Post-DC1 Work

Seth Digel (HEPL/Stanford Univ.)
Outline

Note: *This presentation is from a science tools perspective*

- Immediate aftermath of DC1
- Friends of science tools development
 - Pipeline server, Gleam,…
- Response functions
- Likelihood characterization & optimization
- Observation simulation
- Other science tools – pulsars and GRBs
- LAT source catalog & source detection
- LAT interstellar emission model
- Data servers
- Infrastructure
 - User interface
 - Data visualization
In the aftermath of DC1

- Clean up DC1 distribution and installation instructions
 - Make a final DC1 release
- Clean up documentation as necessary
- Keep data and DC1 tools and analysis results available indefinitely
- [Write a closeout report for our own reference]
Other-than-science tools development

- **Gleam**
 - E.g., livetime

- **Strengthening our connections with our good friends in Flight Software**
 - What’s in the telemetry?
 - Onboard science

- **Processing pipeline**

- **Monitoring performance in flight**
 - Calibration, alignment
Response functions

- Analysis group
 - Onboard filter, reconstruction, classification
 - Response functions - multiple classes, investigate & write up answers to questions like azimuthal variation of response

- Fix up how the classifications are specified in FT1/merit
- For CALDB + LATresponse, revisit the parameterizations of the response functions
Likelihood analysis

- Performance, accuracy, statistical interpretation of results
 - Relates to observation simulation
 - Effects of finite energy resolution
 - Zenith angle cuts. Moon cuts? Sun cuts?
- Exposure map generation
Observation simulation

• Orbit and attitude simulation
 – Slewing, orientation with respect to sun
 – We need something that can someday provide accurate orbital positions on ~few day scale and can allow for pointed observations, slewing for autonomous observations
Other science tools

- **Pulsars**
 - It is time - ephemeris database, barycenter arrival time corrector, phase assignment, periodicity tests
 - With existing software, this should involve limited LAT-specific development
 - Some work is needed in the flux package, too

- **GRBs**
 - Temporal analysis, spectral-temporal physical modeling are planned
 - Work is probably needed on GRB sources for the flux package
LAT source catalog

- Working group has started to meet every other week
- Source detection and definition of suitable simulated data are of immediate interest
LAT interstellar emission model

- In principle we are organized as a Collaboration Science Working Team
- *Working* is not to be construed as *programming*, however
- Some important updates and improvements can be made to the EGRET team’s model
 - Improved angular resolution really isn’t one of them
- The model certainly will be updated after launch
Data servers

- GSSC and SLAC servers are separate and more or less equal
- SLAC server needs clarified definition, from the perspective of high-level analysis [It will also have pre-Level 1 data]
- Any chance of convergent design?
- Processing pipeline and data catalog and how they will interface with the LAT/SLAC data server.
Infrastructure

- User interface
 - Graphics. Are we close? Do we need to reassess what we want?
 - How about in terms of a GUI?
- Contents of high-level (FT1 and FT2) inputs to science tools
- Code architecture
 - James and Toby as code architects are reorganizing design of Goodi
 - Will there be architecting beyond the infrastructure level? Should there be?
Conclusions

• There’s obviously a lot to do in the immediate future and in the lead up to DC2
 – Important details, like how we can get all the work done, are not addressed here
• Data challenges, reviews, workshops, code architecting, talks like this…
 – Are all ways we are attempting to avoid discovering the right way to do things only by process of elimination
 – They are also ways we stay coordinated with each other