals: FSW shall generate the pedestal centroid and width for each gain range for each PIN diode.
 - Pedestal centroid and width for 12288 channels.
 - Generated when?
 - Module Assy & Test at NRL
 - Instrument I&T at SLAC
 - S/C integration and end-to-end at ??
 - Flight
 - Updated ~ monthly?
 - Generated how?
 - Flight s/w process (or TEM simulator) histograms, fits centroid and width, telemeters centroid and width. Diagnostic mode telems histograms.
 - Data volume
 - 2 x 12288 floats = 103kB per month
 - Status
 - Prototyped in IDL, find_pedestals.pro, and ROOT
 - Needed for EM

Electronic Gain Calibration

- Electronic gain: eCalib shall generate a linear gain model for each gain range for each PIN diode.
 - Gain slope (bins/fC), slope uncertainty, offset, offset uncertainty for 12288 channels.
- Generated when?
 - Module Assy & Test at NRL
 - Instrument I&T at SLAC, CU at SLAC etc.
 - S/C integration and end-to-end at ??
 - Flight
 - Updated ~ quarterly?
- Generated how?
 - Data created by on-board chg-calib process, telem in calib mode.
 - GSW identifies two fiducial charge peaks, fits line.
- Data volume
 - 4 x 12288 floats = 200kB per month
- Status
 - Prototyped in IDL, fit_intlin_fits.pro
 - Needed for EM

- Integral Non-Linearity Calibration
 - Integral non-linearity: eCalib shall generate look-up table for each gain range for each PIN diode.
 - ~50 ordered pairs (pulse input, ADC output) for 12288 channels.
 - Generated when?
 - Module Assy & Test at NRL
 - Instrument I&T at SLAC, CU at SLAC etc.
 - S/C integration and end-to-end at ??
 - Flight
 - Updated ~ quarterly?
 - Generated how?
 - Data created by on-board chg-calib process, telem in calib mode.
 - GSW fits all charge peaks, matches with input charge.
 - Data volume
 - ~100 x 12288 long integers = 5.2MB per month
 - Status
 - Prototyped in IDL, fit_intlin.pro
 - Needed for EM

- Differential Non-Linearity Calibration
 - Differential non-linearity: eCalib shall generate look-up table for each gain range for each PIN diode.
 - ~4000 values (△ADC output) for 12288 channels.
 - Generated when?
 - Module Assy & Test at NRL
 - Instrument I&T at SLAC
 - Flight
 - Updated ~ annually or less often
 - Generated how?
 - Ground: ramp the charge injector, look for steps in output.
 - Flight: look for steps in CDB, make it smooth.
 - Data volume
 - ~4000 x 12288 long integers = 200MB per year
 - Status
 - Not started, conceptual only
 - Not needed for EM, but will test

- **Gamma Scintillation Efficiency Calibration**
 - Scintillation efficiency: pre-flight beam tests shall determine scintillation efficiency (i.e. light yield as fcn of GCR charge) for sample crystals.
 - TBD (~5) coeffs and uncertainties. How many xtals?
 - Generated when?
 - Calibration Unit
 - Other xtal samples?
 - Never updated.
 - Generated how?
 - Heavy ion beam tests of CU and maybe test crystals.
 - Fit dL/dE, a fcn of Z.
 - Data volume
 - I dunno. Not much. Never updated.
 - Status
 - No serious code exists yet, just some playing in IDL.
 - Not needed for EM. Will be measured with EM.

□ Light Yield Calibration

- Light yield: GCRCalib shall calculate the light yield (i.e. electrons per MeV) at the center of each log for each PIN diode.
 - Light yield, statistical error, systematic error for 6144 diodes.
- Generated when?
 - Module Assy & Test at NRL, with muons
 - Instrument I&T at SLAC, CU at SLAC etc., with muons & nuclei
 - S/C integration and end-to-end at ?? With muons
 - Flight, with GCRs
 - Updated ~ monthly?
- Generated how?
 - From muons, heavy ion beams, or GCRs, telemetered in calib mode.
 - For muons, define beam geometry through xtals, select MIPs, and fit Landau.
 - For GCRs, complicated process described elsewhere.
- Data volume
 - 3 x 6144 floats = 80kB per month
- Status
 - For muons, prototyped in IDL, mu_checkout.pro
 - For GCRs, algorithm outlined but not coded or tested.
 - Needed for EM.

