OnboardFilter Update

Work done by: Navid Golpayegani J.J. Russell David Wren

Data Challenge I Closeout Meeting, 12-13 February 2004

Status of Filter Work

- OnboardFilter has been integrated with GlastRelease
- OnboardFilter has been tested
 - Agrees with the Event Display & ntuple variables
- Have studied logic changes to the Filter
 - Can reduce gamma vetoes substantially
 - Performance before changes was not realistic enough for DC1
- Have calculated effective area and field of view after OnboardFilter event vetoes
- Currently studying revisions that would reduce albedo, and further improve gamma performance

Using OnboardFilter

- The Filter is called once for each triggered event
- Reconstructed Filter tracks can be drawn in the event display
 - Trigger.Members += {"FilterTracks"};
- The fundamental Filter output is in the MeritTuple in the form of two variables
 - FilterStatus_HI contains status code bits 15-31 (17 bits), which are the veto bits
 - FilterStatus_LO contains status code bits 0-14 (15 bits), which are informational bits about the event and its processing
- Filter Primitives (ACD, CAL, TKR quantities, and tracks) are in the TDS, and are being formatted for placement in an ntuple
- Filter Documented in LATDocs: LAT-TD-02979-01

Onboard Filter Tracks in Event Display

OnboardFilter Tracks in the Event Display

the ACD...)

David Wren

OnboardFilter Tracks in the Event Display

David Wren

Using OnboardFilter: ROOT Analysis

- Putting Filter primitives into an easily accessible format
 - The primitives will include: ACD tiles hit; CAL energy & energy/layer; towers triggered, location of layer coincidences; projection details, but not detailed strip hit info (too much data)
 - Evaluating two options (this is Navid's department):
 - Put all info into a separate TTree in the MeritTuple
 - Could get LARGE
 - Put summary info into a separate TTree in the MeritTuple, and put projection details into digi.root
 - Would update the class dictionary, which the user would have to load at the beginning of a ROOT session

Filter Performance: Overview

- The Filter removed 95% of the backgndavgpdr source
- BUT...the filter also did substantial damage to gammas

Even after ALL DC1 cuts (goodCal, goodPSF, zdir_cut, bk_veto, pruning), the filter still did damage

Filter Vetoes: What are the cuts?

- DFC V STATUS TKR LT 2 ELO = 15, /*!< Low energy, no 2 track evidence */ • DFC V STATUS TKR SKIRT = 16. /*!< Event into the skirt region */ ٠ DFC V STATUS TKR EQ 0 /*!< No tracks = 17. */ DFC V STATUS TKR ROW2 = 18. /*!< Track Row 2 match */ ٠ DFC V STATUS TKR ROW01 */ /*!< Track Row 0 or 1 match = 19. ٠ DFC V STATUS TKR TOP = 20. /*!< Track Top match */ ٠ DFC V STATUS ZBOTTOM /*!< No tracks into CAL with energy */ = 21, ٠ DFC V STATUS EL0 ETOT 90 /*!< E layer 0/ETOT > .90 = 22. */ ٠ DFC V STATUS EL0 ETOT 01 /*!< E layer 0/ETOT < .01 */ = 23, ٠ DFC V STATUS SIDE = 24. /*!< Event has a side face veto */ ٠ */ DFC V STATUS TOP = 25, /*!< Event has a top face veto ٠ DFC V STATUS SPLASH 1 */ = 26. /*!< Event has a splash veto ٠ DFC V STATUS E350 FILTER TILE = 27. /*!< Event <350Mev + filter tiles */ ٠ DFC V STATUS E0 TILE = 28, /*!< Event 0 energy + tile hit */ ٠ DFC V STATUS SPLASH 0 = 29, /*!< Event has a splash veto */ DFC_V_STATUS_NOCALLO_FILTER_TILE = 30, /*!< No CAL LO trigger + filter tile */ ٠ = 31 */ /*!< Any veto
- DFC V STATUS VETOED ٠
 - See LATDocs LAT-TD-02979-01

Which Vetoes Killed Gammas?

For TKR triggered gammas, there are many active vetoes

Black: TKR triggered events

Blue: TKR triggered and VETOED

David Wren

DC1 Closeout, 13 February 2004

Gammas killed after all standard cuts*

When considering the <u>events remaining</u> <u>after all cuts</u>, the vetoes are fewer

Studying distributions like these, along with those of background sources, suggests changes that can be made to the filter.

