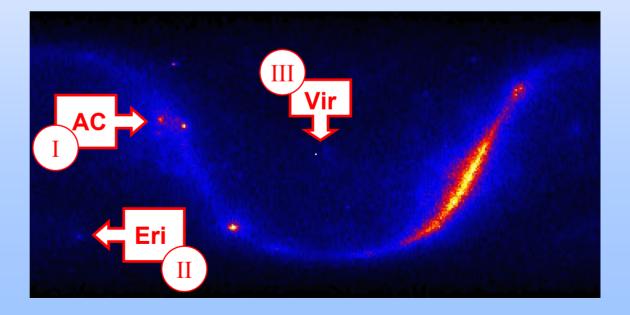
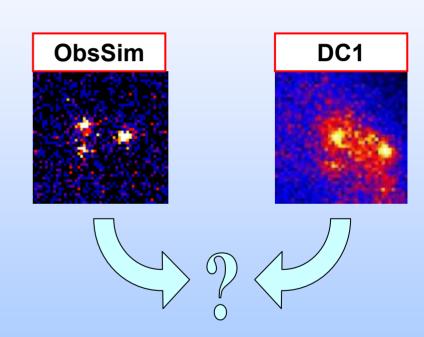


Riccardo Rando (<u>rando@pd.infn.it</u>), Francesco Longo, Riccardo Giannitrapani...


Likelihood analysis of some galactic and extragalactic sources

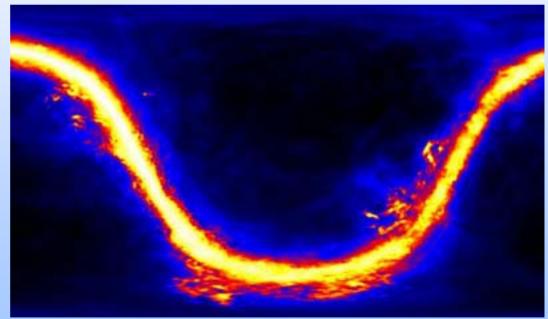
Guideline


- Identify sources / obtain spectra
- Some well known source as reference (AC)
- Some less known source as test (Eri)
- Some badly resolved region just to try (Vir)

Anticenter Region

- Copy Likelihood tutorial analysis on DC1 data instead of using simulated data
- use simulated data from tutorial:
 1 day ObsSim data to compare with "real" DC1 data
- Crab, Geminga, PKS** and diffuse extragalactic are simulated
- 1550 events in ObsSim data,
 10124 in DC1 data
- for DC1 data galactic diffuse component ("Egret d. c.") is relevant

Anticenter: simple


- A simple model, with point sources but with no diffuse component will fail!
- Let's try anyway to see what happens
- ROI, ExpMap, etc etc...
- almost everything is fair enough, but for Geminga spectral index, which is horrible!
- note: this is not the faintest source! PKS** generates 50% less photons than Geminga
- prefactors are badly overestimated: we are counting diffuse photons as produced by our sources

Anticenter DC1	Anticenter obsSim		
10124	1550		
Crab			
709 +/- 16	24.8 +/- 2.6		
100	100		
-2.407 +/- 0.019	-2.072 +/- 0.065		
Geminga			
507 +/- 16	23.9 +/- 1.9		
100	100		
-2.414 +/- 0.025	-1.645 +/- 0.035		
PKS0528+134			
325 +/- 20	13.3 +/- 2.2		
100	100		
-2.785 +/- 0.057	-2.36 +/- 0.14		
	DC1 10124 709 +/- 16 100 -2.407 +/- 0.019 507 +/- 16 100 -2.414 +/- 0.025 325 +/- 20 100		

Anticenter: tweak a little bit

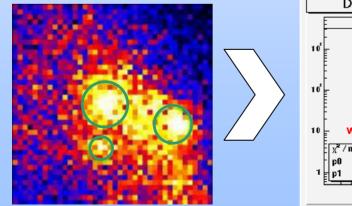
- Let's add the EGRET galactic diffuse component
- this is modeled by an input FITS file (gas.cel) in the Likelihood package
- the amount of diffuse photons is BIG!
- for ObsSim data there is no need for this: we can subtract the extragalactic component to have a better extimate (again: see online tutorial)

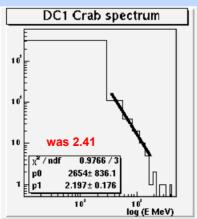
Anticenter: final result

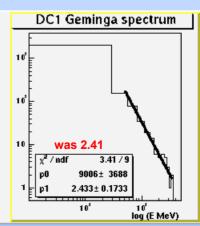
- Diffuse components were subtracted
- Spectral indexes are equal within uncertainties
- Even prefactors match (sheer luck??)

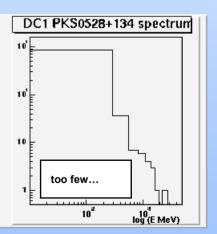
much better!