J. Eric Grove

Light Attenuation Calibration

- Light attenuation: GCRCalib shall produce maps of light attenuation (i.e. light yield as a fcn of longitudinal position) for each face (P, M) and the sum of faces (P+M) for each log.
 - TBD (~6) coeffs and uncertainties for 9216 maps.
- Generated when?
 - Module Assy & Test at NRL, with muons. This is best dataset.
 - Instrument I&T at SLAC, CU at SLAC etc., verification
 - Flight, with GCRs
 - Updated ~ annually?
- Generated how?
 - For muons, define beam geometry through xtals, select MIPs, and fit Landau.
 - For GCRs, complicated process described in Appendix.
- Data volume
 - ~12 x 9216 floats = 450 kB per month
- Status
 - Prototyped in IDL, mu_checkout.pro and find_slopes.pro
 - Needs more sophisticated attenuation model. GCR process needs work.
 - Needed for EM

Light Asymmetry Calibration

- Light asymmetry: GCRCalib shall produce maps of light asymmetry (i.e. (P-M)/(P+M) as a fcn of longitudinal position) for each log.
 - TBD (~6) coeffs and uncertainties for 3072 xtals.
- Generated when?
 - Module Assy & Test at NRL, with muons. This is best dataset.
 - Instrument I&T at SLAC, CU at SLAC etc., verification
 - Flight, with GCRs
 - Updated ~ annually?
- Generated how?
 - For muons, define beam geometry through xtals, select MIPs, and fit Landau.
 - For GCRs, complicated process described in Appendix.
- Data volume
 - ~12 x 3072 floats = 150 kB per month
- Status
 - Prototyped in IDL, mu_checkout.pro and find_slopes.pro, and ROOT.
 - Needs more sophisticated asymmetry model. GCR process needs work.
 - Needed for EM

Appendix 5: GCR Calibration

Cosmic Ray Calibration

(new)

- High flux of GCRs gives good calibration over full dynamic range (see Appendix).
- Derive calibration with statistical precision of better than few % each day over full dynamic range. He: ~140 Hz

CNO:	~10 Hz
Si:	~0.4 Hz
Fe:	~0.8 Hz

~1100 per xtal per day

~70 per xtal per day

- Flight s/w flags and telemeters GCR data in Calibration Mode (4-Range Mode).
 - Might be pre-scaled to reduce data volume.
 - This would give longer times between calibration.
- **Gamma Functional Requirements**
 - GCRCalib shall process Calibration Mode telemetry.
 - GCRCalib shall query Perf State to modify algorithms, fault tolerance.
 - GCRCalib shall identify non-interacting GCRs with clean TKR trajectories through logs.
 - GCRCalib shall accumulate energy loss and light asymmetry maps in GCR DB.
 - See algorithms.

Appendix 5: GCR Calibration Process

- □ Algorithms
 - Physics inputs:
 - dE/dx for heavy ions. Code expressions from the literature.
 - dL/dE for heavy ions. Measure it, then code it. Analytic expr. exist.
 - Elements of calibration process:
 - 1. Extract multiMIP events.
 - 2. Identify likely GCRs, reject obvious junk.
 - 3. Fit tracks.
 - 4. Accept events with clean track through log, no edges or glancing hits.
 - 5. Identify charges.
 - 6. Identify charge-changing interactions.
 - 7. Identify mass-changing interactions.
 - 8. Fit dE/dx.
 - 9. Accumulate energy losses and light asymmetries.

Appendix 5: Calibration with Cosmic Rays

- Nuclear interactions
 - Majority of GCRs suffer nuclear interactions as they pass through calorimeter.
 - Interaction lengths:
 - λ_{N,CsI} = 86 g/cm²
 - λ_{Fe,Csl} = 58 g/cm²
 - GCR at 45 deg traverses ~100 g/cm² of Csl
 - ~30% of CNO group and ~20% of Fe survive without interacting.
- How many per day in each Csl bar?
 - ~1100 non-interacting CNO.
 - ~70 non-interacting Fe.