*goodEvent&&background&&pruning

Altering the Filter

- Did several trials with different alterations of the filter
 - Removed some vetoes
 - Put energy cuts on a few others
 - Watched the backgndavgpdr rate as vetoes were removed
 - Changes:
 - Veto 15 removed
 - Veto 17 only executed when Energy > 250 MeV
 - Veto 18 only executed when Energy < 30000 MeV
 - Veto 19 only executed when Energy < 10000 MeV
 - Veto 20 only executed when Energy < 30000 MeV
 - Veto 21 only executed when Energy > 100 MeV
 - Veto 22 removed
 - Veto 23 removed
 - Veto 26 removed
 - Track finding tolerance is relaxed: go from ± 32 strips to ± 192 strips

This number is being evaluated

corresponds to the raw cal energy that the filter sees, not McEnergy

Note: "Energy"

Filter Performance: Improvements

- After altering the Filter, the "Filter damage" decreases substantially
- These improvements were made possible when the GLAST mission office increased downlink data rate
 - Letting in more background allowed us to save MANY gammas

Effective area, field of view, and fraction of events vetoed

Cuts	Energy	0- 100 MeV	100-500 MeV	500-1000 MeV	1-10 GeV	10-180 GeV
goodEvent	Pk Aeff no Filt	1943	7957	10030	10287	9412
&& Background	FOV no Filt	2.2	2.48	2.65	2.61	2.47
&& Pruning	Pk Aeff w/ Filt	1943	7782	9770	10024	9181
	FOV w/ Filt	2.2	2.47	2.60	2.57	2.46
	Filt damage %	0.0	2.5	4.1	4.3	3.2

Pk Aeff no Filt: The peak effective area (cm²) before applying the filter

- FOV no Filt: Field of view (sr) before applying the filter
- Pk Aeff w/ Filt: The peak effective area after applying the filter
- FOV w/ Filt: Field of view (sr) after applying the filter
- Filt damage %: Percentage of events vetoed by the filter

Falloff at high energy is not due to filter

Summary of impact on gammas and background

- Most gamma improvement is at very low and very high energy
- The overall fraction vetoed is between ~0-4%, but we know where these vetoes are happening
 - Working to reduce these vetoes
- With the altered filter, the backgndavgpdr veto rate drops from ~95% to ~90%, increasing the event rate to ~340 Hz
 - Want more margin: we can handle ~400 Hz MAX to the ground
 - Includes albedo_gamma limb source
- Recently added in the albedo_gamma_upwards flux
 - This causes the background rate to rise to 470 Hz at zenithpointed orientation, so working on a solution

Current work: reducing "Filter damage"

- Reasons for Filter damage to gammas can be roughly divided into 2 groups: <1 GeV and >1 GeV
 - Altering Veto 17's implementation may reduce the damage by 44% above 1 GeV. Reduces Filter damage to <3% across all energy bins.
 - Other solutions are not obvious, so must examine vetoed events in the event display
 - These solutions are not likely to help with albedo gammas (next page)

Current work: killing albedo

- Backgndavgpdr includes albedo from the limb, but not the newer albedo_gamma_upwards source
 - The altered Filter only removes half of this unwanted flux
 - Rate is 130 Hz
- One way to kill these albedo gammas is to allow Veto 15 to execute when Filter Energy < 5 MeV
 - This has zero impact on gammas remaining after all standard cuts, because goodCal requires 5 MeV

Does it work?

Backgndavgpdr rate \rightarrow 304 Hz (from 340)

Albedo_gamma_upwards \rightarrow 35 Hz (from 130)

<u>Disadvantages</u>: impact on onboard science? And throwing out gammas before they reach the ground is not good if standard cuts change.

IMPORTANT NOTES:

- JJ found a geometry bug over Xmas
 - Fixing it should improve background rejection AND allow more gammas through (it did for JJ)
- Should CAL energy/layer vetoes (22 & 23) perform better? Looking into it.
- A track finding tolerance of +/- 192 strips is physically unreasonable
 - This will be reduced to a more realistic value
- Splash related vetoes (especially active above 1 GeV) need more study

Summary

- Filter performance better understood
 - Several things still need more study, but this is not unexpected
 - Good enough now for including in physics studies -> DC2!
- Possible to improve further gamma performance
 - A current version reduces "Filter damage" to <3%, and working to reduce that
- The most obvious method of killing albedo may have disadvantages, so working on alternatives
- Filter primitives have been in the TDS for several months, and will be in a more accessible format very soon
- Many options to increase post-filter data rate margin, but with some impact on A_{eff}