

SAS software: Code Development Infrastructure

Technology choices for: Language Platforms Code versioning Execution framework Code documentation I/O

Documentation Task Force

T. Burnett, H. Kelly

Our Products: much more than code!

- Support infrastructure, must support a variety of clients:
 - developers
 - sophisticated users
 - end users
- Elements:
 - Supported platforms & compilers
 - Development environments
 - Coding and documentation standards
 - Build tools
 - Framework
 - Analysis tools

Basic principles for technology choices

- Don't invent anything unnecessarily
- Borrow from existing solutions, experience
- \rightarrow High energy physics
 - very similar parameters: detectors, analysis requirements, data, users
 - Pioneer was here at SLAC: the Babar experiment in mid 90's,
 - Broke with Fortran-oriented past: unix, OO C++
 - Adopted industry-standard CVS for version management
 - Invented package-oriented build system SRT
 - Developed an OO *framework* for managing processing steps
 - Successfully trained physicists to deal with new environment

Technology choices: language

- Object-oriented C++
 - Basic value of encapsulation of data now wellestablished
 - Build on success of Babar and all other new HEP experiments: Belle, DO, CDF, ATLAS, CMS, LHCb
 - Now a standard, most compilers approach this
 - Standard Template Library provides rich menu of algorithms and object containers.
 - Required to use a C++ specific framework

- Windows PC
 - Our preferred development environment due to rapid development made possible by Microsoft Visual C++ MSDEV

SOLARIS⁻

- linux
 - The preferred choice for European developers
 - Required for SLAC batch support
 - solaris
 - not supported now, but in reserve if needed for SLAC batch.

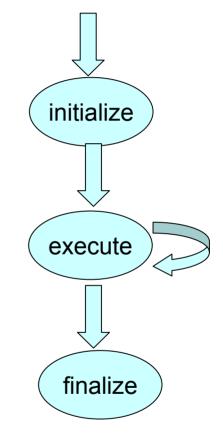
Technology choices: code versioning

- CVS!
 - Concurrent Versions System, the dominant opensource network-transparent version control system.
 - Useful for everyone from individual developers to large, distributed teams:
 - Client-server access method lets developers access the latest code from anywhere there's an Internet connection.
 - Unreserved check-out model to version control avoids artificial conflicts common with the exclusive check-out model.
 - Client tools are available on all our platforms.
 - Web-based repository browser available (cvsweb)

Technology choices: code management

Legacy of Babar's SRT: building apps from *packages*

- Package: collection of source files, with public header files in a folder (usually) with the package name
- Produces a binary library and/or executable


CMT (for Code Management Tool): our choice

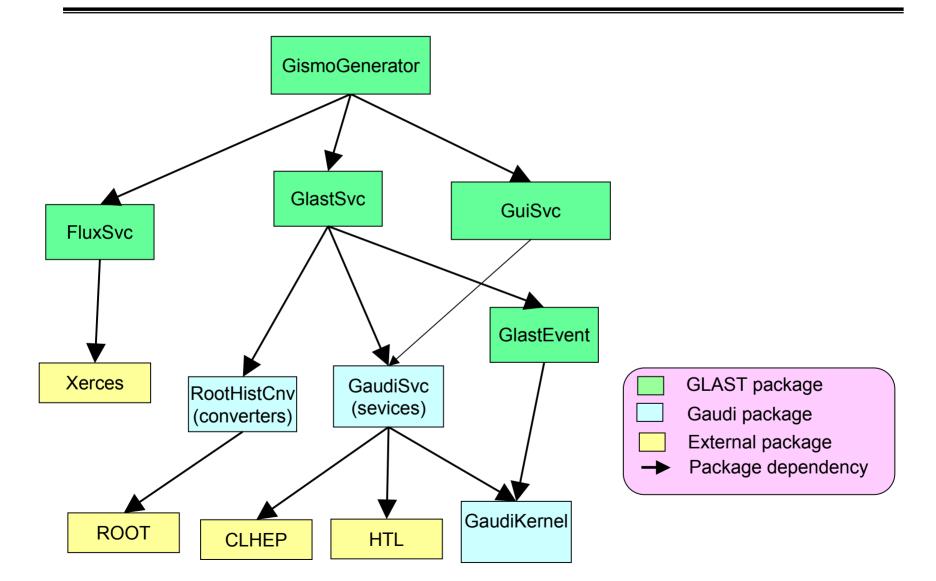
- Developed at Orsay in response to deficiencies of SRT, adopted by LHCb and ATLAS
- Supports Windows
- Clean model for package dependencies
 - Support for compile-time, link-time, and execution-time
- Configuration specified in a single file
- Includes tool to generate makefiles, or MSDEV files
- Uses CVS tags to correspond to versions

framework requirements

- Support event-oriented processing, three phases
 - initialization
 - event-loop generating or processing events
 - termination
- Define flexible way to specify processing modules to be called in the execute loop, without need to recompile/relink
- Provide services, especially for making ntuples and histograms