	1	r	
Fit: with diffuse component	Anticenter DC1	Anticenter obsSim	
accepted events	10124	1550	
Crab			
prefactor	26.9 +/- 1.4	24.9 +/- 2.6	
scale	100	100	
index	-2.190 +/- 0.088	-2.069 +/- 0.065	
Geminga			
prefactor	27.0 +/- 1.1	24.0 +/- 2.0	
scale	100	100	
index	-1.660 +/- 0.025	-1.644 +/- 0.035	
PKS0528+434			
prefactor	13.1 +/- 1.2	13.3 +/- 2.2	
scale	100	100	
index	-2.46 +/- 0.23	-2.23 +/- 0.11	

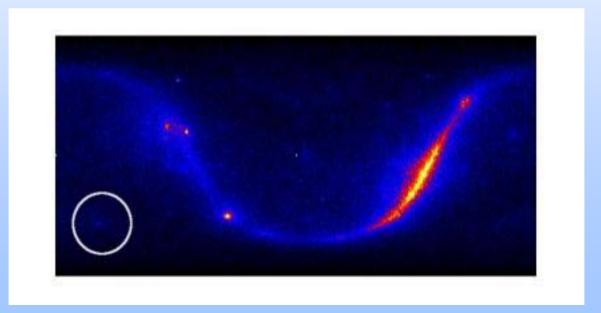



Anticenter: a look inside

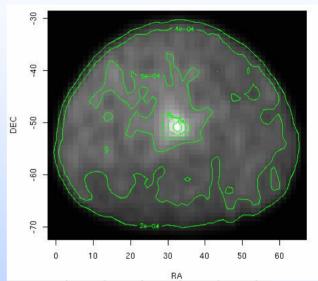

- We relied heavily on the Likelihood package; the only output is given by the fit parameters, other tools can be used to have a look inside the procedure
- we used ROOT to generate a couple of histo's and tried to fit by hand
- we selected a circular acceptance regions around point sources (radii: 2.875, 2.375, 1.875 deg)

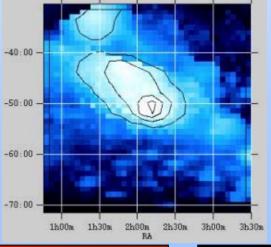

• parameters are close to those found with Likelihood without subtracting

the diffuse component



Eridanus

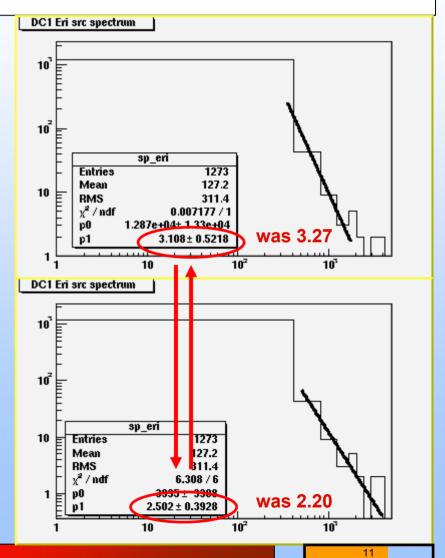

- let's select an isolated, extragalactic source
- we expect less influence of the diffuse galactic component
- faintness is the primary issue



Eridanus: pointing

- To find point source coordinates we can either
 - ✓ take the maximum of the photon countmap, or
 - ✓ create a test-statistics map with no source in the model,
- both method agree quite well for an isolated source: we get J2000(32.5,-51.25)
- let's try to get a spectrum
- we add also the galactic diffuse background: should not matter, but as it's not a trouble either...

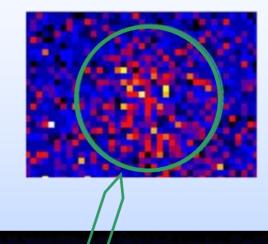
Eridanus: (not so good) results


- We simulated 1 day observation with ObsSim for the usual comparison
- errors are big, yet we had 2000+ photons to start with
- GDE is not so small even here
- spectral indexes are awful
- let's try to look in more detail at what is happening here...

Fit: with diffuse component	Eridanus DC1	3EGJ0210-5055 (obsSim)	
accepted events	2186	711	
Gamma Source			
prefactor	117 +/- 12	12.2 +/- 3.4	
scale	100	100	
index	-3.27 +/- 0.15	-2.20 +/- 0.13	
Galactic Diffuse Emission			
prefactor	76.0 +/- 2.9	19.4 +/- 1.2	
scale	100	100	
index	-2.262 +/- 0.029	-1.988 +/- 0.038	

Eridanus: a look inside

- ROOT again
- ROI radius is 5 degrees (~2×AC)
- · we can replicate the bad result
- we can even approximate the ObsSim result with the same binning changing only the fit interval
- this can be explained with the limited number of events
- Likelihood works properly, but sometime a more pictorial representation helps
- BTW, the source was J0210-5055, and the spectral index was -1.99

