Tracker Alignment Plan

Hiro Tajima
Stanford Linear Accelerator Center
TKR Alignment

• **TKR alignment objectives.**
 – Alignment is unnecessary if mechanical tolerance is realized.
 • Important tool to monitor the performance of LAT.
 – Trust, but Verify.
 – SSD alignment.
 • Alignment of individual SSD to verify assembly precision.
 • Performed just once upon receipt at SLAC.
 – Tray alignment.
 • Monitor the location of the trays periodically.
 – Inter-tower alignment.
 • Effect of GRID deformation due to temperature change.
 – LAT&Observatory alignment.
 • Define the LAT location w.r.t. the star tracker.
 • Define LAT scale.

• **TKR alignment requirements.**
 – Track angular precision < 7 arcsec. (TBR)
 – SSD location: < 30µm ~ 1/2 of position resolution.
SSD & Tray Alignment

- **Track based alignment.**
 - Minimize χ^2 of the distance between SSD hit and track by adjusting SSD location and orientation.

- **Parameters: x, y, z^*, rotation around z axis.**
 - Rotations around x and y axes are optional.
 - Overall z length is fixed to avoid under-constraint.
 - Overall z length will be fixed by LAT alignment.

- **Alignment technique.**
 - One large matrix inversion. (SLD)
 - 2304 x 2304 matrix per tower.
 - Iterative procedure. (Belle, DELPHI, ALEPH)
 - Align every SSD (tray) with respect to the rest of SSD (tray).
 - Iterate above procedure until adjustments become sufficiently small.
Inter-Tower & LAT Alignment

- **Inter-Tower alignment**
 - Monitor tower movement by GRID deformation due to temperature change.
 - Temperature dependence.
 - Minimize χ^2 of the distance between SSD hit and track from adjacent tower by adjusting tower location and orientation.

- **LAT & Observatory alignment.**
 - Minimize χ^2 of the distance between the nominal position of known gamma-ray sources and the position measured by LAT.
 - Define absolute z-scale of the LAT.
 - Study the position of the known gamma-ray sources as a function of the incident angle.
Alignment Performance Evaluation

- **Comparison of results from two independent procedure.**
 - Large matrix inversion and iterative procedure.

- **Comparison of tracking parameters from two different part of the tracker.**
 - Inter-tower, Upper-lower layers.
 - Systematics can be studied by angular dependence.
 - Alternative layers.
 - Overall tracking performance.
 - Comparison with MC.

Hiro Tajima, TKR Alignment, Nov 14, 2001
Schedule

• **MC studies. (present~2003/Dec)**
 – Study hit and track selection criteria appropriate for alignment.
 – Evaluate the alignment precision.
 – Figure out number of event necessary to satisfy the requirements.
 – Verification of MC results with Bfem data if we have time.

• **Alignment studies with Calibration unit. (2004/Jan~2004/Dec)**
 – “Verification” of MC results.
 • More like MC tuning.
 – Study temperature dependence.
 • Comparison with mechanical measurements.
 – Establish the alignment procedures for inner- and inter-alignment.