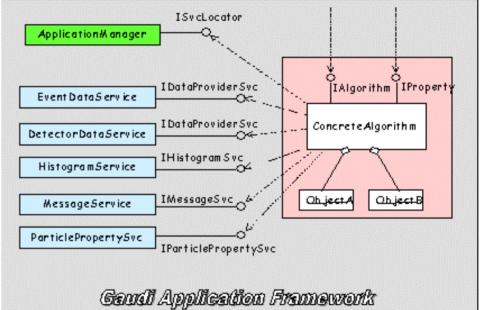
Gaudi: our framework choice

- Open source
- Stable, but active developers, in use by ATLAS, LHCb
- Very good documentation
- All code called via component interfaces:
 - Algorithm
 - Service
 - Converter
 - DataObject
- Support for shareables: all code is loaded dynamically
- Job control parameters set in job options file.

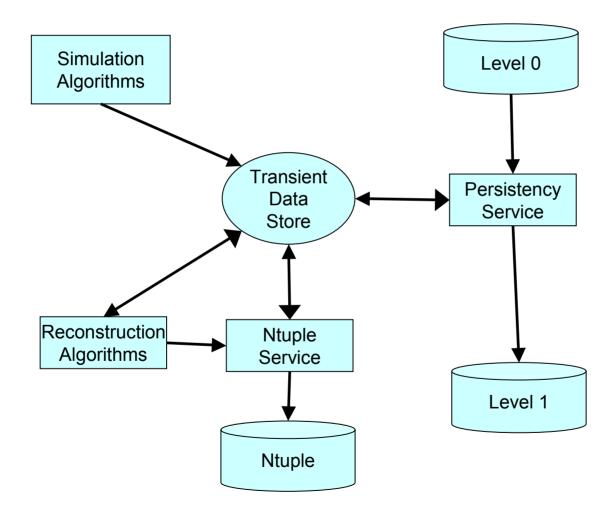


GLAST LAT Project

Glast/Gaudi Example Architecture



T. Burnett, H. Kelly


Gaudi Algorithm as a component

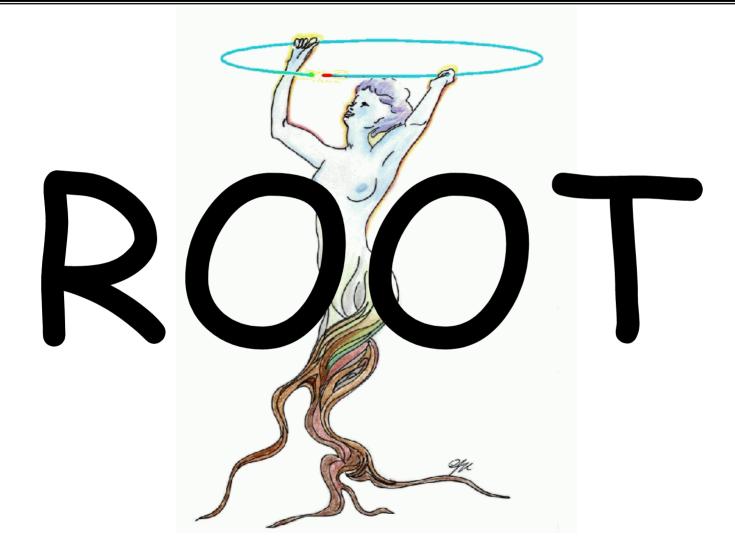
- Components are similar to those of Corba or COM: implement an abstract interface.
- Easy to substitute components: actual concrete implementation to be used is determined at run-time from a simple ascii file.
- Example diagram: A ConcreteAlgorithm:
 - Implements 2 interfaces
 - requests services from 6 services via abstract interfaces

Data flow in the Gaudi framework

Choice: code documentation

Doxygen!

GLAST LAT Project



- Generates off-line reference manuals in a variety of formats
 - Including hyperlinked PDF
- Available on our supported platforms
- Guidelines for standard Doxygen usage under review.
 - Standard Doxygen configuration file
 - Code templates including Doxygen comments
- Documentation Task Force
 - See later

DOE/NASA Baseline-Peer Design Review, January 9, 2002

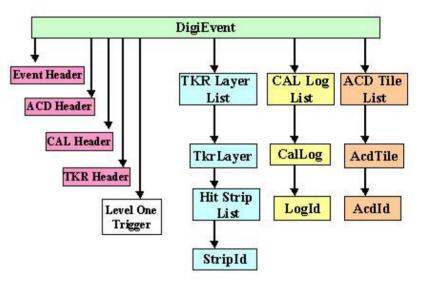
Choice: I/O format (and Event Analysis)