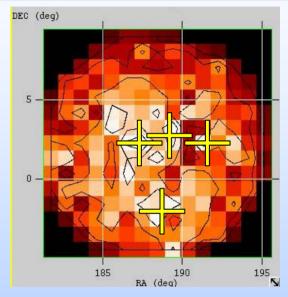


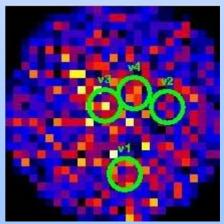
Virgo

- Something foolish: a complicated structure with many faint sources!
- near the NGP we spot something promising
- this is an extreme test of what we can do

 black box analysis, a polite way of saying I don't have the slightest idea of what I should

find here (ignorance helps!)

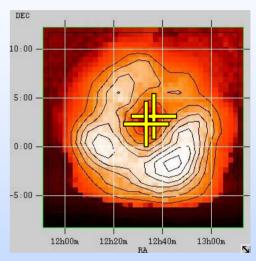


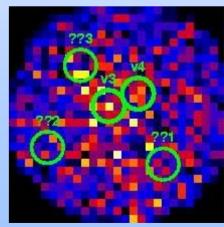

Virgo: find some sources

- rather than an iterative process with many TSmap (too time consuming) we can choose an adequate binning and find the maxima in the photon countmap
- "adequate" means "I like the picture"
- the 4 highest peaks are selected

src	RA	DEC
	400.00	
v1	188.68	-1.98
v2	191.32	2.20
v3	187.44	2.29
v4	189.26	3.06

 there was at least another one but already I don't like v1 and v2, they look slightly misplaced





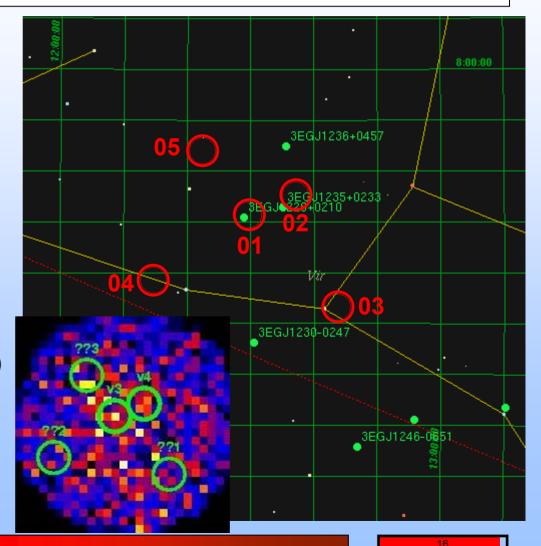
Virgo: from 4 to 2 to 5

- let's delete v1 and v2
- v3 and v4 look fair enough, we keep them
- use TSmap to find a better positioning
- now we have three maxima:
 - a big one (slightly right of old v1)
 - > a medium one (far left)
 - > a small one (top left)
- the faintest is the one I like best!
- the one on the left looks dubious at best
- don't know what to think of the other: was it better placed before (v1) or now (??1) ?
- I could remove ??2 but with no reason... other that I don't believe it

Virgo: status

· We have found five sources:

src	RA	DEC
virgo_01 (v3)	187.44	2.29
virgo_02 (v4)	189.26	3.06
virgo_03 (??1)	190.826	-1.337
virgo_04 (??2)	183.638	-0.292
virgo_05 (??3)	185.693	4.823


- one (virgo_04) seems unlikely
- seems that another (virgo_03) can be placed rather arbitrarily
- errors on fit parameters are big

Fit, with d		Virgo regio	n
accepted e	events	1201	
virgo_01		virgo_02	
prefactor	66 +/- 19	prefactor	41 +/- 10
scale	100	scale	100
index	-2.73 +/- 0.20	index	-2.61 +/- 0.17
virgo_03		virgo_04	
prefactor	60.4 +/- 7.7	prefactor	42.6 +/- 7.3
scale	100	scale	100
index	-2.68 +/- 0.11	index	-2.62 +/- 0.14
virgo_05		Diff. em.	
prefactor	37.2 +/- 6.8	prefactor	43.0 +/- 9.9
scale	100	scale	100
index	-2.38 +/- 0.12	index	-2.02 +/- 0.10

Virgo: open the box

- looking in the Egret catalogue we can fill that sky region with point sources
- our candidates are indicated by the red boxes
- the first two match!
- the one on the bottom was better placed before our last change...
- the fourth is a bogus (I knew it!)
- the fifth is far left of the possible right place (by 3.5 degrees)... yet I would have bet on it...

Conclusions

- we played with the Likelihood package
- reliable results, but "black box behavior": we get parameters & errors but it's hard to have a hint on what we could do to improve them
- external tools (like ROOT) can help decide/understand in many cases
- faint sources/complicated structures can be troublesome, but don't seem impossible
- user has much to say about the final result