Scintillation efficiency

- Light output of CsI(TI) is not strictly proportional to DE for heavy ions.
 - dL/dE, the light output per unit energy loss, decreases slowly with increasing dE/dx for heavy ions, but is constant for EM showers.
 - dL/dE is fcn of dE/dx, rather than charge of the beam.
 - Magnitude (in Nal!!):
 - ~0.9 near minimum ionizing.
 - ~0.3 near end of range.
- Need to measure in heavy ion beam!

Appendix 5: Calibration with Cosmic Rays

Calibration Uncertainty

- □ Need to bin GCRs by estimated ∆E. This is uncertain for following reasons:
 - Uncertainty in initial energy.
 - △dE/dx ~ 10% over 2-6 GeV/n.
 - Landau fluctuations.
 - σ_L < 5% for CNO near 5 GeV/n.
 - σ_L < 5% for Fe near 5 GeV/n
 - Unidentified nuclear interactions.
 - p-stripping from C is hard to miss.
 - p-stripping from Fe.
 - ΔE < 10%.</p>
 - Uncertainty in dL/dE.
 - Guess < few %.
- □ Adding in quadrature gives rms < 20%.
- With ~1000 CNO per bar per day, statistical precision of ~1% per day is achievable.

Practice, create algorithms

- Heavy ion beam tests
 - GSI, Summer 2000
- Balloon flight
 - Palestine, Summer 2001

Appendix 5: Ni beam at GSI

Ni beam into test box

- Test box xtals are 37 cm, dual PIN with Sylgard bond.
- Fragments are created in beam monitor
 - 1 cm plastic paddle upstream
- At this energy, all species penetrate both Csl layers, but there is slowing down (note downstream signal is bigger than upstream).
- Similar plot for C and daughters.
- □ Charges are easy to identify.

Appendix 5: Ni beam at GSI

- Same Ni beam, same crystals, but added material upstream
 - 2" polyethylene slows down primary beam and creates fragments with varying energies (from varying depths of creation).
 - Ni through Ti stop in second Csl layer.
 - Sc and smaller penetrate second Csl layer.
- Demonstrates that identifying charges in Csl is quite simple, even in the presence of a spectrum of incident energies.

DOE/NASA Baseline-Preliminary Design Review, January 8, 2002

Appendix 6: State Tracking

State Tracking

GLAST LAT Project

- □ Level 1 PDA must track the state of the instrument
 - 1. Command State
 - The verified configuration of the h/w.
 - Analysis needs to know data modes, etc.
 - Created by first-pass L1 processing, MOPS tasks.
 - 2. Performance State
 - Documents performance or anomalous conditions not described by Cmd State: dead logs, bad gain ranges, etc.
 - Created by first-pass L1 processing.
 - Output feeds into Cal Recon, allows fault tolerance in Recon.
 - 3. Calibration State
 - Created by Calibration in L1 processing.
 - Output feeds into Cal Recon, Cal Calib Parameter DB.
- Develop in concert with TKR, ACD. System-wide service.

Appendix 7: Spectral Deconvolution

- □ Resolution broadening is important for steep spectra.
 - More-abundant low-energy photons look like high-energy photons.
 - Observed spectrum is artificially flattened.
 - So even if you make your best guess of the energy of each photon, you can still get the wrong spectral index.
 - Still need to do resolution deconvolution.
- □ Spectral deconvolution is more than just energy reconstruction.
 - Shower profiling helps correct observed ∆E into incident photon energy, but ...
 - Need to account for
 - 1. resolution broadening, which can be *increased* by profiling.
 - 2. conversion efficiency (cm²)
 - 3. livetime.

GLAST LAT Project

Appendix 7: Spectral Deconvolution

- □ Instrument response matrix.
 - Conversion of incident photon flux to observed count spectrum.

Appendix 7: Spectral Deconvolution

Spectral deconvolution

GLAST LAT Project

- Forward-Folding Deconvolution from an ensemble of detected gamma rays.
 - Create Instrument Response Matrix
 - Transforms measured energy deposition into incident energy as a function of zenith and azimuth.
 - Columns of response matrix are Green's functions at a large number of incident energies.
 - » i.e. the spectra that should be produced by monoenergetic beams
 - Candidate incident spectrum is multiplied by the response matrix and compared to the observed spectrum.
 - Parameters of the candidate spectrum are varied to minimize χ^2 .