DOE/NASA Baseline-Peer Design Review, January 9, 2002

Features of ROOT I/O

- Machine independence
 - ROOT is freely available on all of our supported platforms.
- Self-describing

GLAST LAT Project

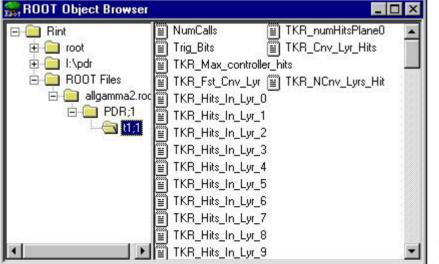

- Files created today will be readable years from now.
- Support for Object I/O
 - The detailed structure of our data is preserved for analysis.
- Schema evolution
 - Changes in our internal data structures will be tracked.
- On the fly compression
 - ROOT uses an algorithm based on gzip.
- Widespread use in the HEP community.
 - CDF at FNAL; several experiments at RHIC

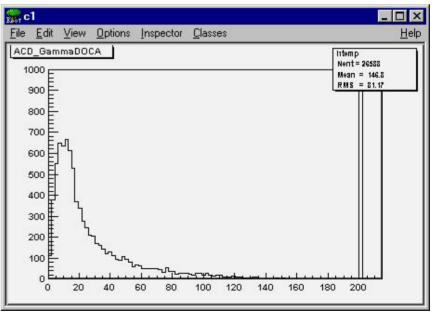
DOE/NASA Baseline-Peer Design Review, January 9, 2002

Object I/O

- Detailed tree structure of data is preserved.
- Described by C++ classes
- Branched I/O
 - Reduces unnecessary I/O by reading in only desired branches.
- Summary data is available in ROOT Ntuples.

Logical structure for the raw digitization data


Internal structure for storage of detector data



ROOT for Event Analysis

- Supports both interactive and batch processing.
- Free and available on all supported platforms.
- Strong and growing user base.
- Histogramming, function fitting, and GUI widgets.

Object Browser displays file contents.

Histograms produced at the click of a button.

T. Burnett, H. Kelly

Documentation, user support

- Gaudi, CMT, CVS: user guides available
- Local guides (web-based)

Software	[Getting Started with GLAST Software (Your How-To Page)] [Web Access to CVS repository] [Using GlastSim] [Using tbsim] [Using ROOTWriter] [Using tb_recon]
Support	[Whom to Call??] [Facilities at SLAC] [UW Windows Server]
Projects	[GAUDI] [GEANT4] [PDR] [Software PDR] [Event Display]
Other Software Resources	[Italy] [UCSC TB Recon] [Goddard] [NRL Software] [Hiroshima]
Tools	[Telecon VRVS] [Using VRVS for Glast] [Instant Msg ICQ] [Using ICQ for Glast] [CVS] [Using Cvs for Glast] [CMT] [Using CMT for Glast] [Root] [Using Root for Glast] [Root at FNAL] [Creating PEGS files]

Documentation Task Force

- Plan and Implement Documentation for GLAST SAS.
 - Web Site
 - <u>http://www-glast.slac.stanford.edu/software/core/documentation/</u>
 - Charge
 - 1. Ensure that all GLAST SAS policies and procedures are accurately documented.
 - 2. Provide and maintain standard templates for code and web pages.
 - 3. Assess the current documentation both for developers and users.
 - a. Audit all GLAST SAS web pages to insure consistency and readability.
 - b. Audit existing Doxygen generated developer documentation to highlight areas of improvement and guide creation of Doxygen guidelines.
 - c. Reorganize existing documentation, in conjunction with documentation owners.
 - 4. Maintain Doxygen guidelines for GLAST SAS, including examples.
 - 5. Maintain automated generation of Doxygen pages for code packages.
 - 6. Develop plans for generating and maintaining a GLAST SAS Developer Guide.
 - 7. Develop plans for generating and maintaining a GLAST SAS User Guide.
 - 8. Arrange and participate in developer and user documentation walk-throughs.
 - 9. Develop and provide online tutorials for all GLAST SAS utilities and products.
 - 10. Develop a plan for regular maintenance of the documentation.

Documentation Task Force contd.

- Schedule
 - Item (2) Standard templates will be completed the end of December 2001. 🗸
 - Item (3a) The audit of existing web pages should be completed by mid January 2002. (3c) The web pages will be reorganized by mid February 2002.
 - Item (3b) The audit of existing Doxygen pages will be completed by mid-January 2002. Suggestions will be provided to package owners by mid-February 2002.
 - Item (4) Guidelines and documentation for Doxygen usage will be completed by early January 2002.
 - Item (5) The automated generation of Doxygen pages is ongoing, and the initial scripts are in place.
 - Item (6) The outline and design report of the first GLAST SAS Developer's Guide will be created by March 2002. A first draft of the Developer's Guide will be available for review by July 2002.
 - Item (7) The outline and design report of the first GLAST SAS User's Guide will be created by August 2002. A first draft of the User's Guide will be available for review by October 2002.
 - Item (8) The methods and procedures for conducting documentation walk-throughs will be drawn up by the end of February 2002. The first of these walk-throughs will be scheduled for late March 2002, as the new version of the reconstruction algorithms become available.
 - Item (9) A design report and list of required tutorials will be generated by March 2002. The first online tutorial will be made available July 2002.

T. Burnett, H. Kelly

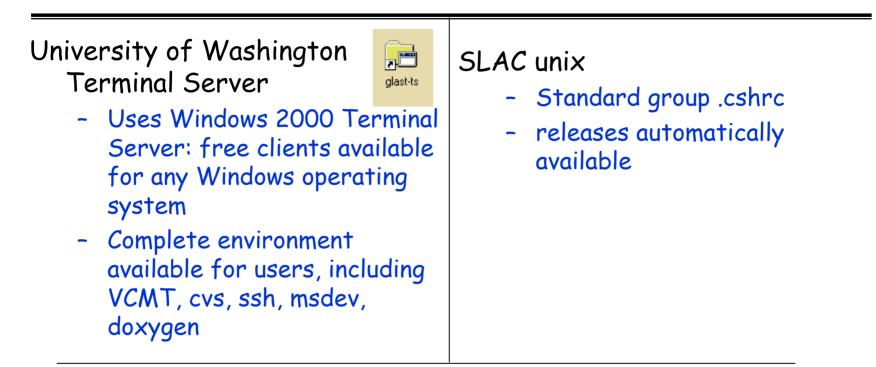
Help in the form of a GUI

- GUI interface to:
 - CMT: manage packages
 - CVS: check out, commit
 - MSDEV: build, or start its GUI
 - executable: run with commandline parameters
 - doxygen: run, examine results
- Only Windows. Hope to extend to unix.

🚈 Visual CMT - Microsoft Internet Explorer 📃 🗗 🗙		
Visual CMT EXIT I:\packages\pdr\digiRootData\v2r1		
Package list	● requirements ● uses ● macros ● show ● release notes ● ChangeLog ● output	
acdRecon v2 Adelete	package digiRootData version v2r1	
CalRecon v2r1	use GlastPolicy use ROOT	
data v4 add		
digiRootData v2r1 EXTLIB v2r4 checkout	ignore_pattern include_none apply_pattern package_include	
f2c v2 facilities v2 refresh	apply_pattern package_linkopts	
flux v4r4 FluxSvc v2r4	apply_pattern ld_library_path	
GaudiAlg v3 Spawn	private a	
Actions	# Create the Root Cint classes macro root_headers "AcdHeader.h AcdId.h AcdTile.h CalHeader.h CalLog.h ESAPID.h	
broadcast 🗖 local 🗖 global	# try to build this by adding to compilation for requirements macro digiRootData_customBuild ""\ VisualC "call \$(DIGIROOTDATAROOT)/digiRootData/dorootcint.bat"	
Msdev sysclean start setup Project:	<pre># on unix use a document to make rootcint part of the build process make_fragment event_dorootcint_header make_fragment event_dorootcint -header=event_dorootcint_header document event_dorootcint EventRootCint CINTFILE=/digiRootData/EventCint.cxx</pre>	
Debug O Release clean rebuild make	<pre># For some reason, I was getting errors when loading the digiRootData shareable # in root. Linking the Root Physics library in avoids this. macro digiRootData_shlibflags " -L\${ROOT_PATH}/lib -lPhysics -lMatrix " \ VisualC</pre>	
app parameters	library digiRootData *.cxx \ /digiRootData/*.h \	
CVS	/diğiRootData/*.cxx	
checkin update -n update		
import rtag status		

DOE/NASA Baseline-Peer Design Review, January 9, 2002

The Coding Process


- Inline documentation: doxygen
 - Each package must have a mainpage.h to introduce the purpose, provide direct links to top-level classes (Doc task force on top of this.)
- Coding rules
 - Avoid potentially bad constructions
 - Maintain some uniformity
 - Standard templates for appearance
- Testing
 - Each package defines test programs
- Reviews
 - Periodic reviews of code for design, adherence to reviews

package flux v4r5

This package contains all code to generate particles for GLAST simulation. The primary interface is via a <u>FluxMgr</u> object. A list of possible sources, with details on implementation, is in the file xml/source_libarary.xml All calculation of spectra is done in <u>Spectrum</u> objects,

Managed setups for developers

Both: plan to implement automatic build facilities for

overnight builds of HEAD versions

on demand builds of specified packages